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Empathy is a multidimensional paradigm, and there currently is a 
lack of scientific consensus in its definition. In this paper, we review 
the possibility of compromising data during behavioral neuroscience 
experiments, including but not limited to those who study empathy. 
The experimental protocols can affect, and be affected by, empathy and 
related processes at multiple levels. We discuss several points to help 
researchers develop a successful translational pathway for behavioral 
research on empathy. Despite varying in their focus with no widely 
accepted model, current rodent models on empathy have provided 
sound translational explanations for many neuropsychiatric proof-of-

concepts to date. Research has shown that empathy can be influenced 
by many parameters, some of which are to be reviewed in this paper. We 
emphasize the future importance of consistency in modeling proof of 
concept; efforts to create a multidisciplinary group which would include 
both bench scientists and clinicians with expertise in neuropsychiatry, 
and the consideration of empathy as an independent variable in animal 
behavioral experimental designs which is not the mainstream practice 
at present.
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Empathy is a multidimensional concept with no mutually agreed upon 
scientific definition; different researchers may use the term differently. It 
may refer both to sharing/adopting, and understanding the emotional 
state of others (1, 2). Nevertheless, mainly accepted practical classification 
is: cognitive (top-down), and emotional/affective-used interchangeably 
in this paper-(bottom-up) empathy. Behavioral patterns appear to change 
from simple observation without a need for explicit cognitive processing 
(bottom-up; affective) such as emotional contagion, motor mimicry; to 
cognitive skill-requiring behaviors (top-down; cognitive empathy) such 
as perspective acquisition and targeted assistance, as the individual 
becomes evolutionally more complex. First one is mainly an unconscious 
emergence triggered by mimics and the act of mirroring; while the latter 
is a conscious process of recognizing the physical and emotional state of 
the others, and interpreting this knowledge (3, 4). It is important to note 
that shared processing is required for both forms of empathy (5, 6).

Positive social behavior and helping behaviors have been observed in 
rodents (7, 8). With empathy-like behaviors a seen in a wide range of 
populations from mice to elephants, investigations focus more on by 
which mechanisms empathy occurs, rather than whether or not empathy 
exists (9). There are various working hypotheses such as perception-action 
model (PAM), and the self to other model of empathy (SOME), which are 
important to mention, yet are out of the scope of this paper (10).

Successful relationships are necessary for survival, reproduction, reaching 
resources, and achieving social status in the group. In this context, 
empathy and empathy-like behaviors appear evolutionarily protected 
(1). In mammals, the empathy response is thought to phylogenetically 
originate from caring for the offspring, a behavior characteristic for 
mammals, yet observed in other species; such as birds, reptiles, and fish 
(11–13). From an experimental point of view, empathy has so far been 
modeled in rodents and primates. Current rodent models on empathy 
vary in their focus, as will be detailed below, and no widely accepted 
model exists (14, 15).

THE NEUROBIOLOGY OF EMPATHY
Functional neuroimaging studies have revealed a loop that responds 
to others’ perception of distressing situations in humans: anterior 
insula, dorsal anterior cingulate cortex, anterior midcingulate cortex, 
supplementary motor area, amygdala, brainstem and periaquaductal 
gray (16). Animal studies have shown that the ability to share and be 
influenced by others’ emotions are organized by regions including brain 
stem, the preoptic area of the thalamus, and paralimbic regions; which 
also play a role in attachment (17, 18). Cognitive and affective empathy 
are shown to follow mainly different neurocircuitry. Cognitive empathy 
engages the ventromedial prefrontal cortex, temporoparietal junction 

INTRODUCTION

https://orcid.org/0000-0002-2348-7427
https://orcid.org/0000-0003-4723-2661
https://orcid.org/0000-0002-8310-1979
https://orcid.org/0000-0002-2617-8865
https://orcid.org/0000-0002-7828-6382
https://orcid.org/0000-0002-9078-5010


