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Abstract

Background: Although many studies have established significant associations between short-

term air pollution and the risk of getting cardiovascular diseases, there is a lack of evidence based 

on causal distributed lag modeling.

Methods: Inverse probability weighting (ipw) propensity score models along with conditional 

logistic outcome regression models based on a case-crossover study design were applied to get the 

causal unconstrained distributed (lag0–lag5) as well as cumulative lag effect of short-term 

exposure to PM2.5/Ozone on hospital admissions of acute myocardial infarction (AMI), 

congestive heart failure (CHF) and ischemic stroke (IS) among New England Medicare 

participants during 2000–2012. Effect modification by gender, race, secondary diagnosis of 

Chronic Obstructive Pulmonary Diseases (COPD) and Diabetes (DM) was explored.

Results: Each 10 μg/m3 increase in lag0–lag5 cumulative PM2.5 exposure was associated with 

an increase of 4.3% (95% confidence interval: 2.2%, 6.4%, percentage change) in AMI hospital 

admission rate, an increase of 3.9% (2.4%, 5.5%) in CHF rate and an increase of 2.6% (0.4%, 

4.7%) in IS rate. A weakened lagging effect of PM2.5 from lag0 to lag5 could be observed. No 
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cumulative short-term effect of ozone on CVD was found. People with secondary diagnosis of 

COPD, diabetes, female gender and black race are sensitive population.

Conclusions: Based on our causal distributed lag modeling, we found that short-term exposure 

to an increased ambient PM2.5 level had the potential to induce higher risk of CVD hospitalization 

in a causal way. More attention should be paid to population of COPD, diabetes, female gender 

and black race.
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1. Introduction

Air pollution is a complex mixture of particulate and gaseous compounds and is usually 

measured in health studies as PM2.5 (fine particulate matter with diameter <= 2.5 μm) and 

PM10 (coarse particulate matter with diameter <= 10 μm). Cardiovascular disease (CVD), 

including both biomarkers of disease such as blood pressure and inflammatory markers, as 

well as acute events, such as myocardial infarctions (MI), strokes, and heart failure, have 

been associated with short-term exposures to air pollution (1–12). Ozone is another 

component of air pollution of interest in cardiovascular health studies. Strong heterogeneity 

exists in the findings from studies of the effect of ozone on cardiovascular diseases (13–16).

There is a dearth of information about the distributed lag between PM2.5/ozone exposure 

and acute CVD events in a two-pollutant model. Most studies have examined associations 

with exposure the day of the event, or the mean of two or three days prior, with only limited 

numbers of studies looking at large datasets. Because today’s pollution is correlated with 

yesterday’s pollution, most of those studies have used constrained distributed lags, such as 

polynomial distributed lags (17), spline distributed lags (18), or penalized spline (19) 

distributed lags to overcome collinearity, potentially at the risk of bias (17). Moreover, none 

of those studies used causal modeling techniques. Further, they have been conducted in 

cities, to ensure statistical power and the availability of monitors. This leaves questions 

about generalizability to smaller cities, towns, and rural areas that have been less studied.

Therefore, in this study, we aim to explore the causal short-term distributed lag effects of air 

pollution on CVD hospitalizations. Comprehensively, we assessed the effect of PM2.5 and 

ozone on the CVD hospital admission risk of elderly people across the New England region 

of US using Medicare. Both the health data and the exposure data covers more areas beyond 

big cities. We took a causal modeling path to get the causal distributed lag effect of PM2.5 / 

Ozone on our CVD outcomes, including acute myocardial infarction (AMI), congestive 

heart failure (CHF) and ischemic stroke (IS), as well as identified potentially susceptible 

subpopulations through effect modification analysis.
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2. Methods

2.1 Study population

The study population was comprised of US New England region residents (states of 

Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont) who were 

Medicare beneficiaries more than 64 years old, and enrolled in the fee-for-service program. 

