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Abstract

Cardiovascular disease is the leading cause of death worldwide. Despite overwhelming 

socioeconomic impact and mounting clinical needs, our understanding of the underlying 

pathophysiology remains incomplete. Multiple forms of cardiovascular disease involve an acute or 

chronic disturbance in cardiac myocytes, which may lead to potent activation of the Unfolded 

Protein Response (UPR), a cellular adaptive reaction to accommodate protein-folding stress. 

Accumulation of unfolded or misfolded proteins in the Endoplasmic Reticulum (ER) elicits three 

signaling branches of the UPR, which otherwise remain quiescent. This ER stress response then 

transiently suppresses global protein translation, augments production of protein-folding 

chaperones, and enhances ER-associated protein degradation, with an aim to restore cellular 

homeostasis. Ample evidence has established that the UPR is strongly induced in heart disease. 

Recently, the mechanisms of action and multiple pharmacological means to favorably modulate 

the UPR are emerging to curb the initiation and progression of cardiovascular disease. Here, we 

review the current understanding of the UPR in cardiovascular disease and discuss existing 

therapeutic explorations and future directions.
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1. INTRODUCTION

Cardiovascular disease is the leading cause of mortality and morbidity worldwide [1]. 

Metabolic derangements, hypoxia, and inflammation constitute the majority of 
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cardiovascular pathophysiology, most of which cause adverse disturbance of Endoplasmic 

Reticulum (ER) homeostasis [2]. The ER possesses multiple essential cellular functions, 

including protein folding, secretory/transmembrane protein translocation, calcium 

homeostasis, and lipid biosynthesis. Various physiological or pathological stimuli lead to 

luminal accumulation of misfolded and unfolded proteins, a condition known as ER stress. 

ER stress triggers the Unfolded Protein Response (UPR) to restore homeostasis of the ER 

through activating transcriptional and translational pathways [3]. While acute induction of 

the UPR may be adaptive, prolonged, persistent activation may cause dysfunction and cell 

death. Indeed, aberrant regulation of the UPR has been implicated in the pathogenesis of 

numerous diseases, including neurodegenerative disease, cancer, diabetes, etc. Recent 

emerging evidence indicates that UPR is involved in the initiation, progression, and 

development of the cardiovascular diseases, such as hypertensive heart disease, ischemic 

heart disease, and heart failure [4]. Precisely targeting the UPR may, therefore, represent a 

promising avenue to identify novel therapeutic interventions and to tackle the devastating 

cardiovascular disease.

2. UNFOLDED PROTEIN RESPONSE (UPR)

The ER is a major signal transduction organelle, which is sensitive to various cellular 

disturbances. Numerous extracellular stimuli such as heat, ischemia, gene mutation, 

hypoxia, and increase in protein synthesis can cause ER stress, which in turn triggers an 

adaptive response named UPR (Fig. (1) [5]. Under resting conditions, the master ER protein 

chaperone binding immunoglobulin protein (BiP)/glucose-regulated protein of 78 kDa 

(GRP78) interacts with the luminal domains of three UPR signaling transducers and secures 

them on the ER membrane [6]. As the first step of the UPR, GRP78 binds to the unfolded/

misfolded client proteins, which in turn releases the three sequestered ER membrane signal 

transducers, including endoribonuclease Inositol-Requiring Enzyme 1 (IRE1), Protein 

Kinase-like ER kinase (PERK), and Activating Transcription Factor 6 (ATF6) [7]. 

Meanwhile, GRP78 binds to misfolded and unfolded proteins as a chaperone to help them 

refold correctly or guide for ER-associated Degradation (ERAD). As a consequence, the 

UPR leads to the downregulation of global protein translation, production of new chaperone 

proteins, enhancement of ER protein folding capacity, and elimination of terminally 

misfolded proteins.

The three UPR branches are activated by distinct mechanisms and elicited different 

downstream signaling [8]. The liberation of IRE1 from GRP78 leads to autophosphorylation 

on serine 724 that triggers its endoribonuclease activity [9]. Cleavage of 26 base pairs from a 

cryptic intron of downstream target X-box binding protein 1 (XBP1) causes a frameshift and 

the resultant spliced XBP1 (XBP1s) functions as a strong transcriptional factor [10]. On the 

other hand, release of PERK and autophosphorylation lead to activation of its kinase activity, 

phosphorylation of downstream eukaryotic translation initiation factor 2α (eIF2α), and 

attenuation of global protein translation to decrease ER cargo load. Simultaneously, 

translation of activating transcriptional factor 4 (ATF4) is enhanced via preferable regulation 

of upstream small open reading frames to corroborate the protein-folding capacity of the ER. 

ATF6, after liberation from GRP78, is translocated from the ER to the Golgi where ATF6 is 

cleaved by site 1 protease and site 2 protease. The processed nuclear ATF6 (ATF6n) 
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migrates to the nucleus and acts as a potent transcriptional factor. Various targets of ATF6n 

participate in ER protein folding, growth regulation, and cell survival [11].

All three branches stimulate UPR chaperone expression, but each transducer has special 

roles. The IRE1 effector XBP1s regulates multiple lipogenic enzymes and ERAD proteins 

[12, 13]. The PERK branch attenuates global protein synthesis through phosphorylation of 

eIF2α and induces CHOP (CCAAT/-enhancer-binding protein homologous protein)-

mediated apoptosis under persistent ER stress [14]. ATF6 signaling is critical in maintaining 

cellular redox homeostasis and confers survival advantage [15, 16]. Furthermore, there is 

substantial crosstalk among the three branches. Although this interplay is essential for the 

cell to mount an adaptive action in response to complex intracellular and extracellular cues, 

it may make precise UPR targeting a daunting mission.