Uysal et al. Empathy as a Concept from Bench to Bedside

72

Arch Neuropsychiatry 2020;57:71−77

and hippocampal regions of the brain called the “memory network” (19, 
20) while affective empathy engages inferior parietal lobule and amygdala 
which is called “the mirror neuron system” (21, 22). Despite this practical 
classification of empathy; it has been shown that shared processing is 
required for both forms of empathy (5, 6). The limbic system is particularly 
important for emotional, while frontoparietal networks, in connection 
with superior temporal cortex activation, are necessary for motor display. 
These neurons discharge during both observation and execution of 
motor action (23). Any experimental plan involving empathy-associated 
brain regions is likely to be influenced by the empathy behavior that may 
occur between animals during the experiment.

Despite relative limitation of data in neurochemical underpinnings of 
empathy, when comparing to that of neuroimaging, studies have been 
promising. Oxytocin and arginine vasopressin have been shown to play 
an important role in social signaling of vast evolutionary process from 
fish to primates (24). Animal studies have demonstrated the role of these 
two social neuropeptides in emotional behaviors such as parenting 
and aggression (25). Both of these peptides, which are administered 
intranasally in humans, have shown to promote attachment, trust, 
empathy, generosity and positive social engagement (26). The epigenetic 
effects, such as early parenting experiences, permanently alter oxytocin 
and vasopressin expression and the neural architecture of empathy 
(27, 28). Although both peptides have similar neuroendocrine effects; 
oxytocin has been more studied. Oxytocin receptor gene polymorphism 
has been found to have a significant relation with emotion-recognition 
scores (29), the interaction of high plasma oxytocin and low-risk alleles 
of CD38, an ectoenzyme that mediates the release of oxytocin, predicted 
longer parental touch, and increased duration of parent-infant gaze 
synchrony (30). Positive correlation between plasma oxytocin levels, 
both during and after pregnancy, and mother-infant bonding has been 
shown (31). Nasal oxytocin administration is found to increase emotion 
recognition accuracy (32, 33), although controversy exists (34, 35). In a 
recent study, intranasal oxytocin and vasopressin on parental caregiving 
were investigated; while no significant caregiving change was observed 
in correlation with oxytocin, vasopressin caused increased caregiving 
behavior in men (36). Intranasal vasopressin is shown to increase empathic 
concern and experience of increased paternal warmth during childhood 
(28). Paternal behavior related hormone Arginine vasopressin is found 
to be related with aggression (37) while relation between vasopressin 1B 
receptor polymorphism and affective empathy is shown (38). Maternal 
deprivation increases vasopressin receptors, while decreases oxytocin 
receptors in the brain (27). Serotonergic system’s involvement in affective 
regulation is well known. Stimulation of 5-HT2A/1A serotonergic 
receptor reduced social pain processing in association with changes in 
self-experience, decreased cognitive empathy, but increased emotional 
empathy (39). These findings suggest that serotonergic system is involved 
in emotional sharing (40). Evidence suggests that dopaminergic system 
is also involved in empathic development; D4 receptors have been 
linked with cognitive empathy and longitudinal development of infant 
temperament (41, 42). It has also has been shown that oxytocin facilitates 
mating-induced pair bonds in adults through interaction with the 
mesolimbic dopaminergic system (43). Furthermore, early caregiving 
experiences can have an impact on hypothalamic-pituitary-adrenal 
(HPA) system (44), and it was shown that early maternal deprivation 
negatively affects HPA system and causes increased anxiety in offsprings 
later in life (45). Early caregiving reduces corticosterone responses to 
stress in rats; increasing hippocampal corticosterone sensitivity while 
decreasing it at the hypothalamic level. These findings are particularly 
important in view of other study results indicating a correlation between 
increased cortisol levels being associated with decreased empathy (46).  
Testosterone has been found to reduce empathy and compassionate 
behavior both in men (47) and women (48).

Empathy behavior among subjects may affect, and be affected by, 
empathy-related neurotransmitters.