We included all emergency or urgent care hospital admissions due to AMI (n=156,717), 

CHF (n=204,774) and IS (n=170,663) between the years 2000 to 2012. Information on 

patient ID, emergency/urgent admission status, admission date, admission type, sex, age at 

admission, race, zip code of residence, eligibility for Medicaid, secondary diagnosis 

indicator of chronic obstructive pulmonary diseases (COPD) and secondary diagnosis 

indicator of diabetes was obtained from the Medpar (Medicare Provider Analysis and 

Review, which provides information for 100% Medicare beneficiaries using hospital 

inpatient services) files of the Center for Medicare and Medicaid Services.

2.2 Health outcomes

Our primary outcomes were AMI, CHF and IS. Admissions with a primary diagnosis of the 

International Classification and Disease, Ninth Revision (ICD 9) code of 410.xx (AMI), 

428.xx (CHF) and 433.xx-435.xx (IS) were treated as cases. In addition, secondary 

diagnosis of 250.xx (Diabetes) and 490.xx-492.xx, 496.xx (COPD) were used to investigate 

the potential effect modification of having secondary diagnosis of diabetes or COPD.

2.3 Assessment of exposure

Daily ambient levels of PM2.5 (24 hours averaged, μg/m3) and ozone (8-hour maximum, 

ppb) from 2000 to 2012 were predicted at a spatial resolution of 1km from a machine 

learning algorithm that combined satellite remote censoring data, chemical transport models, 

land use, and meteorology, using a neural network (20, 21). Daily averaged values were 

constructed by averaging the exposure levels of all grid cells within each individual zip code. 

Air surface temperature (°C) as well as relative humidity (%) were obtained from the North 

American Regional Reanalysis data and daily mean values were generated for each 32 km × 

32 km grid in the New England area. PM2.5, ozone, temperature and relative humidity were 

merged into the health outcome dataset for each day by zip code of individual residence.

2.4 Study design

We used a time stratified, bidirectional case-crossover design to examine the short-term 

effects of air pollutants (2-pollutant model, adjusting for pm2.5 and ozone simultaneously) 

on cardiovascular outcomes. Case days were when the subjects were admitted to the 

hospital. Control days were matched by day of week, month, and year with the case. Slowly 

varying or invariant covariates such as age, sex, race, smoking history, cholesterol, body 

mass index, and pre-existing medical conditions do not change day by day, and are 

controlled by matching for a case-crossover design. The institutional review board at 

Harvard University has approved this study.
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2.5 Statistical analysis

We fit marginal structural models using weights based on propensity score models (usually 

referred to as inverse probability weighting method, ipw) following the methodology 

proposed by Cole at al. (22). A generalized ipw method is used. For each of the two 

exposures, pm2.5 and ozone, we assessed the distributed lag effect from day 0 (the current 

day of the event, lag0) to day 5 (5 days prior to the event, lag5). And for each lag of each 

exposure, we fitted a linear regression with the exposure lag of interest against all the other 

five lags of that pollutant and the six lags of the other pollutant along with linear and 

quadratic terms for temperature (lag 0 and 1), and linear terms for relative humidity (lag 0 

and 1) to control for potential confounding by meteorological conditions with reference to 

Di et al’s lag choice (23). This may lead to the case that the future lags were actually 

controlled in models for previous lags of exposure. The plausibility for this modeling choice 

is based on the blockage of the backdoor pathway from previous lag (e.g. fine particle on 

day t-1, FPt-1) to CVD admission via weather/atmospheric condition (including cloudiness, 

wind speed, wind direction and other meteorological conditions apart from temperature and 

relative humidity) if we condition on future lags (eg. fine particle on day t, FPt), see example 

in Figure S1. The probability density of the residuals of this model is the probability density 

of receiving the exposure each person got, predicting from the variables included in the 

propensity score models. These probabilities are further stabilized by dividing by the 

marginal probability of the exposure the subject received. We used the inverse of these 

probabilities as the weights for each subject, for that lag. Hence the stabilized weights are 

SWA=f(A)/(f(A/L)) where A is exposure and L are covariates, and f is the Gaussian 

probability density. We did not transform exposures in our models since most of the 

observations had low exposure level and approximation to normal distribution could be 

applied to satisfy the assumption for linear models. Under the assumptions of no important 

omitted confounders and correct specification of the propensity score models, regressing 

outcome against exposure at a lag, using the weights specific to that lag, should provide the 

marginal effect of that particular lag of that exposure (e.g. pm25 lag0 or ozone lag5), 

independent of covariates. This was done for each of the six lags of each pollutant. We 

further truncated the weights to between 2.5th and 97.5th percentile (22). Positivity exclusion 

was also conducted with reference to Cole at al (22).

