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Abstract

Purpose: Identifying imaging phenotypes and understanding their relationship with prognostic 

markers and patient outcomes can allow for a non-invasive assessment of cancer. The purpose of 

this study was to identify and validate intrinsic imaging phenotypes of breast cancer heterogeneity 

in pre-operative breast Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) 

scans and evaluate their prognostic performance in predicting 10-year recurrence.

Experimental Design: Pre-treatment DCE-MRI scans of 95 women with primary invasive 

breast cancer with at least 10-years of follow-up from a clinical trial at our institution (2002-2006) 

were retrospectively analyzed. For each woman, a signal enhancement ratio (SER) map was 

generated for the entire segmented primary lesion volume from which 60 radiomic features of 

texture and morphology were extracted. Intrinsic phenotypes of tumor heterogeneity were 

identified via unsupervised hierarchical clustering of the extracted features. An independent 

sample of 163 women diagnosed with primary invasive breast cancer (2002-2006), publicly 

available via The Cancer Imaging Archive, was used to validate phenotype reproducibility.

Results: Three significant phenotypes of low, medium, and high heterogeneity were identified in 

the discovery cohort and reproduced in the validation cohort (p<0.01). Kaplan-Meier curves 

showed statistically significant differences (p < 0.05) in recurrence-free survival (RFS) across 

phenotypes. Radiomic phenotypes demonstrated added prognostic value (c=0.73) predicting RFS.

Conclusions: Intrinsic imaging phenotypes of breast cancer tumor heterogeneity at primary 

diagnosis can predict 10-year recurrence. The independent and additional prognostic value of 

imaging heterogeneity phenotypes suggests that radiomic phenotypes can provide a non-invasive 

characterization of tumor heterogeneity to augment personalized prognosis and treatment.
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Introduction:

Breast cancer inter-tumor and intra-tumor heterogeneity can be seen in gene expression, 

histopathology, and macroscopic structure(1). In particular, intra-tumor heterogeneity can 

manifest both spatially and temporally(2–7). Spatial heterogeneity is thought to originate 

from variable, micro-environment-specific stresses and branched evolution from a common 

ancestor cell population into divergent subclonal populations(2). Temporal heterogeneity can 

arise from the dynamic progression and growth of cancer cells as well as in response to 

systemic therapy(2). Recent studies suggest that increased intra-tumor heterogeneity is 

associated with adverse clinical outcomes, posing a challenge for accurate patient prognosis 

and prediction(8). Specifically, more aggressive tumor sub-regions may drive disease 

progression, expanding to inhabit recurrent tumors(9–12). Additionally, treatments such as 

chemotherapy, radiotherapy, or targeted agents may apply dynamic stresses to select 

subpopulations of the tumor causing resistance to treatment and subsequent recurrent 

growth(11,13–16).

Currently, critical disease treatment decisions are made on the basis of markers acquired 

from tissue samples, typically obtained via core biopsy or surgical excision. Histopathologic 

assessment of this sample determines common prognostic markers including tumor size, 

shape, grade, nodal status, and metastasis; expression of estrogen receptor (ER), 

progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status 

are determined via immunohistochemistry. Commercial prognostic tests such as 

MammaPrint® (Agendia BV, Amsterdam, the Netherlands) and Oncotype DX ® (Genomic 

Health, Inc., Redwood City, CA, USA) have been developed to measure mRNA and assess 

gene expression profiles respectively, but they are clinically limited by use in only specific 

breast cancer molecular subtypes(17). In addition, they are expensive, their assessment can 

vary depending upon the tissue sample, and they are not always implemented in routine 

diagnosis(18,19). The prognostic and predictive markers derived from the limited diagnostic 

tissue samples may under-sample spatially heterogeneous breast tumors as well as overlook 

temporal shifts due to breast cancer progression or exposure to therapy. Therefore, there is a 

clinical need to develop prognostic and predictive markers of intra-tumor heterogeneity that 

may augment established biomarkers for personalized disease diagnosis, staging, 

management, and to assess treatment response to neoadjuvant therapy.