EXAMPLES OF RODENT MODELS OF EMPATHY
Measuring response to pain or stress as an emotional contagion could 
be considered as the main theme for first experimental models of 
empathy in laboratory animals. (49) Initial rodent empathy models 
focused on ultrasonic vocalizations of rats that are under stress. 
Ultrasonic vocalizations were considered as a potential method of 
assessing emotional contagion (50). Audible and ultrasonic vocalizations 
(USV) of rodents are produced to reflect a variety of emotional states. 
In 1991, Blanchard et al demonstrated that ultrasonic vocalizations 
(USV) in 22 kHz were emitted by rats to communicate a presentation 
of a predator (51) and several other following studies later investigated 
the relationship between social rat behavior and USV (52–54). In 2011 
Atsak et al. proposed a rat empathy model based on USV and freezing 
response to foot shock (55). One study used consolation test as a rodent 
empathy model (56). Many other rodent models so far have persistently 
attempted to measure emotional contagion elicited by painful or fearful 
stimuli (14). The first studies on this subject, as in humans, are based on 
the measurement of pain or stress response as an emotional transmission 
of laboratory animals (57).

The last step was to measure empathy in rodents through equipment. 
More recently Sato et al developed the “Helping Behavior Test Equipment” 
to measure empathy in rodents which is based on the “rescue” of the 
endangered partner (15). This test protocol consists of two phases; door-
opening session and control test. Helper rat learns to open the door 
between pool area and ground area during door-opening session. This 
training session continues for 12 days. This follows a three-day period 
for the control test session. Each experimental session continues for 300 
seconds. Before all test period, the rats participating in the experiment 
should be separated as two rats per cage for 14 days to acclimate cage 
mate. If the cage has more than two rats, they learn to open the door faster 
than one. We slightly modified “Helping Behavior Test Equipment” in our 
experiments by doubling the depth of the rescue (45 mm vs 90 mm) (Fig. 1).

Figure 1. Modified helping behavior test equipment (15, 58).   

Lu et al. used an experimental model where rats were assigned to different 
groups in pairs; pain was induced in one of each while the cage-mate was 
allowed to witness and interact whose behavior was analyzed (59).

VARIOUS AREAS FOR TRANSLATIONAL 
CONSIDERATION

Empathy and Stress
Stress is known to be associated with homeostatic imbalance and 
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activation of HPA in both humans and rodents. As a response to stress, 
hypothalamus secretes corticotropin releasing factor (CRF/CRH), 
which triggers a release of adrenocorticotropic hormone (ACTH) from 
the anterior pituitary gland; as a result, glucocorticoids are released 
by the adrenal cortex into the blood stream. A negative feedback 
system terminates this cascade by inhibiting CRF production from the 
hypothalamus. This is an acute response to stress and is considered 
crucial for homeostatic balance (60). It has been suggested that stress may 
cause retraction from social interactions, irritability and hostility which 
also could increase predisposition to antisocial behaviors (61). In a recent 
study involving male rats, three hours of immobilization has been found 
to reduce aggression among cage-mates, increase huddling and resource 
sharing, conversely as a more threatening stressor. Interestingly in the 
same experiment predator odor stress has disrupted this social bonding 
(62). Steinbeis et al. found stress-reactive cortisol levels had no effect on 
trust behavior, higher baseline cortisol was correlated with greater trust 
(63). In our recent study, low intensity stress improved empathic behavior 
whereas high intensity stress did not. Our group demonstrated that low 
intensity stress caused a surge in vasopressin levels in both prefrontal 
cortex and amygdalae; oxytocin was only found to be increased in the 
prefrontal cortex (58).