In addition to computing the marginal effect of exposure at each lag of each pollutant, we 

computed the cumulative overall effect of pm2.5 or ozone over the six lag days by taking an 

inverse variance weighted sum of the coefficients at each lag. Effect modification was 

examined for sex, race, secondary diagnosis of COPD and diabetes. P values for comparing 

every modifier’s two contrasting groups were reported based on two-sided two sample t test. 

All the analyses were conducted using R 3.5.0. Because of the potential confounding effects 

of NOx pollutants in the winter, supplementary analysis for the effect of ozone on CVD was 

specifically carried out with restriction to time window from April 1 to September 30. A 

series of sensitivity analyses on temperature adjustment (splines and more lags) were also 

conducted.

Qiu et al. Page 4

Environ Res. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Results

3.1 Cohort and meteorological characteristics

There was a total of 156,717 individuals who were admitted for AMI, 204,774 for CHF and 

170,663 for IS. Table 1 showed the cohort characteristics, pollution levels, and 

meteorological variables. Among all the cases, there were slightly more females. The 

majority of the study population was white and black. We also examined the eligibility for 

Medicaid insurance and found that about 20% of the population had dual insurance. For all 

case and control days, the average PM2.5 exposure level was around 10 μg/m3. The average 

all seasons ozone level was around 36 ppb. Summer time ozone was a little bit higher than 

all seasons ozone level. In addition, in terms of the density and spatial variation of CVD 

events, for AMI, we found that the average counts of cases per zip code is 119 and the 

average counts of zip codes involved per case day is 42, with 208 and 72 for CHF and 119 

and 43 for IS, respectively. To convey a sense of the coverage of an US zip code, in 

Massachusetts, as of 2015, there is a total of 537 zip codes under use and for each one, it 

covers about 37.8 km2 and about 12,853 people (“Massachusetts”. United States Census 

Bureau. Retrieved June 10, 2015).

3.2 PM2.5 distributed lag effects

Overall, a weakened lagging effect of PM2.5 from lag0 to lag5 could be observed. 

Significant harmful effects were shown especially for PM2.5 exposure on lag0–lag2 days 

with respect to the risk of admissions for AMI and CHF. As to the effects of PM2.5 on IS, 

significantly increased risk was mainly observed for lag0 and lag1 days. Based on the 

cumulative effects summarizing all the lag days (lag0–5), each 10 μg/m3 increase in PM2.5 

exposure was associated with an increase of 4.31% (95% confidence interval: 2.21%, 6.42%, 

percentage change) in the AMI hospital admission rate, an increase of 3.95% (2.37%, 

5.53%) in the CHF rate and an increase of 2.56% (0.44%, 4.69%) in the IS rate. The results 

were based on daily pm2.5 exposures concerning all seasons (Figure 1, Table S1).

3.3 Ozone distributed lag effects

No clear pattern of distributed lag effects of ozone could be seen. In addition, no significant 

cumulative effects were observed. With respect to most of the lag days of ozone exposure, 

no significantly protective or harmful effects could be observed. Results were based on all-

season ozone level (Figure 1, Table S1). In the sub-analysis of ozone during warm seasons, 

results were similar. (Table S3)

3.4 Modification analysis

We examined the effect of four potential modifiers, including secondary diagnosis of COPD, 

secondary diagnosis of diabetes, sex and race, in our analysis. The detailed results were 

presented in Figure 2 and Table S2. Having secondary diagnosis of COPD seemed to modify 

the association between PM2.5 and hospital admissions of AMI, CHF and IS. People with 

COPD had a significantly higher risk of AMI and CHF hospital admission with percentage 

increase of AMI: 7.60% (1.63%, 13.57%), CHF: 6.05% (2.10%, 10.00%) compared to AMI: 

