Skip to main content
. 2020 Feb 17;47(3):15. doi: 10.1007/s00269-020-01085-8

Table 1.

Excess thermodynamic properties of the investigated binaries

Observed DFT-calculated aid
max∆Hmix (kJ/mol) max∆Hmix (kJ/mol) WHAB (kJ/mol) WHBA (kJ/mol) WSvibAB (J/mol/K) WSvibBA (J/mol/K)
NaCl–KCl 4.5b 4.75a 16.45a 22.01a 8.73c 8.73c

aNaClid = XNa

aKClid = XK

Pyrope–grossular (Py–Gr) 9.6d 9.3a 32.72a 44.50a − 7.4e 27.9e

aPyid = XMg3

aGrid = XCa3

MgO–CaO 19.2a 65.24a 86.84a 10.8a 10.8a

aMgOid = XMg

aCaOid = XCa

Low albite–microcline (Ab–Mic) 8.1f 6.5a 20.59a 31.30a 9.1g 9.1g

aAbid = XNa

aMicid = XK

Diopside–jadeite (Di–Jd) 7.8h 7.0a 27.98a 27.98a 2.54i 2.54i

aDiid = XCaM2XMgM1

aJdid = XNaM2 XAlM1

T > 1350 Kn

Diopside–CaTs (Di–CaTs) 6.0k 6.0j 7.70j 37.44j 0l 0l

aDiid = XMgM1 (XSiT)2

aCaTsid = 4XAlM1XAlTXSiT + SROo

Glaucophane–tremolite (Glau–Tre) 16.0m 18.5a 78.58a 72.91a 11.73i 11.73i

aGlauid = (XNaM4)2(XAlM2)2

aTreid = (XCaM4)2(XMgM2)2 + SROp

max∆Hmix is the heat of mixing at the mole fraction where it is at its maximum. DFT-derived values are compared to observed ones. WHAB and WHBA are the enthalpic interaction parameters of the asymmetric Margules mixing model, ∆Hmix = (1 − XB) XB2WHAB + (1 − XB)2XBWHBA, of the A–B binary. WSvibAB and WSvibBA are the interaction parameters for the vibrational excess entropy, ∆Svibexc = (1-XB) XB2WSvibAB + (1-XB)2XBWSvibBA. To calculate the excess Gibbs energy of mixing, use WG = WH – T WS and Gexc = (1 − XB) XB2WGAB + (1 − XB)2XBWGBA. Ideal mixing is defined in the last column (aid). To define the solvus, the use of a configurational excess entropy is needed in most cases, which is, however, not listed because it is only valid at the solvus temperatures and may vanish at higher temperatures

aDFT methods using LDA functional, this study

bSolution calorimetry (Barrett and Wallace 1954)

cLow-temperature calorimetry (Benisek and Dachs 2013)

dSolution calorimetry (Newton et al. 1977)

eLow-temperature calorimetry (Dachs 2006)

fSolution calorimetry (Hovis 2017)

gLow-temperature calorimetry (Benisek et al. 2014)

hSolution calorimetry (Wood et al. 1980)

iAccording to Benisek and Dachs (2012)

jDFT methods using a partly disordered CaTs endmember

kSolution calorimetry (Newton et al. 1977; Benisek et al. 2007)

lLow-temperature calorimetry (Etzel et al. 2007)

mDerived from line broadening in IR according to Etzel and Benisek (2008)

nAt T < 1350 K, short-range ordering is present and at T < 1000 K, long-range ordering exists (Fleet et al. 1978)

oShort-range ordering is present; see for example Benisek et al. (2007)

pPossible short-range ordering is present, this study