The UPR is a cellular stress response, highly conserved in evolution from yeast to mammals 

[17]. At the early phase, the three transducers activate their individual downstream 

pathways, resulting in elicitation of various pro-survival mechanisms including upregulation 

of ER chaperones such as GRP94, GRP78, and calreticulin and enhancement of ER 

homeostasis [18]. However, prolonged, sustained ER stress may turn the pro-survival action 

to pro-apoptotic signaling, mainly mediated by phosphorylation of c-Jun N-terminal kinase 

(p-JNK), upregulation of CHOP, cleavage of caspase-3, or a combination of these events [3]. 

Furthermore, a cell death response that involves cross-talk between ER and mitochondria 

may be triggered [19]. Taken together, optimal activation and execution of the UPR are 

critical for a pro-surviving adaptive response to restore cellular homeostasis, which may, 

however, lead to cell demise under persistent stress conditions.

3. CARDIOVASCULAR DISEASE AND UPR

Cardiovascular disease includes any conditions that affect blood vessels and internal 

structure or the morphology of heart, essentially contributing to the obstruction of 

continuous blood supply to the body. In cardiac myocytes, the sarco-ER (SER) plays a 

central role not only for general cellular function but also for myocyte contractility. SER 

stress that is common in heart disease can induce the UPR, which may reduce expression of 

essential proteins, adversely affect cell function, and even lead to cell death under 

uncontrolled stress conditions.

ER stress as an acute response has been found in many types of cardiovascular disease. For 

example, myocardial infarction is associated with oxygen and glucose deprivation in the 

myocardium, which disrupts ER homeostasis and generates a large amount of misfolded 

proteins, followed by the activation of UPR [20]. Hypertension or aortic stenosis can lead to 

pressure overload that is also associated with ER stress and stimulation of the UPR [21]. 

Additionally, congenital dilated cardiomyopathy is linked to a mutation in the KDEL 

receptor, which leads to buildup of misfolded proteins and prolonged ER stress in the heart 

[22]. Autoimmune cardiomyopathy is instigated by macrophage invasion to cardiac tissue 

and is associated with activation of the UPR in the heart [23]. In addition, atherosclerosis is 

a consequence of the accumulation of misfolded proteins due to excessive oxidation of 

lipids, elevation of homocysteines in vascular cells, and buildup of large amounts of 
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cholesterol esters in macrophages [24]. Collectively, ER stress and cardiovascular disease 

are intimately linked together, and some of the key molecules of the UPR such as GRP78, 

IRE1, XBP1s, PERK, and ATF6 may play important roles in the pathogenesis of 

cardiovascular disease. Therefore, signaling pathways for coping with ER stress may present 

an important direction for the identification of therapeutic targets and design of novel 

treatment regimes.

Pharmacological agents that directly modulate the UPR are emerging as promising tools 

towards effective treatment of cardiovascular disease. Potential strategies to modulate the 

UPR include reducing unfolded proteins, preventing the UPR sensors from excessive 

activation (i.e., enhancing the binding between GRP78 and UPR transducers), suppressing 

the over-activated UPR sensors and effectors, etc. For example, it has been shown that 

salubrinal, an eIF2α phosphatase inhibitor, significantly increases GRP78 expression and 

protects the heart against ER stress-associated cardiomyocyte apoptosis in a rat myocardial 

infarction model [25]. However, the UPR participates in both pro-surviving and pro-

apoptotic pathways and little is known about the biological consequences of switching from 

pro-survival to pro-apoptosis, or verse versa. As an example, the tyrosine kinase inhibitor 

sunitinib can directly stimulate IRE1 with the consequent activation of XBP1s and 

alleviation of ER stress [26]. However, in patients with previous clinical history of 

hypertension and heart disease, sunitinib was reported to increase the risk for cardiovascular 

disease [27].

Pharmacological alleviation of ER stress can also be achieved by stabilizing and rescuing 

misfolded proteins with chemical chaperones that mimic ER protein chaperones [28]. 

Tauroursodeoxycholic Acid (TUDCA) and 4-PBA have been approved for clinical use. 

Studies have shown that 4-PBA reduces ER stress and pressure overload-induced 

pathological cardiac remodeling in vivo [29]. Moreover, 4-PBA prevents doxorubicin - 

induced cardiac injury and isoprenaline-triggered cardiac fibrosis, highlighting its potential 

use as a cardioprotective drug [30]. Additionally, TUDCA treatment leads to improvement 

of contractile function in mouse cardiomyocytes under oxidative stress-induced UPR [31]. 

Taken together, by relief of ER stress, chemical chaperones may exert a protective role 

against pathological cardiac hypertrophy and, potentially, heart failure.

However, the UPR is an essential process in maintaining normal cellular function. 

Homozygous knockout mouse models of UPR sensors and effectors have shown various 

baseline detrimental effects [32]. For instance, whole body complete deficiency of either 

XBP1 or IRE1 is embryonic lethal with defective development of the heart and blood vessels 

[33, 34]. PERK knockout in mice leads to diabetes [35]. Moreover, ATF6 deficiency induces 

liver steatosis, hypoglycemia, and insulin resistance [36]. Collectively, targeting the UPR 

may be a double-edged sword, and more specific and temporary intervention of UPR sensors 

may be the safest strategy for modulating the UPR. Here, we review recent progresses that 

focus on the UPR as a therapy target in cardiovascular disease.
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4. GRP78 IN CARDIOVASCULAR DISEASE

GRP78, also known as BiP, is a member of the Hsp70 family of protein chaperones [37]. 

Highly conserved across different species, GRP78 is localized primarily in the ER lumen, 

where it aids protein folding and regulates the UPR under stress conditions [6]. At the basal 

level, GRP78 binds the three signaling transducers PERK, IRE1, and ATF6 and prevents 

them from over-activation. Under the condition of accumulation of misfolded or unfolded 

proteins in the ER, GRP78 preferentially interacts with the exposed hydrophobic patches of 

misfolded proteins, releases the stress sensors, and activates the UPR.

Recently, accumulating studies have shown that GRP78 can be localized at the plasma 

membrane and may exert a cytoprotective role, especially in cancer cells [38–40]. 