Medical imaging is currently used for breast cancer diagnosis, staging, and treatment 

response assessment, providing a means for longitudinal, non-invasive, whole-tumor 

evaluation of disease burden(20–22). Dynamic contrast enhanced magnetic resonance 

imaging (DCE-MRI), in particular, is highly sensitive for primary lesion detection and 

staging, with the ability to assess tumor vascularization with contrast enhancement(21,23). 

The field of “Radiomics” leverages high throughput data extracted from medical images and 

has shown promise in quantifying the imaging presentation of underlying tumor biology(24–
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28). Identifying intrinsic radiomic phenotypes of breast cancer and understanding their 

relationship with patient outcomes and other histopathologic factors could complement 

current prognostic and predictive biomarkers. The purpose of this study was to identify and 

validate such intrinsic DCE-MRI radiomic phenotypes of breast cancer tumor heterogeneity, 

and evaluate their independent prognostic performance in predicting 10-year recurrence, and 

their performance in augmenting established, histopathologic prognostic factors.

Methods:

Discovery cohort: Study population and imaging protocol

Breast DCE-MRI scans were retrospectively analyzed from a previously completed, 

multimodality imaging trial conducted at our institution (2002-2006; National Institutes of 

Health; P01CA85484) designed to evaluate an array of different breast imaging modalities in 

cancer staging, diagnosis, and screening. The study was Health Insurance Portability and 

Accountability Act-compliant, approved by the institutional review board at our institution, 

and in accordance with U.S. Common Rule. The trial originally recruited 901 women, 

including women with newly diagnosed breast cancer presenting for staging, women with a 

mammographically detected suspicious finding or suspicious palpable mass directed to 

biopsy, and women eligible for high-risk screening. Informed written consent was obtained 

prior to trial participation. From these, 317 women were diagnosed with primary breast 

cancer, of which 231 were diagnosed with invasive breast cancer. From this subset of 231 

women, 177 women had DCE-MRI images available for analysis. An additional 72 women 

were excluded for not receiving a consistent imaging protocol of fat-suppressed, T1-

weighted DCE-MRI with at least two post contrast scans available for analysis. Lastly, 3 

women were excluded on the basis of image quality, determined by biopsy artifacts and 

fiduciary markers, or the presence of diffuse disease in order to prevent inaccurate ROI 

segmentation, and 7 women were excluded due software algorithm output resulting in 

incomplete values during radiomic feature extraction. Therefore, a total of 95 women 

diagnosed with primary invasive breast cancer and imaged with a consistent T1-weighted 

DCE-MRI protocol with a first and second post-contrast acquisition, prior to any treatment, 

were included in our analysis. For this retrospective analysis, the requirement of informed 

consent was waived under institutional review board approval.

Following intravenous administration of gadolinium contrast, DCE-MRI images were 

acquired sagitally via a T1-weighted 3D protocol. Images were acquired with a 45-degree 

flip angle over a 16-18 cm field of view, with 2-2.5 mm slice thickness. Women 

subsequently underwent surgery for tumor removal. Histopathologic analysis of surgical 

specimens evaluated hormone receptor (HR) status, consisting of ER and PR status, HER2 

status, clinical stage, size (cm) as determined from pathology sample, and surgical margins. 

Stage, Modified Bloom Richardson grade (MBRG), lymph invasion status, nuclear grade, 

and presence of ductal carcinoma in situ (DICS) were also documented. Post-surgery 

therapy included a variable combination of chemotherapy, hormone therapy, and radiation. 

Recurrence-free survival (RFS) was monitored for all women over a 10-year follow-up 

period. Survival was determined as the date of breast cancer diagnoses to death or more 

recent follow-up. Patients without an event were censored at the date of last follow-up. In the 
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discovery cohort, 11 women (12%) had recurrence events, and 84 women (88%) were event-

free until their last available follow-up (Table 1). Clinical stage was statistically significantly 

associated with recurrence events (p = 0.02) (Table 1).