Another study suggested that stress caused false interpretation of faces 
with averted gaze direction as making eye contact more often than did 
controls, independent of the expressed emotion. These results suggest 
that a stress-induced raise in cortisol level increases the sense of being 
watched (64). Vinkers et al. found that stress was associated with 
reduced generosity (65). It was suggested that serotonin transporter 
polymorphism is associated with biological stress reactivity and with 
lower rates of helping others in humans (66, 67). Several human studies 
suggested a positive correlation between acute psychological stress and 
prosocial behavior (68–70).

In an interesting experiment involving both humans and mice 
demonstrated that blockade of glucocorticoid synthesis or receptors for 
adrenal stress hormones elicits the expression of emotional contagion 
in strangers of both species. Authors brought up an evolutionary 
perspective and speculated that emotional contagion is prevented 
by the stress of a social interaction with an unfamiliar member of the 
species, and which can be stimulated by blocking the endocrine stress 
response (71). Consistent with this results, another study demonstrated 
that familiarity reduced the stress response in mice and enabled the 
emotional contagion (57). However, results of one human study found 
that social exclusion was associated with a reduction in cortisol, and 
social inclusion with an increase in cortisol (72).

It appears that in a stressful situation, automatic response is enhanced 
and control mechanisms are suppressed (73). In a recent study, stress 
was found to effect bottom-up and top-down components of empathy 
in opposing ways. Whether stress is beneficial or harmful for social 
interaction and helping behavior, depends on the complexity of the 
social situation. When only automatic response is necessary, stress may 
enhance this automatic helping response, however when the social 
situation is more complex, empathy may be affected negatively (74). It has 
also been suggested that psychosocial stress has a conflicting impact on 
two separate subconcepts of empathy. As a response to stress, emotional 
empathy was enhanced while cognitive empathy did not differ in young 
healthy men (75). Patients with post-traumatic stress disorder are shown 
to have decreased emotional and cognitive empathic abilities (76).

It has been reported that stress may have a gender dependent impact 
on empathy. Tomova et al. (77) investigated the effect of stress on self-
other distinction which is thought to be important for perspective taking 
(higher form of empathy) in humans, and found opposing effects in the 

two genders; women showed increase in self-other distinction, while 
men showed decrease. Gonzalez et al. (78) found after psychosocial 
stress, empathy for pain was higher in both sexes but late event-related 
potentials in electroencephalography showed sex dependent changes.

Empathy and Pain
Pain has long been considered a common and fundamental concept in 
assessment of empathy in both mice and rats (14). In humans, bilateral 
anterior insula (AI), rostral anterior cingulate cortex (ACC), brainstem, and 
cerebellum were found to be commonly activated both subjects received 
pain themselves and also when their loved ones experienced pain. 
Wang et al. conducted a study in humans suggested that more cognitive 
attentional efforts are required to judge a stranger’s happiness than a 
friend’s happiness, yet the opposite was found to be true for judging pain 
of others (16, 79, 80). Mischkowski et al. conducted an experiment, which 
demonstrated that, a pain reliever; acetaminophen reduced empathic 
response in undergraduate students (81).

Gender Impact on Empathy
Evidence suggests that there are differences in empathic abilities 
between men and women and these differences have been found to 
be consistent across lifespan. Literature has consistently suggested that 
women have better empathic abilities than men (82). Women are faster 
in recognizing facial expression, emotional body language, more sensitive 
to baby voice, more experientially reactive to negative, but not positive, 
emotional pictures compared to men. Men, on the other hand, seem to 
show better skills in cognitive empathy while women performed better 
in emotional empathy (23, 83, 84). While women are more successful in 
recognizing angry and neutral body language, men have been found to 
better recognize the happy body language (85). In mice, females were 
shown to have greater sensitivity to other’s pain compared to males (86). 
In another mice study, female mice were found to be more likely than 
male mice to approach cage-mates who were restrained and in pain, 
compared to an unaffected cage-mate and females did not respond to 
unfamiliar mice in pain (87). In rats, increased level of activation in the 
lateral and central amygdala, prelimbic (PL) and infralimbic (IL) parts of 
the prefrontal cortex in the males who observed emotionally aroused 
others and such activation in these regions could not be shown in female 
observers (88). In a recent mice study, empathic fear response was found 
to be significantly different among different mice strains (89).