Thapsigargin actively promotes cell surface localization of GRP78, as the increase of cell 

surface GRP78 is several-fold higher than the elevation in intracellular GRP78 [41]. GRP78 

may be translocated and anchored to the cell surface membrane by binding to ER co-

chaperones [42]. A recent study from Lee and colleagues showed that the activation of ER 

stress transducer IRE1 causes KDEL receptor dispersion from the Golgi and suppression of 

retrograde translocation of GRP78 [43]. Some GRP78, therefore, escapes to cell surface 

membrane where it counteracts the effects of transforming growth factor β and promotes 

cancer cell survival [43]. On the cell surface membrane, GRP78 may function as a signal 

transducing receptor or co-receptor for soluble ligands such as α2-macroglobulin (α2-M) 

[44], tumor differentiation factor [45], and vaspin [46]. Binding of GRP78 to most of these 

ligands activates the AKT/PI3K pro-survival pathway [47]. GRP78 is highly expressed on 

the cell surface membrane of a variety of cancer types owing to their inherently elevated ER 

stress level [46]. In contrast, expression of GRP78 in normal cells is modest and its 

membrane localization is therefore not prevalent. Consistently, global profiling of cell 

surface GRP78 is highly correlated with pathological states in cancers, making it a relevant 

target for therapeutic design.

Ample evidence suggests that GRP78 plays essential roles in development and cell survival 

[48]. Deletion of GRP78 causes defects in gestation and embryonic lethality at 3.5 days post 

coitum [49]. Moreover, tissue-specific elimination of GRP78 leads to cell death in respective 

cell types, including adipocytes and lung epithelial cells [50, 51]. Along these lines, GRP78 

is also essential for physiological function and survival of cardiac myocytes. Our recent 

study highlighted the critical role of GRP78 in preventing cardiac cell death, maintaining 

contractile function and systolic performance, and survival [52]. We found that embryonic 

deficiency of GRP78 only in cardiomyocytes causes developmental defects in the heart and 

lethality before birth. Furthermore, inducible deletion of GRP78 in cardiomyocytes in adult 

animals leads to cardiomyocyte loss, severe heart failure, and accelerated death. Further 

work indicates that cell surface localized GRP78 may directly interact with PI3K and 

activate AKT, which can suppress overproduction of Reactive Oxygen Species (ROS) and 

promote survival [52]. Moreover, studies have shown that myocardial ischemia stimulates 

GRP78 expression in the heart [53]. We recently found that myocardial ischemia/reperfusion 

promotes GRP78 expression in cardiac myocytes [54] and overexpression GRP78 can 

mitigate the reperfusion injury [55]. The underlying mechanism may include GRP78 

upregulation and translocation to cardiac myocyte surface membrane, where GRP78 
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interacts with PI3K and results in AKT activation to inhibit ROS accumulation [55]. In 

addition, our further study showed that GRP78 is also prominently upregulated in cardiac 

hypertrophy because of higher demand for protein synthesis/folding [56]. Interestingly, 

GRP78 overexpression leads to a higher degree of cardiac hypertrophic growth in response 

to pressure overload in vivo. Mechanistically, GRP78 may corroborate with GATA binding 

protein 4 (GATA4) and promote more profound hypertrophic growth under hemodynamic 

stress [56].

5. GRP78 AS A THERAPEUTIC TARGET

GRP78 overexpression can increase the binding probability of GRP78 to the UPR sensors 

and, therefore, prevent excessive activation. Meanwhile, GRP78 overexpression can 

augment the interaction of GRP78 to unfolded and misfolded proteins to help to refold or 

accelerate ERAD. Therefore, therapies targeting GRP78 may be beneficial for heart disease 

and other disorders with over-activated UPR (Fig. (2). As an example, overexpression of 

GRP78 has been reported to attenuate hypoxia-induced cardiomyocyte death [57].

6. GRP78 ACTIVATORS

Neurodegenerative disease is commonly associated with accumulation of misfolded and 

aggregated proteins, excessive oxidative stress, calcium dysregulation, and mitochondrial 

dysfunction [58]. A growing body of evidence indicates that the level and localization of 

GRP78 are altered, accompanied by accumulation and aggregation of misfolded proteins in 

neurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s Disease (PD), 

Huntington’s Disease (HD), Amyotrophic Lateral Sclerosis (ALS), and prion protein disease 

[59–61]. Therefore, much research has been directed to validate GRP78 as a therapeutic 

target for the treatment of neurodegenerative disease. BiP Inducer X (BIX), originally 

identified to stimulate GRP78 mRNA expression, is a compound that preferentially induces 

GRP78 with modest augmentation of GRP94, calreticulin, and CHOP. BIX, however, does 

not modulate the signaling pathway downstream of IRE1 or the translational control branch 

from PERK [62]. Recently, BIX was tested in animal models with neurodegenerative 

disorders [63, 64]. It was shown that BIX administration significantly increases GRP78 

expression, and ER stress-induced cell death is suppressed, leading to a reduction in the 

number of apoptotic cells. In addition, BIX was evaluated in ischemic animal models [65]. 

In global transient forebrain ischemic gerbils, BIX significantly upregulates the expression 

of GRP78. Moreover, pre-treatment with BIX reduces apoptosis cells in the hippocampus. In 

conclusion, BIX induces GRP78 to prevent neuronal death by ER stress, suggesting that 

BIX is a potential therapeutic agent for cerebral disease caused by excessive ER stress. 