Validation cohort: Study population and imaging protocol

An independent validation cohort was acquired from a subset of the ISPY-1/ACRIN 6657 

trial (2002-2006)(29). Women diagnosed with T3 breast tumors measuring 3cm or larger 

were enrolled in this trial, and underwent anthracycline-based neoadjuvant chemotherapy. 

DCE-MRI scans were acquired for women in this study as previously described(30). The 

pre-treatment and pre-operative DCE-MRI images of 222 women were publicly available 

via The Cancer Imaging Archive(31). From this, 15 women were excluded for having 

incomplete DCE acquisition or variability in imaging protocol. A further 43 women were 

excluded for having missing histopathologic data, RFS outcome, or pre-treatment DCE-MRI 

scans, and 1 woman was excluded due software algorithm output resulting in incomplete 

values during radiomic feature extraction. In all, 163 women were included in the validation 

cohort for this study; validation analysis utilized the scans that were both pre-treatment and 

pre-operative. Clinical information including HR status and HER2 status were available for 

each woman in the validation cohort. RFS status, defined as the time between first 

chemotherapy treatment and disease recurrence, was also available. A total of 44 women in 

the validation cohort (27%) had recurrent tumors (Supplemental figure 1). A comparison 

between the two cohorts via chi-square analysis indicated a statistically significant 

difference between number of recurrent cases (p = 0.02), number of HR positive cases (p = 

0.02), and clinical stage of tumors (p < 0.001) (Supplemental figure 1).

Radiomic feature extraction

For each woman in the discovery cohort, the primary lesion was selected by a radiologist 

from the pre-treatment, pre-operative DCE-MRI scan, and manually segmented from the 

most representative slice, as determined by the largest tumor volume. This manual 

segmentation served as the initialization for 3-D tumor volume segmentation, which was 

performed using a previously validated, automated method (32) and visually verified by an 

expert after segmentation. Images were pre-processed using N3 bias-field normalization(33) 

and histogram normalization in order to correct for low frequency bias field signal or 

outliers that may induce artifacts within the image. Using the first (I1) and second (I2) post-

contrast images, a signal enhancement ratio (SER) map was generated(23) for the entire 

tumor volume, defined as the voxel-wise ratio between the first and second post contrast 

images:

SER =
I1 − I0
I2 − I0

The first and second post-contrast images were acquired in succession at an average 

approximation of 90 seconds after contrast injection and first-post contrast scan, 

respectively. A multi-parametric, radiomic feature vector was extracted from the SER map 

for each woman (Supplemental figure 2), including a) previously validated morphologic 
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features of tumor perimeter, area, ellipticity, and convexity, shown to be associated with 

disease progression(22,34), and b) radiomic features capturing structural(35), run-length(36–

38), co-occurrence matrix(39), gray-level histogram, and gray-level size zone matrix textures 

(40), which were extracted and summarized over the primary lesion. Briefly, structural 

features capture intensity variations between central voxels and neighboring voxels. Run-

length features measure the coarseness of an image in specific linear directions. Co-

occurrence features analyze the spatial distribution of voxel intensity values by capturing 

frequency information of gray-level intensity values within a neighborhood of voxels in a 

specific linear orientation. Gray level histogram features are first order statistical features 

assessing the distribution of gray-level voxel intensities within an image. Gray level size 

zone features capture the connectedness of varying intensity levels within an image. 

Additionally, the mean and standard deviation of SER values of the tumor were calculated. 

Consequently, a total of 60 radiomic features were extracted (Appendix). All features were 

extracted using the publically available software, Cancer Imaging Phenomics Toolkit 

(CaPTk) (ver. 1.7.1, Univ. of Pennsylvania) (https://cbica.github.io/CaPTk/) (41).

Discovery of intrinsic imaging phenotypes

Prior to phenotype identification, the multi-parametric radiomic features extracted from the 

pre-operative DCE-MRI scans were z-score normalized(42). Furthermore, z-scored features 

with extreme skewness or extremely low variations in distributions across women, defined as 

interquartile range (IQR) < 1 or kurtosis > 15, were excluded from further analysis to 

prevent a biased analysis. This resulted in a total of 22 features concatenated to form the 

final feature vector. Given the definition of each radiomic feature in the final feature vector, 

features were standardized such that a greater feature value indicates greater image 

heterogeneity. A tumor heterogeneity index was then generated for each woman, defined as 

the statistical average of z-score normalized, standardized features in the final feature vector. 