3.62% (1.30%, 5.94%) and CHF: 3.08% (1.20%, 4.96%) among those without COPD, for 
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every 10 μg/m3 increase in cumulative PM2.5 (P=0.031, P=0.022, respectively). However, 

for IS, people without COPD had a higher risk instead. People with COPD also had a 

significantly higher risk of getting IS admission for each 10 ppb increase in ozone level 

(P=0.043). Diabetic elderly people turned out to have a higher risk of getting AMI admission 

for each 10 μg/m3 increase in PM2.5, but not for the other two events or the ozone exposure, 

compared to non-diabetic ones (P=0.010). Females had a higher chance of getting CHF 

hospitalizations associated with 10 μg/m3 increase in PM2.5 than males (P=0.040). One of 

the biggest findings is that among black population, we examined a 26.36% (12.70%, 

40.02%) admission rate increase of AMI for 10 μg/m3 increase in PM2.5 compared to only 

4.46% (2.30%, 6.62%) increase among white population (P=0.001). Similar strong 

modification by race was also detected in the association between ozone and IS admission 

with much higher risk among black population approaching about 15% IS admission rate 

increase for 10 ppb increase in ozone.

3.5 Sensitivity analysis

Sensitivity analysis on temperature adjustment (Appendix, Table S4) does not show 

significant departure from the effect estimates reported in our main analysis.

4. Discussion

In summary, we found that short-term exposure to increased PM2.5 level induces higher risk 

of CVD hospitalizations among elderly people in New England area. We could also observe 

a pattern of weakened effect of PM2.5 on AMI, CHF and IS from lag0 to lag5. We did not 

see evidence of acute effects of ozone on the cardiovascular outcomes and no clear pattern 

of distributed lag effects of ozone could be concluded based on this study. People with 

secondary diagnosis of COPD, diabetes and of black race were more susceptible to PM2.5 in 

terms of the risk of AMI hospitalizations while with respect to CHF, females and people 

with COPD were more sensitive. In addition, people with COPD and blacks had higher risk 

of getting ischemic stroke induced by increased level of ozone.

The underlying mechanism linking exposure to pm2.5 and CVD has not been fully 

investigated. However, a few theories have been proposed: first, cardiovascular events 

including heart attack and heart failure could be the results of white cells accumulated in the 

artery forming clots, due to the immune response in human body induced by the exhalation 

of particles (24). In addition, oxidative stress and inflammation induced by the inhalation of 

PM have the potential to lead to central nervous system pathology because of the penetration 

of the inflammatory compounds into the blood-brain barrier or direct entry of PM through 

the olfactory bulb, especially for triggering stroke (5, 25). There is also growing evidence 

indicating that genetic susceptibility is likely to play a role in response to air pollution. 

Genetic differences may determine who will have worse health damage from short-term or 

protracted exposure to air pollution (26).

The main findings of this study are supported by many other studies (but in a non-causal 

modeling way) (16, 27–31). A quantitative meta-analysis comprising 20 related studies 

stated that the current literature evidence for short-term pm2.5-related ischemic stroke was 

especially strong (27). An increased risk of mortality, especially mortality due to all CVD 
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events, AMI and stroke, was found for a 10 μg/m3 increase in 2-day averaged PM2.5 level 

based on a US national time series study on short-term effects of PM2.5 and PM10 using 

112 cities (28). A significantly positive association was also observed between heart disease 

mortality and short-term PM2.5 at lag0 day in Japan (31). However, there were also other 

studies that concluded no significant associations (32–35). This inconsistency in research 

findings could be due to the major difference in study design, dataset used, study population, 

analytical method as well as temporal and spatial properties. Further larger nationwide or 

worldwide original studies or systematic reviews concerning the causal effect of short-term 

exposure to particulate matter pollution on CVD risk are needed to resolve this discrepancy. 