Other GRP78 activators such as methoxyflavones also have a strong protective effect against 

detrimental ER stress [66]. Application of BIX and other GRP78 activators, however, has 

not been examined in heart disease. Using a transgenic mouse model, we recently showed 

that overexpression of GRP78 only in cardiac myocytes protects the heart from ischemia/

reperfusion injury [55]. Further studies are warranted to investigate the pharmacokinetics of 

GRP78 activators, including its possible side effects, in pre-clinical tests in heart disease.
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7. GRP78 INHIBITORS

The metabolic microenvironment of cancer cells is often acidic, hypoxic, and nutrient 

deprived, all of which are potent inducers of ER stress. GRP78 as the master regulator of ER 

stress is involved in cancer development, including tumor cell survival and proliferation, 

angiogenesis, and metastasis [67]. In addition, in different types of cancers, abnormally high 

GRP78 expression is correlated with anti-cancer drug resistance, greater risk for cancer 

recurrence, and an overall decrease in patient survival [68, 69]. Thus, small molecule agents 

that interfere with the synthesis, stability or activity of GRP78 in cancer cells can suppress 

its function and trigger cell death. Along with these lines, KP1339/IT-139 is one of the most 

sufficiently studied, potent GRP78 inhibitors [70, 71]. KP1339/IT-139 has already proven 

distinct anti-cancer activity while being extraordinarily well tolerated based on its dual 

prodrug nature: tumor site accumulation via albumin binding and tumor-specific activation 

by reduction [72, 73]. In a phase I clinical study designed to test KP1339, various tumors 

responded favorably to KP1339 treatment [74, 75].

Additionally, the thiazole benzenesulfonamide compound HA15 is a novel GRP78 inhibitor 

that has been shown to bind to and inhibit GRP78, leading to strong activation of ER stress 

pathways and subsequent cell death by apoptosis and autophagy [76, 77]. Recent studies 

have shown that treatment with HA15 can effectively kill melanoma cells and even to 

overcome BRAF inhibitor resistance. Recently, OSU-03012, a novel PDK-1 inhibitor, was 

discovered and the major mechanism is mediated through inhibition of GRP78, primarily by 

reducing the half-life of GRP78 protein [78–80]. Compared to the parent drug celecoxib 

(Celebrex), OSU-03012 has a greater level of bioavailability in preclinical large animal 

models and better efficacy at killing tumor cells [79, 80]. Verrucosidin (VCD) is a pyrone-

type polyketide, which is produced by several species of the genus Penicillium. VCD was 

recently reported to be able to kill human HT29 colon carcinoma cells in culture under 

glucose-deprived conditions, which is mediated by downregulation of GRP78 [81, 82]. In 

addition, several purported GRP78 downregulators, for example, arctigenin [83], metformin 

[84], pyrvinium [85], and versipelostatin [86], have already shown anticancer activity in 
vivo. Pathological cardiac remodeling under chronic pressure overload is associated with 

elevation of GRP78. We showed that GRP78 potentiates cardiac hypertrophic growth 

through stabilization of a master cardiac transcriptional factor GATA4 [56]. On the other 

hand, siRNA-mediated knockdown of GRP78 in cardiomyocytes attenuates hypertrophic 

growth in response to hypertrophic stimuli. However, it remains to be determined whether 

GRP78 pharmacological inhibitors may regress pathological cardiac hypertrophy and 

improve heart failure. More work is therefore needed to evaluate the use of GRP78 inhibitors 

in this scenario.

8. GRP78-TARGETING PEPTIDES

Since GRP78 is strongly elevated in various cancer cells, it is a valid target to overcome 

tumor initiation and development. An additional advantage in targeting GRP78 is given by 

the observation that GRP78 translocates to the plasma membrane of malignant but not 

benign cells, offering the possibility of cancer cell-specific drug delivery with functionalized 
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nanoparticles. Short peptides specifically binding GRP78 are therefore employed either for 

direct inhibition of GRP78 activity or to coat nanoparticles to deliver cytotoxic drugs.

One of the direct GRP78-targeting peptides is Bag-1, derived from a novel interaction site 

on the co-chaperone Bag-1 that binds the C-terminal domain of GRP78 [87]. Studies have 

shown that ectopic expression of Bag-1 peptide in several malignant but not benign prostate 

cancer cell lines as well as in prostate cancer xenograft models reduces tumor growth by 

inhibiting GRP78 protein-folding activity and inducing CHOP-mediated apoptosis. 

Similarly, intratumoral gene transfer of Mda-7, a tumor suppressor, was able to reduce the 

growth of several cancers. Importantly, M4, a peptide derived from Mda-7 and retaining the 

full functionality, specifically targets GRP78 [88, 89]. Taken together, these results indicate 

GRP78-targeting peptides may be exploited for therapeutic purposes.

Current antitumor chemotherapeutic drugs are often limited by severe side effects that leave 

cancer patients under extreme distress. To enhance delivery efficiency and decrease 

undesirable side effects, a large amount of efforts have been made in generating small 

molecules that can bind to cell surface GRP78 and activate the apoptotic pathway as an 

effective mode of anticancer therapy. GRP78 binding peptides are able to specifically bind to 

tumor cell surface GRP78, and to deliver the fused pro-apoptotic protein precisely into 

cancer cells to suppress tumor growth [90]. A successful example is given by the cyclic 

peptide Pep42 (CTVALPGGYVRVC) that can bind selectively to cell surface GRP78 and 

function as a cell-penetrating peptide [91].

In addition, the peptides WIFPWIQL and WDLAWM FRLPVG are able to bind GRP78 on 

the cell surface and have been employed successfully with in vivo models of prostate and 

breast cancers for the delivery of a cell death-inducing peptide [90]. Furthermore, GRP78 

binding peptides can also be used in conjugation to other carriers like liposomes or 

nanoparticles. In fact, the peptide WIFPWIQL has been conjugated to liposomes for 

doxorubicin delivery to cancer endothelial cells and in an in vivo colon carcinoma mouse 

model [92]. Similarly, the peptide GIRLRG was employed for coating nanoparticles 

containing paclitaxel in irradiated breast carcinomas, which showed increased cell death 

compared to known chemotherapy approaches [93]. Based on these findings from the cancer 

studies, we propose that GRP78 targeted peptides may also be developed into a 

cardioprotective drug for reperfusion injury. The advantages may be twofold. These 

targeting peptides may themselves elicit pro-surviving actions in stressed but not dead 

cardiac myocytes through AKT activation. Moreover, targeted delivery of anti-apoptotic 

agents may provide another layer of cytoprotection. Exploration and validation of this 

peptide approach are currently underway in cardiac reperfusion models.