Thus, a higher heterogeneity index corresponds to higher intra-tumor heterogeneity whereas 

a lower heterogeneity index corresponds to increased intra-tumor homogeneity.

To identify intrinsic imaging phenotypes, unsupervised hierarchical clustering was 

performed on the extracted, multi-parametric feature vectors for women in the discovery 

cohort(43). The k clusters obtained from the unsupervised hierarchical clustering algorithm 

are interpreted as intrinsic imaging phenotypes in the population. Briefly, an agglomerative 

approach was used to create a hierarchical clustering of women, using Euclidean distance for 

the distance between feature vectors and Ward’s minimum variance method as the clustering 

criterion(44). The optimal number of distinct phenotypes, k, was determined by assessing 

the stability and significance of each phenotype for each value of k that was considered. The 

optimal number of stable phenotypes was determined using consensus clustering(45), where 

the dataset was subsampled and cluster arrangements were determined using varying 

numbers of k. For each number of k phenotypes, the proportion that two women occupied 

the same phenotype cluster out of the number of times they appeared in the same subsample 

was determined and stored in a symmetric consensus matrix, from which a cumulative 

distribution function (CDF) was determined. Cluster stability, as determined by the area 

under the CDF curve, was evaluated for each increase in k phenotype, with a change in 

stability less than 10% deemed insignificant. Statistical significance of the identified, stable 
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phenotypes was evaluated using the SigClust(46) method. Here, the significance of the 

cluster index, defined as the sum of within-cluster sums of squares about the cluster-mean 

divided by the total sum of squares about the overall mean, was tested against a null 

distribution, simulated using 10,000 samples from a Gaussian distribution fit to the data. The 

test was performed at each phenotype split to determine statistical significance (p<0.05).

Independent validation of intrinsic imaging phenotypes

Tumor segmentation for cases from the validation cohort was performed per the ISPY-1/

ACRIN 6657 protocol(30). The 22 features identified from the discovery cohort were 

extracted from segmented tumors in the validation cohort using the same feature pre-

processing steps outlined above, to form the final feature vectors for hierarchical 

unsupervised clustering analysis. These features were normalized using the mean and 

standard deviation values of each respective feature’s distribution in the discovery cohort, to 

standardize feature ranges. To validate identified phenotype reproducibility, women in the 

validation cohort were assigned to the discovery cohort-identified phenotypes by minimizing 

the Euclidian distance between each validation cohort feature vector and the discovery 

cohort-identified phenotype centroid. The significance and reproducibility of phenotype 

assignment in the validation cohort was assessed using Consensus Clustering and the 

SigClust methods (Figure 1).

Prognostic value of imaging phenotypes

We assessed the distribution of histopathologic, prognostic covariate values for women 

assigned to each heterogeneity phenotype using chi-square tests for categorical biomarker 

values and Kruskal-Wallis tests for continuous biomarker values. The distributions of post-

surgery therapy received by each woman (i.e., chemotherapy, hormone therapy, and 

radiation therapy) and recurrence-free survival were assessed across phenotypes to identify 

any associations between therapy and RFS or heterogeneity phenotypes.

RFS probabilities across heterogeneity phenotypes within the discovery and validation 

cohorts were evaluated using Kaplan-Meier curves, with log-likelihood statistical tests used 

to assess their significance and determine their independent prognostic value. To determine 

the additional value categorizing tumor heterogeneity phenotypes, a baseline Cox 

proportional hazards model was built using the established histological prognostic factors of 

HR and HER2 status. Performance of this model in predicting RFS was tested both with and 

without phenotype cluster assignment, coded as a categorical variable.