In addition, we did find a small portion of effect trends that are difficult to interpret. For 

example, COPD population were at a lower risk of getting IS for exposure to pm2.5 

adjusting for ozone, temperature and rh. This is unusual with what most of the past studies 

found with their data. However, one possible reason is that they did a single pollutant model 

instead of two-pollutant model here. Our effect modification results reported were adjusting 

for ozone. COPD patients were shown in our study to be at a higher risk of getting IS when 

exposed to higher levels of ozone while ozone and pm2.5 levels are commonly in a negative 

correlation with each other (36, 37). These might suggest that more research is needed to 

devote efforts in warranting and exploring the modification effect of COPD status on 

ischemic stroke hospital admission risk when simultaneously adjusting for more 

atmospheric co-pollutants that are correlated with each other. We also detected significant 

protective effect of PM2.5 lag5 day exposure on IS risk as well as ozone lag0 day exposure 

on CHF, which could possibly be due to the residual confounding effects by co-pollutants or 

short-term daily variation of smoking pattern.

Comparing the conventional approach reported by the past studies with our analyses, our 

study improves the adjustment and produces effect estimates that are more than association. 

The past studies did many analyses using the conventional conditional logistic association 

regression putting different lags (most commonly up to lag2 days of exposure) or moving 

average of multiple lags into the same outcome regression model. These kinds of results are 

actually conditional on levels of all the other lags, co-exposure, meteorological variables and 

thus has limited generalizability. Casual modeling methods, including ipw, analyze 

observational data in a way that approximates conducting a randomized experiment to make 

exposure independent of all potential confounders, rather than to control for the confounders 

in the outcome regression. Under specified assumptions, they yield causal estimates of the 

effects of exposure (38). Often, they provide marginal estimates of the effects of exposure, 

that is, ones that are not conditional on the distribution of covariates and are therefore more 

generalizable. Therefore, in this case, after we used the weights generated from the 

propensity score models predicting the exposure lag of interest out of the other lags, 

important co-pollutant exposure and related meteorological variables that change in a short 

time and later created a pseudo randomized population based on weighting, in the final step 

of the marginal outcome regression model, we could obtain the causal estimate.

We understand that one may have questions about what kind of assumptions we need to 

make for such a causal model and how they hold in this setting. According to Hernan and 

Robins (38), they are: 1) exchangeability; it assumes no unmeasured confounding but the 

real case is that we do not have the resources to get all the potential unmeasured 
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confounders, thus this condition is assumed here. However, this assumption can be tested 

through sensitivity analysis by including more covariates concerned, Cole S.R. and Hernan, 

M.A, when developing the ipw causal inference method, suggested the readers instead to 

assume that the most important confounders were identified using expert knowledge and 

well-adjusted in the propensity score models (22). We actually tested this assumption using 

the data we have via sensitivity analysis of temperature adjustment by including more lags 

of temperature and spline adjustments. Results from the sensitivity analysis on temperature 

did not have significant deviation from our main analysis estimates. We tend to believe that 

the most important and available confounders have been adjusted in such a case-cross over 

study design. Residual confounding is more likely to result from co-pollutants that we do not 

have the information on (and actually we already tried to control the ozone and pm2.5 at the 

same time as co-pollutants to each other). But this is the best we could do using the exposure 

data we have right now. 2) positivity; guaranteed in our analysis through positivity 

exclusion. It means that the condition that there are both exposed and unexposed individuals 

at every level of the confounders. 3) Consistency; assumed here (one cannot prove this to be 

true, and this needs to be assumed). It is often understood as “The observed outcome is 

exactly the same as the potential outcome the person will have under the exposure assigned” 

(39).

The second major advantage is that in such a marginal structured way, we could bypass the 

high collinearity issue between different lags or between different correlated exposures (such 

as pm2.5 and ozone here) and get the marginal independent lag effects of exposure on the 

outcome, and by inverse variance weighting the estimates for each lag, compute the 

cumulative effect over the full lagging period. There is very few studies that did a detailed 

analysis for each lag’s effect from lag0 day exposure to lag5 day exposure, partially because 

they were faced with the high collinearity issue and if they put all the lags together into the 

outcome regression models, that kind of models would be highly unstable and the estimates 

generated would be very noisy. Although some of the previous studies tried to combine the 

information from more lags altogether by using the moving average levels, yet by doing that, 

they could not identify which lag of exposure is more influential than the others and the 

distributed lag effects pattern like we showed in our Figure 1. Besides, constrained 

distributed lag model is theoretically hard to incorporate into the causal modeling 

approaches.