9. PERK IN CARDIOVASCULAR DISEASE

PERK is a protein kinase that belongs to the eIF2α kinase subfamily. PERK is composed of 

ER luminal and kinase domains. The former senses accumulation of unfolded and misfolded 

proteins in the ER lumen. After stimulation, PERK is activated by autophosphorylation of its 

kinase domain and acquires full catalytic activity to phosphorylate eIF2α at serine 51 [94]. 

Similar to most typical protein kinases, structure of the PERK kinase domain contains a C-
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terminal lobe (C-lobe) and an N-terminal lobe (N-lobe). There is a short hinge loop linking 

these two lobes. The N-lobe comprises three α-helices and five β-strands, whereas the C-

lobe consists of two short β-strands, seven α-helices, and a long activation loop [95]. 

Located on the ER membrane, PERK is presented as monomers. Its ER luminal domain is 

bound by the master ER chaperone GRP78 under resting conditions. Initiation of ER stress 

facilitates disassociation of GRP78 from the PERK luminal domain. Then, the unfolded and 

misfolded proteins in the ER bind to MHC-like grooves of the PERK luminal domain, which 

subsequently triggers stacking of PERK homodimers. Along the polypeptide of unfolded 

and misfolded proteins, PERK dimers are lined up [95]. This steric configuration allows the 

activation loop of one dimer to reach the catalytic site of the other to trigger 

autophosphorylation. As a consequence, downstream molecules of PERK signaling are 

recruited and phosphorylated.

Recent studies by Liu et al. show that deficiency of PERK in the heart exacerbates the 

development of congestive heart failure in response to pressure overload, indicating that the 

PERK branch of UPR in cardiomyocytes is important in an adaptive response to high blood 

pressure [96]. Moreover, another work demonstrates that deletion of PERK in myocytes 

exhibits a strong protective effect against apoptosis induced by high glucose [97]. 

Interestingly, PERK in primary cardiomyocytes is found as a component of MAMs 

(mitochondria-associated endoplasmic reticulum membranes), which is the functional and 

physical contact site between ER and mitochondria. McAlpine et al. found that PERK is 

required for the activation of GSK3α/β by ER stress [98]. In mouse primary macrophages, 

PERK inhibition blocks ER stress-induced lipid accumulation, whereas constitutively active 

Ser9Ala-GSK3β promotes foam cell formation and CHOP elevation, even in cells treated 

with a PERK inhibitor. These data suggest that the ER stress/PERK-GSK3α/β signaling axis 

promotes pro-atherogenic macrophage lipid accumulation, highlighting a role in 

atherosclerosis and cardiovascular disease.

Studies have also shown that PERK may participate in the regulation of arrhythmias [57]. 

Gao et al. found that PERK activation in cardiomyocytes downregulates Na+ channel 

(Nav1.5) and cardiac rapidly activated K+ channel (Kv4.3) in human heart failure. The 

reduction of Nav1.5 leads to less Na+ current density and consequently decreased 

conduction velocity. On the other hand, the reduction of KCND3 encoding the α subunit of 

Kv4.3, which is the main contributor to the notch of phase 1 of the cardiac action potential, 

induces early repolarization, increases membrane resistance, and causes shortening of the 

cardiac action potential duration and phase 2 reentry. Moreover, blocking PERK prevents the 

decrease of these ion channels and reverses arrhythmogenic channel downregulation. 

Collectively, these results highlight a new paradigm of maintaining ion channel activity to 

prevent arrhythmia by modulating PERK.

10. PERK AS A THERAPEUTIC TARGET

Previous studies suggest that unresolved, chronic ER stress and sustained PERK activation 

have serious detrimental consequences in cell survival, which may be associated with 

cardiac disease. Acute stimulation of PERK, in contrast, may be beneficial for the heart to 

mount an adaptive response. This dichotomous impact of transient versus chronic PERK 
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activation on normal physiology and disease pathogenesis is a subject of considerable 

interests and debates related to the therapeutic potential of PERK modulators (Fig. (3) [99].

A number of studies have shown that knockdown or genetic ablation of PERK can enhance 

tumor survival and growth and accelerate disease progression, indicating that activation of 

PERK may be a viable therapeutic approach [100]. Fv2E-PERK, an engineered PERK 

fusion protein with a modified luminal domain that can be dimerized and activated 

specifically with the FK506 analog AP20187, has proven to be a valuable tool to selectively 

activate PERK and precondition cells to tolerate following excessive ER stress, offer 

cytoprotective benefit, and induce or maintain a tumor cell quiescent state [101, 102]. 

However, more studies are required to be done in cardiac disease especially in congestive 

heart failure. Compared to direct PERK activation, increasing eIF2α phosphorylation by 

targeting the GADD34/PP1 eIF2α phosphatase with small molecule inhibitors such as 

guanabenz and Sephin1 has produced encouraging results in various models of 

neurodegenerative disease [103, 104].

On the other hand, PERK inhibition becomes increasingly attractive based on abundant 

preclinical and clinical data. These results reveal that PERK activation is pathogenic or 

associated with the promotion of tumor growth. Medicinal chemistry research on PERK 

inhibitors thus far is aiming at cancer therapy, using cell growth assays and models of tumor 

growth inhibition and angiogenesis [105, 106]. While some effect on tumor growth is 

observed in vivo with certain selective PERK inhibitors, no mechanistic insights have been 

revealed on cell proliferation in culture. Nonetheless, opportunities remain for the 

investigation of PERK inhibitors in models of metastasis, or in combination with existing 

chemotherapeutics, which is warranted based on findings that PERK inhibition can sensitize 

cancer cells to chemotherapy [107]. GSK2606414 was one of the most important discoveries 

of PERK inhibitors, which functions by targeting PERK in its inactive DFG conformation at 

the ATP-binding region. It was also reported as neuroprotective, and GSK2606414 prevents 

a progressive clinical and behavioral decline in a mouse model of prion disease [108]. 