Results

Discovery of intrinsic imaging phenotypes

Three statistically significant phenotypes were identified in the discovery cohort via 

unsupervised hierarchical clustering and found to be statistically significant via the SigClust 

methods (p < 0.01) (Figure 2, Supplemental figure 3). Ordering the heterogeneity indices of 

the corresponding centroids for the identified phenotypes in ascending order allowed for the 

identified phenotypes to be interpreted as phenotypes of low, medium, and high intra-tumor 
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heterogeneity. The number of recurrences were statistically significantly different across the 

heterogeneity phenotypes via chi-square analysis (p = 0.01).

Kaplan-Meier RFS curves for women stratified by heterogeneity phenotype assignment were 

found to be statistically significantly different, as determined using the log-rank test (p < 

0.05). A baseline Cox-proportional hazards model consisting of HR status and HER2 status 

resulted in a c-statistic of 0.55 when predicting 10-year RFS. Adding heterogeneity 

phenotype assignment to the baseline model resulted in a c-statistic of 0.73 A log-likelihood 

test showed statistically significant improvement in the augmented model performance (p = 

0.007) (Figure 2).

Analysis of clinical covariate significance across heterogeneity phenotype status showed that 

differences in tumor MBRG, estrogen receptor percentage, and tumor mitotic stage were 

statistically significant across heterogeneity phenotypes (p = 0.03, p=0.001, and p=0.02, 

respectively). Of poorly differentiated (MBRG 8-9) tumors, 80% were assigned to the 

medium or high heterogeneity phenotypes, and 20% were assigned to the low heterogeneity 

phenotype (Figure 3a). Tumors assigned to the low and medium heterogeneity phenotypes 

had median estrogen receptor percentages of 75% and 70% respectively, while tumors 

assigned to the high heterogeneity phenotype had median estrogen receptor percentages of 

40% (Figure 3b). Of tumors with high mitotic stages, 81% were assigned to the medium or 

high heterogeneity phenotypes, and 19% were assigned to the low heterogeneity phenotype 

(Figure 3c).

Validation of intrinsic imaging phenotypes

Women in the discovery cohort assigned to the low, medium, and high heterogeneity 

phenotypes had average heterogeneity indices of −0.09, −0.03, and 0.16, respectively 

(Figure 4a). Women in the validation cohort assigned to the low, medium, and high 

heterogeneity phenotypes had average heterogeneity indices of −0.05, −0.24, and 0.21, 

respectively (Figure 4b).

The heterogeneity phenotypes were found to be reproducible and statistically significant in 

the validation set using the SigClust methods (p = 0.01). Kaplan-Meier RFS curves for 

women stratified by phenotype clustering assignment were statistically significantly 

different (p = 0.01 (Supplemental figure 4). A baseline Cox-proportional hazards model 

consisting of HR status and HER2 status resulted in a c-statistic of 0.61 when predicting 10-

year RFS. Adding heterogeneity phenotype assignment to the baseline model resulted in a c-

statistic of 0.67 A log-likelihood test showed statistically significant improvement in the 

augmented model performance (p = 0.01).

Analysis of clinical covariate significance across heterogeneity phenotype status showed that 

differences in progesterone receptor status were statistically significant across heterogeneity 

phenotypes (p = 0.03).
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Discussion

Our results indicate that distinct imaging phenotypes exist within invasive breast tumors 

which correspond to different degrees of intra-tumor heterogeneity, suggesting that radiomic 

features can non-invasively characterize such heterogeneity patterns. The identification and 

validation of distinct image heterogeneity phenotypes show that the phenotype clusters 

identified are both interpretable and meaningful. Most notably, the validated heterogeneity 

phenotypes show independent prognostic value when predicting 10-year RFS, indicating that 

intrinsic imaging phenotypes can potentially identify intra-tumor heterogeneity features 

driving aggressive tumor behavior. Women assigned to the high heterogeneity phenotype 

demonstrated decreased probabilities of RFS over the 10-year follow-up period, 

corroborating the hypothesis that heterogeneous tumors are associated with aggressive tumor 

behavior and treatment resistance.

Of particular note, the medium heterogeneity phenotype encompasses a wide range of 

tumors, as evidenced by the differences in Kaplan-Meier survival analysis between women 

assigned to the medium heterogeneity phenotype in the discovery and validation cohorts. 