Although the conventional unconstrained distributed lag model tends to produce more 

unstable effect estimates compared with the constrained one which allows coefficients to 

follow a flexible curve (either spline or polynomial) more simulating the plausible biological 

mechanisms, in order to explore the short-term causal effects of air pollution on 

hospitalization of CVDs for this cohort, we need to combine distributed lag models with the 

causal modeling method we chose to use which is ipw (22) here. Due to the natural feature 

of the ipw modeling, we have to put only one lag of exposure at a time to run a series of 

marginal structured models after we created a pseudo population that approximate a 

randomized population using the weights generated from the propensity score models. 

Therefore, the final effect estimates of each lag of exposure is unconstrained with more 

robust estimates resulting from the weighting process instead of from the collinearity 

between different lags in the same outcome regression model.
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Apart from the two major advantages we mentioned above, this is also a relatively large-

sample study, providing enough power for the analysis, as well as better research evidence 

supporting the causal harmful effect of short-term exposure of particulate matter on CVD at 

least among New England elderly population. By applying ipw, we could explore marginal 

distributed lag effects with no parameter constraints and we identified the potential causal 

effects of each lag independent of other lags with relevant confounders controlled.

This study also comes along with a few limitations. In this analysis, no sub-analysis was 

conducted, looking at the effect estimates with restriction to only low-level individual daily 

exposure for all case and control days. Current literature has demonstrated that low-level air 

pollution below the US EPA short-term national ambient air quality standard (NAAQS) of 

35 μg/m3 for particulate matter (https://www.epa.gov/criteria-air-pollutants/naaqs-table), 

yielded a higher risk increase in health outcomes compared to same unit increase of high-

level air pollution above the standard, including all-cause mortality (23, 36). Compared with 

the conventional distributed lag modeling approach, our approach excluded certain subjects 

that violated the positivity assumption required by causal modeling, which is likely to reduce 

the analysis power. However, this should not be a big problem if the study has a large sample 

size, which is the case for our study. There would always be residual confounding from 

other pollutants, such as NOx, CO and SOx, emitted by the traffic especially in the winter 

months, which would bias the results for the ozone models a little bit for winter months. 

However, in our sub-analysis of the ozone effect during the warm seasons, which is from 

April to September, similar pattern and insignificant association could be observed 

compared to the all-year ozone results.

In conclusion, inverse probability weighted distributed lag modeling is a way to choose 

when investigating short-term causal effects of environmental exposures on health outcomes 

and it gives unconstrained, less conditional effect estimates that are less influenced by highly 

correlated covariates, compared to the conventional approach. Short-term exposure to an 

increased ambient fine particles level has a strong potential to induce higher risk of getting 

CVD hospitalizations among New England elderly residents. People with secondary 

diagnosis of COPD, diabetes, female gender and black race are sensitive population.
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Key Messages

• Our application of causal distributed lag modeling showed harmful effects of 

short-term pm2.5 exposure on CVD hospitalizations in a causal way among 

elderly population.

• Each 10 μg/m3 increase in lag0–lag5 cumulative PM2.5 exposure on average 

brings an increase of 4.3% in AMI hospital admission rate, an increase of 

3.9% in CHF rate and an increase of 2.6% in IS rate among New England 

Medicare participants.

• Overall, the effect of PM2.5 on CVD hospital admission risk declined from 

lag0 to lag5 days. Significant harmful effects were shown especially for lag0–

lag2 days with respect to the risk of hospital admissions for AMI and CHF. 

And lag0–lag1 days for IS hospitalization.

• People with secondary diagnosis of COPD, diabetes, female gender and black 

race are sensitive population.
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Figure 1. Distributed Lag Effects of PM2.5 and Ozone on Percentage Change of AMI, CHF and 
IS Hospital Admission Ratea

Abbreviations: AMI for acute myocardial infarction; CHF for congestive heart failure; IS for 

ischemic stroke.
a X axis is for different lag days and cumulative lag0–5; Y axis is for percentage change in 

the outcome hospital admission rate (%) per 10-unit increase of pm2.5 (μg/m3) or ozone 

(ppb), CVD Hospital Admitted New England Medicare Participants 2000–2012.
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Figure 2. Stratified Results for the Cumulative Effects (lag0–5) of PM2.5 and Ozone on 
Percentage Change of AMI, CHF and IS Hospital Admission Ratea