Further evidence indicates that phosphorylation of tau is PERK dependent, and 

GSK2606414 administration can inhibit tau phosphorylation induced by metabolic stress, 

indicating a potential use in many tauopathies [109].

PERK inhibitors may also be used to benefit cardiovascular disease. Downregulation of 

Nav1.5 and Kv4.3 in heart failure has been shown to result from PERK activation. If a PERK 

inhibitor could be used to restore the channel protein levels, the arrhythmic risk might be 

improved. Alternatively, targeting the PERK branch of UPR might decrease cell apoptosis 

and improve cardiomyopathy. Recently human anti-PERK short hairpin RNA has been used 

in vitro to block PERK in human induced pluripotent stem cell-derived cardiomyocytes [57], 

which also highlights another means of PERK inhibition.

The therapeutic potential of PERK modulation is still under-defined. Studies supporting both 

inhibition and activation of PERK to ameliorate disease are confounding, which indicates 

significant gaps in our understanding of PERK in relation to disease treatment. In future 

studies, it will be important to characterize the timing and dynamics of PERK activation 
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status in the context of different diseases, preferably combining both prophylactic and 

therapeutic intervention modalities with activators and inhibitors.

11. ATF6 IN CARDIOVASCULAR DISEASE

Mammals express two homologous ATF6 proteins, ATF6α (670 amino acids) and ATF6β 
(703 amino acids); the physiological characteristics of the former are much better 

understood than the latter. The C-terminal of ATF6 is inserted into the ER lumen, whereas 

the N-terminal is localized in the cytosol. The cytoplasmic part of ATF6 encompasses basic 

leucine zipper (bZIP) DNA binding and transcriptional activation domains, which are 

followed by a 20-amino acid transmembrane domain. ATF6α is a 90 kDa type II 

transmembrane glycoprotein and a member of the bZIP transcription factor family. ER stress 

induces the release of ATF6α from GRP78. Two Golgi localization sequences of ATF6α in 

the ER luminal domain are then exposed, evoking ATF6α translocation to the Golgi 

apparatus and cleavage by two proteases therein [110]. As a consequence, the soluble 

cytoplasmic region of 400 amino acids is translocated to the nucleus. This nuclear ATF6 

(ATF6n) possesses both DNA binding and transcriptional activation domains, which 

contributes to the upregulation of multiple ER chaperones to enhance the ER folding 

capacity and restore cellular homeostasis.

Recent emerging evidence suggests important and unique roles of ATF6 in the heart. 

Primary cardiomyocytes manifest ATF6 elevation under hypoxia and nutrient-deprivation 

conditions [111]. Importantly, induction of ATF6 expression shows cardioprotection in the 

heart by reperfusion injury [112]. Under these conditions, knockdown of GRP78 partially 

mitigates the protective effect of ATF6. Moreover, in mice after myocardial infarction, 

inhibition of ATF6 impairs cardiac function and increases mortality [15]. The Glembotski 

lab found that ectopic expression of activated ATF6 decreases reperfusion damage in the 

heart [113]. Further, they determined that ATF6 acts as a transcriptional factor of several 

antioxidant genes [15]. Interestingly, it was further proposed that compensatory cardiac 

hypertrophy under pressure overload activates ATF6, which induces Rheb and activates 

mTORC1 [114]. Thus, ATF6 is critical in coupling growth stimulation and mTORC1-

mediated cardiac growth. However, another study points out that ATF6 signaling plays an 

important role via calcium-mediated NFAT nuclear translocation mechanism in the process 

of diabetic cardiomyopathy, which was characterized by loss of cardiac compliance and 

function caused by cardiac fibrosis [115]. The precise role of ATF6 in the heart is probably 

dependent on disease conditions and various pathological contexts.

12. ATF6 AS A THERAPEUTIC TARGET

Since ATF6 plays a cardioprotective role in heart disease, approaches that target ATF6 might 

be employed for therapeutic gain (Fig. (4). Several drugs that act on ATF6 have been 

independently identified by multiple groups. N-(2-hydroxy-5-methylphenyl)-3-

phenylpropanamide (147) is one of the most promising compounds, which was confirmed to 

preferentially activate ATF6 [116]. But the underlying mechanism by which 147 stimulates 

ATF6 remains unclear. A recent study by Blackwood et al. showed that 147 treatment 

confers strong cytoprotection against reperfusion damage in various tissues, highlighting a 
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general mechanism of reprogramming cellular proteostasis [16]. Another study points out 

that ATF6 possesses two activation mechanisms: lipotoxic activation and proteotoxic 

activation. Tam et al. found that ATF6 containing a luminal achromatopsia eye disease 

mutation, unresponsive to proteotoxic stress, can be activated by fenretinide, a drug that 

upregulates dihydroceramide, suggesting a potential therapy for ATF6-related diseases 

including heart disease and stroke [117]. Recently, Jin et al. used the method of AAV9-

mediated ATF6 cardiac overexpression to reverse the damage and to improve the decreased 

function in ATF6 knockout mice under ischemia/reperfusion [15]. These studies highlight 

the potential use of AAV-mediated gene transfer as a therapeutic strategy in ER stress-

related cardiomyopathy.