Empathy and the Intestinal Microbiota
The intestinal microbiota have been a focus of interest in recent years 
as it has potentially significant interactions with many hormones and 
peptides of great importance in several neuropsychiatric disorders. These 
include, but are not limited to, serotonin, dopamine, norepinephrine, 
gamma-amino butyric acid (GABA) and oxytocin. Interestingly, 
Lactobacillus reuteri, a member of microbiota, is known to induce 
oxytocin production (90, 91). Lactabacillus and Bifidobacterium are 
known to modulate stress response, whereas presence of Campylobacter 
jejuni and E. C. oli is linked with anxiety states/disorders (92–94). It has 
also been shown that gut permeability and microbiota composition are 
altered; Bacteriodetes and Firmicutes were decreased in patients with 
major depressive disorder (95, 96).

Recently Desbonnet et al. showed that antibiotic usage caused 
to significant decrease in oxytocin and vasopressin levels in mice 
hypothalamus (97). It was suggested that gut microbes interact to 
regulate these neuropeptides. In addition, the relation between gut 
microbiota and empathy has been shown in germ free mice, it is found 
that social interaction and social memory are impaired in germ-free 
mice (98). Feeding of Lactobacillus reuteri, a member of gut microbiota 
is cause to increase hypothalamic oxytocin levels (99). Another study has 
shown stress altered gut microbiota composition correlates positively 
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with oxytocin levels (100). It is suggested that vagal signaling mediate all 
of these alterations, interrupting the positive effects of Lactobacillus on 
host plasma and hypothalamic oxytocin (99).

Empathy and Animal Models of Psychiatric Disorders
Oxytocin is considered to be the most important hormone modulator in 
empathy and has been studied in several psychiatric disorders, including 
anxiety, depression, post-traumatic stress disorder (PTSD), autism, psychotic 
disorders, anti-social, narcissistic and borderline personality disorders.

In human studies, anxiety has been shown to enhance helping behavior 
and empathy (101). Gottschalk and Domschke suggested oxytocin 
as a biomarker in anxiety spectrum disorders (102). People with PSTD 
was consistently found to have decreased empathy (103, 104) and 
regions associated with empathy (amygdala, prefrontal cortex, nucleus 
accumbens and hippocampus) have been found to have altered activity in 
PTSD patients (105). Intranasal oxytocin was shown to improve empathy 
in PTSD patients (106). Ben-Ami Bartal et al. showed that administration 
of a benzodiazepine (midazolam) impaired helping behavior in rats (107). 
Benzodiazepines are known to downregulate oxytocin transmission, 
which is linked to empathy, and reducing anxiety is also linked to 
deactivating HPA axis and sympathetic system. (108). In another study, a 
chemosensory stimulus was found to initiate empathy related behavior 
by activating insula region of the brain (109).

Clinical depression is associated with decreased social awareness and 
reduced empathic abilities (110). One proposed mechanism is the 
impaired of HPA axis function and elevated blood cortisol which is 
associated with depression (111). It is also known that stress induced 
cortisol surge suppresses oxytocin secretion. Administration of oxytocin 
was also shown to decreased activity of HPA (112). Oxytocin levels were 
found to be decreased in depressed women, yet in men it was unchanged 
(113). Vasopressin, another peptide, has been associated with empathy 
and lack of vasopressin is also interestingly linked to depression in rodent 
studies (114, 115).

The plasma oxytocin hormone levels were found to be very low in autism 
(116). Oxytocin receptor gene polymorphism was found to be associated 
with autism spectrum disorders (117) and furthermore oxytocin was 
considered as a potential treatment avenue in autism. Interestingly, 
oxytocin improved repetitive behaviors (118) and social cognition in 
autism (119–121).