Abbreviations: AMI for acute myocardial infarction; CHF for congestive heart failure; IS for 

ischemic stroke.
a X axis is for different subgroups including people without secondary diagnosis of COPD 

(NC), people with secondary diagnosis of COPD (YC), people without secondary diagnosis 

of diabetes (ND), people with secondary diagnosis of diabetes (YD), males, females, whites 

and blacks; Y axis is for percentage change in the outcome hospital admission rate (%) per 

10-unit increase in cumulative pm2.5 (μg/m3) or ozone (ppb), CVD Hospital Admitted New 

England Medicare Participants 2000–2012.
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Table 1.

CVD Hospital Admitted New England Medicare Participants Cohort Characteristics, Pollution Levels and 

Meteorological Variables (2000–2012)
a
 (no color needed)

Categories AMI CHF IS

Population

Persons (No.) 156717 204774 170663

Case days (No.) 230157 404996 232264

Control days (No.) 782169 1376263 789267

Individual Covariates (among all cases)

Female sex N (%) 120351 (52.3) 234425 (57.9) 136295 (58.7)

Race or ethnic group N (%)

 Whites 219240 (95.3) 377420 (93.2) 217093 (93.5)

 Blacks 5292 (2.3) 16685 (4.1) 8921 (3.8)

 Other 2174 (0.9) 3578 (0.9) 2366 (1.0)

 Asians 1067 (0.5) 1968 (0.5) 1323 (0.6)

 Hispanics 1649 (0.7) 4048 (1.0) 1799 (0.8)

 Native Americans 162 (0.1) 297 (0.1) 125 (0.1)

 Unknown 573 (0.2) 1000 (0.2) 637 (0.3)

Eligibility for Medicaid N (%) 45558 (19.8) 91257 (22.5) 45029 (19.4)

Average age at admission (yr.) 79.68 (8.13) 81.45 (8.24) 80.40 (7.86)

secondary diagnosis of COPD N (%) 39754 (17.3) 116606 (28.8) 28100 (12.1)

secondary diagnosis of Diabetes N (%) 64511 (28.0) 133410 (32.9) 60378 (26.0)

Pollution Levels & Meteorological Variables all days

PM2.5 (μg/m3) 10.13 (6.48) 10.08 (6.42) 10.10 (6.47)

Ozone (ppb) 36.44 (11.74) 36.33 (11.73) 36.72 (11.91)

Ozone (ppb)-warm seasons (4–9) 42.93 (11.73) 42.99 (11.56) 43.14 (11.79)

Air surface temperature (°K) 282.51 (9.83) 282.64 (9.70) 283.17 (9.74)

Relative humidity (%) 78.63 (10.95) 78.54 (11.04) 78.62 (10.94)

case days

PM2.5 (μg/m3) 10.14 (6.48) 10.11 (6.46) 10.17 (6.54)

Ozone (ppb) 36.44 (11.74) 36.28 (11.71) 36.74 (11.93)

Ozone (ppb)-warm seasons (4–9) 42.94 (11.73) 42.94 (11.55) 43.22 (11.79)

Air surface temperature (°K) 282.47 (9.81) 282.62 (9.67) 283.13 (9.74)

Relative humidity (%) 78.63 (10.95) 78.59 (11.03) 78.59 (10.95)

control days

PM2.5 (μg/m3) 10.12 (6.49) 10.07 (6.41) 10.08 (6.45)

Ozone (ppb) 36.44 (11.75) 36.35 (11.73) 36.72 (11.90)

Ozone (ppb)-warm seasons (4–9) 42.93 (11.74) 43.01 (11.56) 43.12 (11.79)

Air surface temperature (°K) 282.52 (9.84) 282.65 (9.71) 283.19 (9.74)

Relative humidity (%) 78.63 (10.95) 78.52 (11.04) 78.63 (10.94)

Abbreviations: AMI for acute myocardial infarction; CHF for congestive heart failure; IS for ischemic stroke.
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a
Mean and standard deviation for continuous variables and number and percentages for categorical variables. Pollutants and Meteorological 

variables are at residence zipcode levels.
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