While both cohorts represent populations of women diagnosed with invasive breast cancer, 

all women in the validation cohort were diagnosed with advanced stage disease, and 

therefore eligible for neoadjuvant therapy. As the discovery cohort consists of more diverse 

disease stages, women in the validation cohort assigned to the low heterogeneity phenotype 

may have higher degrees of tumor heterogeneity as compared to women in the discovery 

cohort also assigned to the low heterogeneity phenotypes and may therefore be more similar 

to tumors assigned in the discovery cohort as having a medium heterogeneity phenotype. 

This is supported by the similarity of the average heterogeneity indices for women in the 

validation cohort assigned to the low heterogeneity phenotype versus women in the 

discovery cohort assigned to the medium heterogeneity phenotype (−0.05 and −0.03, 

respectively). Consequently, survival probabilities for women in the validation cohort 

assigned to the low heterogeneity phenotype may be more similar to women in the discovery 

cohort originally assigned to the medium heterogeneity phenotype, as compared to women 

in the low heterogeneity phenotype. A statistical comparison between cohorts suggests 

women in the validation cohort had a statistically significantly higher proportion of HR 

negative tumors, thereby suggesting more aggressive tumor behavior and outcome 

(Supplemental figure 1).

Imaging phenotypes of intra-tumor heterogeneity also provide additional prognostic value 

when augmenting established histopathologic prognostic biomarkers. The independent and 

additional prognostic value of phenotype assignment suggests that imaging phenotypes can 

provide unique information about underlying tumor behavior, and therefore, complement 

clinically utilized prognostic markers for personalized prognosis and decision making.

Higher degrees of imaging phenotype heterogeneity were shown to be associated with 

poorly defined tumors as per the MBRG and tumors with higher mitotic grades. The 

increased mitotic grade of tumors in the higher heterogeneity phenotypes may contribute to 

the genetic diversity and subclonal evolution thought to increase intratumor heterogeneity 

(2). These results suggest that tumor characteristics such as nuclear pleomorphism and 
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increased mitotic rates, which are characteristic of aggressive tumor behavior, may be 

captured by the imaging phenotypes of tumor heterogeneity. Additionally, tumors with lower 

percentages of estrogen receptors displayed statistically significantly higher imaging 

phenotype heterogeneity, correlating with established hypotheses that estrogen positive 

tumors are associated with more positive prognoses(47,48). The statistically significant 

associations of histopathologic prognostic covariate distributions across heterogeneity 

phenotypes indicate that image heterogeneity may correlate with underlying tumor biology.

We have identified intrinsic imaging phenotypes of intra-tumor heterogeneity in primary 

invasive breast cancer that can independently predict 10-year recurrence and have validated 

these findings in an independent cohort. While previous studies have utilized hierarchical 

clustering analysis to identify imaging phenotypes or have investigated relationships 

between radiomic features and histopathologic and genomic tumor characteristics, most of 

these studies have used surrogate measures of recurrence or were limited by a lack of 

independent validation(28,49).

Limitations to our study should be noted. For this exploratory analysis, we chose a fixed set 

of radiomic features. The independent validation cohort utilized for this study consisted of 

only advanced stage tumor diagnoses with a limited availability of histopathologic 

prognostic biomarkers, as opposed to the discovery cohort which consisted of both early and 

advanced stage tumors and a wide array of histopathologic prognostic biomarker 

information available for each woman. As both cohorts included women diagnosed with 

invasive breast cancer and follow-up information, we determined that validating our 

heterogeneity phenotypes with a more niche cohort can still demonstrate the added value 

and generalizability of tumor imaging heterogeneity phenotypes. We also aim to expand our 

analysis to a larger cohort. Lastly, we will seek to further explore the added prognostic value 

of imaging phenotypes to that of emerging prognostic molecular profiling assays.

In conclusion, our results demonstrate that intrinsic imaging phenotypes of tumor 

heterogeneity exist, with independent and additional prognostic value in predicting RFS. 