On the other hand, ATF6 inhibitors that can reduce the activity of ATF6 are also attractive to 

researchers. Ceapins are first-in-class inhibitors that are used to explore both the mechanism 

of ATF6 activation and its role in multiple pathological settings. Gallagher et al. found that 

the small molecules of Ceapins can selectively block the activity of ATF6 under ER stress by 

inducing rapid, reversible clustering of ATF6α and preventing the exit of ATF6α from ER, 

but have no effect on other proteins involved in UPR [118]. The discovery of Ceapins now 

enables pharmacological modulation of the ATF6 branch individually, without perturbation 

of the other two. Other inhibitors such as melatonin, matrine, and 4-(2-aminoethyl) 

benzenesulfonyl fluoride hydrochloride are all in the process to be tested in vitro and in 
vivo. Site 1 protease inhibitor, such as PF-429242, can also attenuate ATF6 expression by 

blocking proteolytic processing in the Golgi apparatus. But the effect may also be associated 

with the induction of IRE1 and increased phosphorylation of PERK [119]. Further studies 

are needed to delineate the action of ATF6 inhibitors in cardiac disease, particularly in 

diabetic cardiomyopathy and heart failure.

13. IRE1/XBP1S IN CARDIOVASCULAR DISEASE

As one of the three branches of the UPR, IRE1 is the most conserved, from yeast to 

mammals. IRE1 is a type I transmembrane glycoprotein of the ER that possesses both serine 

or threonine protein kinase and endoribonuclease functions. Under resting conditions, IRE1 

luminal domain binds to the master chaperone GRP78. Upon accumulation of misfolded and 

unfolded proteins in the ER, GRP78 is dislocated from IRE1 and the latter 

autophosphorylates, leading to activation of the endoribonuclease function. Activated IRE1 

then triggers unconventional cytoplasmic splicing of XBP1 mRNA. IRE1 removes 26 

nucleotides from the unspliced XBP1 (XBP1u) mRNA, thereby leading to a frameshift and 

the generation of XBP1s [120]. XBP1u does not contain a transactivation domain in contrast 

to the potent transcriptional factor XBP1s. Because of the extremely short half-life of 

XBP1u, little is known about its biological functions. XBP1s, on the other hand, attracts the 

majority of attention due to its inducibility by the UPR and versatile roles in physiology and 

pathophysiology [13]. Indeed, XBP1s exerts multiple functions and is involved in both 

classical UPR and non-UPR pathways. During ER stress, XBP1s protein is translocated into 

the nucleus to initiate transcriptional programs that upregulate a large amount of UPR-

associated genes involved in protein folding, ERAD, and ER biogenesis.
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Accumulating evidence has shown that IRE1/XBP1s plays an important role in 

cardiovascular disease [121]. Recently, IRE1α is proposed to play a protective role against 

pressure overload-induced pathological remodeling in the heart [122]. Cardiac-specific 

overexpression of IREα exhibits preserved function and reduced fibrotic area, associated 

with increased adaptive UPR signaling and blunted inflammatory and pathological gene 

expression. In addition, IRE1 was reported to play an important role in atherosclerosis by 

promoting macrophage-derived foam cell formation [123].

As a direct downstream target of IRE1, XBP1s also plays critical roles in cardiovascular 

disease [124]. A recent study suggests that XBP1s regulates Vascular Endothelial Growth 

Factor (VEGF) - mediated cardiac angiogenesis and contributes to the progression of 

adaptive hypertrophy [125]. Using a cardiac-specific XBP1 knockout animal model, we 

observed an increase in cardiac myocyte death and more profound pathological remodeling 

during ischemia/reperfusion, suggesting that XBP1s protects the heart from reperfusion 

damage in vivo [54]. Consistently, using an inducible transgenic mouse model, we showed 

dramatic protection against reperfusion injury by XBP1s overexpression [54]. The 

underlying mechanism may involve transcriptional augmentation of the hexosamine 

biosynthetic pathway [126, 127]. Another study showed that transient activation of XBP1s 

increases endothelial cell proliferation, while sustained activation can lead to endothelial cell 

apoptosis, endothelium denudation, and atherosclerotic lesion development via multiple 

caspase activation and down-regulation of VE-cadherin transcription and MMP-mediated 

degradation [128]. These findings suggest that optimal levels of XBP1s are required in 

maintaining endothelial integrity.

14. IRE1/XBP1S AS A THERAPEUTIC TARGET

Due to its critical role in cell growth and survival, various approaches have been developed 

to target IRE1 (Fig. 5). Recent studies showed that IRE1 inhibitors, 4μ8c and STF-083010, 

which selectively inhibit IRE1’s RNase function, uncouple lipid-induced ER stress from 

inflammasome activation in both rodent and human macrophages [129]. At the in vivo level, 

these IRE1 inhibitors lead to a significant decrease in hyperlipidemia-induced IL-1β and 

IL-18 production, less T-helper type-1 immune response, and reduced atherosclerotic plaque 

formation, without altering the plasma lipid profiles in apolipoprotein E-deficient mice. 

These data suggest that pharmacologic modulation of IRE1 counteracts metaflammation and 

alleviates atherosclerosis development. Other IRE1 inhibitors such as salicylaldehydes 

[130], MKC-3946 [131], toyocamycin [132], and Hydroxylaryl-Aldehydes (HAA) [133] 

also show potent inhibition of IRE1 but have not yet been tested in cardiovascular disease. 

Although specific compounds that only activate XBP1s splicing have not been discovered, 

flavonol quercetin was reported to activate the endoribonuclease activity of IRE1, which 

may be used for this purpose. A recent study revealed that Ginkgolide K (GK) can 

significantly enhance IRE1/XBP1s activity and decrease ER stress-induced cell death in 

both in vitro and in vivo models [134]. GK may, therefore, be a promising therapeutic agent 

to ameliorate ER stress for cardiovascular disease treatment.

Recently, studies from Duan et al. established that XBP1s is an important angiogenic factor 

to maintain normal cardiac function in the early stage of hypertrophy growth [135]. 
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Dysregulation of miR-214 and miR-30 in the hypertrophic and failing hearts inhibits XBP1s 

and XBP1s-induced angiogenesis, which leads to the pathological transition from 

hypertrophy to heart failure. Thus, modulation of miRNAs may be a valid therapeutic 

approach to stimulate XBP1s and to prevent heart failure.