Schizophrenic patients have been found to have significant deficits 
in affective empathy (122). It has also been demonstrated that plasma 
oxytocin levels were found to be decreased in schizophrenic patients 
(123, 124). Dopamine hypothesis of psychosis is known and dopaminergic 
receptors exist on oxytocinergic neurons (125). Additionally, oxytocinergic 
receptors are found in mesocorticodopaminergic area (126, 127).

Anti-social personality disorder (sociopathy) has been most commonly 
associated with decreased empathic ability (128). This was partially 
explained by variability in brain morphometry as a factor for psychopaths’ 
impaired ability to recognize emotional face expressions (129). There 
has been some evidence linking down-regulated or impaired oxytocin 
system activity with increased aggression and chronic enhancement of 
brain oxytocin has been associated with anti-aggressive and pro-social 
exploratory behavior (130–132). In borderline personality disorder both 
emotional and cognitive empathy were shown to be reduced (133). It 
is shown that plasma oxytocin levels reduced in female borderline 
personality disorder patients (134). In another study, single dose 
intranasal oxytocin caused to normalize social behaviors via decreased 
amygdala hypersensitivity (135). Narcissistic personality disorder has also 
been strongly associated with lack of empathy, which is indeed one of its 
diagnostic criteria (136, 137).

DISCUSSION AND FUTURE CHALLENGES
There are many animal models for many psychiatric disorders which 
have significantly helped clinical researchers to understand the disease 
perspective of these problems. Empathy, in a broader sense, is a construct 
with promising translational utilization, which may have diagnostic and 
therapeutic implications for many psychiatric disorders. So a convincing 
laboratory proof of concept model is needed. It is our belief that concept 
of empathy is a particularly challenging area to define and research in the 
laboratory, and we would like to focus on several points to be discussed 
to help both bench and clinical researchers develop a successful 
translational pathway.

Empathy refers to an abstract ability has been defined in many 
different layers, among the most widely accepted is de Waal’s multi-
level conceptualization (1, 2), which considers emotional contagion 
as the central concept that is observed in all non-human animals and 
considered to have evolutionary continuity. No matter how we attempt 
to measure empathy, we will be limited by our definitions so it is of 
crucial importance to define a bench concept. Current rodent literature 
includes several different models and there are differences in methods 
and definitions. Consistency will be the key for future success of the 
translational animal models.

From a psychiatric point of view, it can be argued that most apparent 
societal burden of empathic impairment is antisocial behavior, 
which manifests in different forms in psychiatric practice. Having 
strong biological roots, antisocial personality disorder, also known as 
sociopathy, may also have the potential to serve as a prototype disease 
model for a primary empathic deficiency disorder, which can open up 
new avenues of intervention to build up prosocial helping behavior while 
decreasing criminal involvement and aggression. Oxytocin has been in 
the center of focus in pharmacological attempts to improve empathic 
abilities with conflicting results. Transcranial magnetic stimulation has 
been also used as a non-pharmacological modality with limited success 
(138). Oxytocin is affected many different conditions such as stress, 
drugs, metabolic changes, microbiota changes, psychiatric disorders. 
Also oxytocin is modulating different physiological processes, including 
immune-related processes (99).

In this review, we believe we have reported enough evidence for the 
consideration of empathy as an independent variable in experimental 
designs, which is obviously disregarded in the mainstream bench 
models. One would wonder whether this may compromise the 
experimental processes by mechanisms as simple as harboring of 
rodents in conditions permissive of social contagion. Not to mention 
that gender differences in empathy may be further complicating the 
matter by which gender of the experimental animal to be used in the 
behavioral test. Particularly vulnerable to empathic component are the 
experimental stress models.

To conclude, we will emphasize the future importance of consistency in 
modeling proof of concept; efforts to create a multidisciplinary group 
which would include both bench scientists and clinicians with expertise 
in neuropsychiatry; and the consideration of empathy as an individual 
element in animal experimental designs.
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