Additionally, these heterogeneity phenotypes show associations with established 

histopathologic prognostic biomarkers, suggesting that image heterogeneity phenotypes non-

invasively capture underlying tumor biology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance:

Breast cancer is a heterogeneous disease, with known inter-tumor and intra-tumor 

heterogeneity. Established histopathologic prognostic biomarkers generally acquired 

from tumor biopsy may be limited by sampling variation. Radiomics is an emerging field 

with the potential to leverage the whole tumor via non-invasive sampling afforded by 

medical imaging to extract high throughput, quantitative features for personalized tumor 

characterization. In this exploratory study, the identified and independently validated 

intrinsic radiomic phenotypes of tumor heterogeneity provide independent and additional 

prognostic value when predicting 10-year breast cancer recurrence. Radiomic phenotypes 

have the potential to provide a non-invasive characterization of tumor heterogeneity to 

augment personalized clinical decision making for breast cancer.
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Figure 1. 
Study design. Radiomic features were extracted from SER maps generated from pre-

operative DCE-MRI scans from women in the discovery cohort (n = 95). Feature selection 

resulted in a 22-feature feature vector. Unsupervised hierarchical clustering was used to 

identify intrinsic imaging phenotypes, which were assessed for statistical significance and 

stability. The same 22 features were extracted from the pre-operative DCE-MRI scans of 

163 women in an independent validation cohort. Women in the validation cohort were 

assigned to a phenotype identified in the discovery cohort by minimizing the distance 
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between their 14-feature feature vector and the corresponding phenotype centroids. The 

independent and additional prognostic values of heterogeneity phenotypes were assessed via 

Kaplan-Meier RFS analysis and Cox proportional hazards models when compared to a 

baseline model of established histopathologic biomarkers.
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Figure 2. 
Identification of intrinsic imaging phenotypes of tumor heterogeneity. Unsupervised 

hierarchical clustering of SER features identifies three intrinsic phenotypes in the discovery 

cohort (A). RFS curves for women stratified by imaging heterogeneity phenotype show that 

heterogeneity phenotype is statistically significant (p < 0.05) when predicting RFS (B). 

Adding phenotype information to Cox regression model shows an improvement in C-

statistic when predicting recurrence events (C).
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Figure 3. 
Associations between histopathologic prognostic markers and heterogeneity phenotypes. 

Associations between histopathologic prognostic markers and heterogeneity phenotypes 

identified in the discovery cohort. Degree of phenotypic heterogeneity in well, moderately, 

and poorly differentiated tumors (A). Percent of estrogen receptor distribution for women in 

low, medium, and high heterogeneity phenotypes (B). Degree of phenotypic heterogeneity in 

tumors with low, moderate and high mitotic stage (C).
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Figure 4. 
Heterogeneity index* distributions of women in low, medium, and high heterogeneity 

phenotypes in the discovery (A) and validation (B) cohorts.

* defined as the statistical average of z-score normalized, heterogeneity standardized 

features in the final feature vector for each tumor in the discovery and validation cohorts.
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Table 1.

Summary of patient characteristics from the discovery cohort

Primary Invasive Cancers (n=95)

Non-recurrent cases at the time of last follow-up
84 (88% of total)

Recurrent cases
11 (12%)

Significance tested using 
Chi-square analysis

Malignant Pathology p=0.48

Invasive Ductal Carcinoma (IDC) 65 (77% of NR) 8 (73% of R)

Invasive Lobular Carcinoma (ILC) 8 (10%) 1 (7%)

IDC/ILC 9 (11%) 2 (14%)

Receptor Status p= 0.37

Hormone Receptor Positive 61(73%) 9 (82%)

HER2 Positive 20 (24%) 2 (18%)

Triple Negative 11 (13%) 1 (9%)

Clinical Stage p=0.02

Early Stage (1) 35 (41%) 1 (9%)

Advanced Stage (2-3) 45 (54%) 10 (91%)

DCIS p=1

Present 67 (80%) 9 (82%)

Margins p=0.07

Positive 40 (48%) 6 (55%)

Negative 40 (48%) 5 (45%)
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