15. ERAD IN CARDIOVASCULAR DISEASE

Beyond the three main branches of UPR, the ER also employs a mechanism termed ERAD 

to clear aggregated misfolded or unfolded proteins [136]. ERAD, a quality control process, 

can remove terminally misfolded proteins from the ER by the cytosolic ubiquitin-

proteasome system. ER transmembrane and luminal misfolded proteins are first transported 

out of the ER into the cytosol. Then, the misfolded proteins are ubiquitinated by the ER 

transmembrane E3 ubiquitin (Ub) ligases. This process targets them for degradation by 

cytosolic proteasomes. ERAD has multiple components such as HRD1, EDEM, SEL1, and 

OS-9 [137]. Each of them has a different function in ERAD. A study from the Glembotski 

lab found that overexpressing Derl3, which can enhance ERAD, attenuates chronic ER stress 

response and cell death in response to simulated ischemia/reperfusion, suggesting that 

enhancing the ERAD machinery in the heart is cardioprotective [138]. Furthermore, another 

study showed that HRD1 contributes to the adaptive ER stress response in cultured cardiac 

myocytes and that HRD1 preserves cardiac function in a mouse model of pathological 

cardiac hypertrophy [139]. It is hypothesized that under certain conditions, sufficient levels 

of HRD1 facilitate the degradation of misfolded proteins, which adaptively enhances 

myocyte viability. However, when HRD1 is not enough, such as in the adult heart, 

pathology-driven maladaptive accumulation of misfolded proteins threatens myocyte 

viability and cardiac function. Along these lines, AAV9-mediated HRD1 overexpression 

directed to ventricular myocytes preserves heart function and reduces cardiac hypertrophy in 

mice with pressure overload-induced cardiac pathology. Taken together, the aforementioned 

findings suggest that intervention of ERAD components may be a viable approach to prevent 

cardiac cell death and to improve heart function under pathological conditions.

CONCLUSION AND PERSPECTIVES

Cardiovascular disease is the leading cause of death globally. Current therapies are incapable 

to arrest disease progression and as a result, socioeconomic burdens are ever climbing. 

Various heart diseases involve moderate to disastrous disturbances of cellular homeostasis in 

cardiac myocytes. The UPR as an acute, adaptive response has been found activated in 

multiple forms of heart diseases. From the past decades, our understanding of the UPR and 

ER stress response has been flourishing. The three signaling branches of ER stress are 

stimulated via distinct mechanisms. Downstream actions may differ but orchestrate in nature 

to regain cellular homeostasis. Only upon unsolved, persistent stress, the UPR may turn 

from adaptive to detrimental. The timing and duration of activation of the three branches 

therefore together determine the final outcome in cardiac myocytes. Indeed, the UPR has 

shown pro-survival and pro-apoptotic actions under different circumstances. While there is 

still a long way before modulating the UPR in clinic, novel discoveries are underway and 

exciting progresses have been made. In conclusion, the UPR plays a crucial role in the 

pathological processes of cardiovascular disease. A better understanding of the underlying 
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mechanisms will greatly help us identify novel targets and define more effective approaches 

to tackle the devastating cardiovascular disease.
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Fig. (1). Endoplasmic Reticulum (ER) stress and the Unfolded Protein Response (UPR).
Under resting conditions, luminal domains of the three transducers of UPR bind ER master 

chaperone GRP78. ER stress ensues upon accumulation of misfolded and unfolded proteins. 

GRP78 then interacts with unfolded proteins, leading to activation of the three UPR 

branches. The initial response attempts to restore normal function by attenuation of protein 

synthesis and increasing chaperone production. PERK forms dimers and 

autophosphorylates, leading to downstream phosphorylation of eIF2α and a decrease in 

global translation. Phosphorylation of eIF2α also induces the translation of ATF4 and 

downstream targets such as CHOP. ATF6 is activated by site 1 and site 2 proteases (S1P and 

S2P) in the Golgi and transcriptionally competent nuclear ATF6 (ATF6n) is then 

translocated into the nucleus. IRE1 undergoes dimerization and autophosphorylation, which 

results in the cleavage of the XBP1 mRNA to form transcription factor XBP1s.
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Fig. (2). GRP78 as a therapeutic target in cardiovascular disease.
Different therapeutic approaches have been discovered for intervention of GRP78. The main 

approaches are as the following: (I) Direct activation of GRP78 can relieve 

neurodegenerative disorders and may be useful for cardiac ischemia/reperfusion injury; (II) 

Direct inhibition of GRP78 may suppress tumor growth and be useful to treat pathological 

cardiac remodeling; (III) GRP78 peptide can either directly modulate GRP78 activity or to 

be used as a precisely targeting vehicle to deliver therapeutic drugs.
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Fig. (3). PERK as a therapeutic target in cardiovascular disease.
The main approaches to manipulate PERK are: (I) Direct activation of PERK can improve 

neurodegenerative disorders and suppress the development of cancer; (II) Direct inhibition 

of PERK can mitigate tumor growth, prion disease, and cardiac arrhythmia; (III) PERK 

targeting miRNA may be used to specifically suppress PERK for arrhythmia treatment.
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Fig. (4). ATF6 as a therapeutic target in cardiovascular disease.
Different therapeutic approaches aiming to intervene ATF6 include: (I) Activation of ATF6 

may relieve ER stress-related heart disease and stroke; (II) Inhibition of ATF6 may be 

exploited to treat cancer; (III) AAV9-mediated gene therapy can improve the outcome of 

cardiac ischemia/reperfusion.
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Fig. (5). IRE1/XBP1s as a therapeutic target in cardiovascular disease.
The main approaches are as the following: (I) Direct activation of IRE1/XBP1s may relieve 

ER stress-related cardiovascular disease; (II) Inhibition of IRE1/XBP1s can suppress 

atherosclerosis development; (III) miRNA-mediated gene therapy can be used to improve 

cardiac dysfunction of heart failure.
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