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The aetiology of Parkinson’s disease (PD) is a highly debated topic. Despite the progressive increase in the number of patients
diagnosed with PD over the last couple of decades, the causes remain largely unknown. This report is aimed at highlighting the
main features of the microbial communities which have been termed “the second brain” that may be a major participant in the
etiopathophysiology of PD. It is possible that dysbiosis could be caused by an overactivity of proinflammatory cytokines which
act on the gastrointestinal tract as well as infections. The majority of patients who are diagnosed with PD display
gastrointestinal symptoms as one of the earliest features. In addition, an unbalanced cycle of oxidative stress caused by
dysbacteriosis may have the effect of gradually promoting PD’s specific phenotype. Thus, it seems that bacteria possess the
ability to manipulate the brain by initiating specific responses, defining their capability to configure the human body, with
oxidative stress playing a pivotal role in preventing infections but also in activating related signalling pathways.

1. Introducing Some Basic Aspects about (Gut)
Microflora: The Unseen
Companion—Functions and
Future Perspectives

The Human Genome Project (HGP) identified that the
human DNA consists of 3 billion base pairs, respectively,
20,500 genes and nearly double the number of coding pro-
teins, and 1.4 million single-nucleotide polymorphisms
(SNPs) when it was officially completed in 2003 [1]. The
emergence of the Human Microbiome Project (HMP) in

2008 stimulated a significant increase in further research in
commensal bacteria, culminating in an increase in the num-
ber of studies regarding the relationships between intestinal
flora and the etiopathophysiology of neurodegenerative and
psychiatric disorders [2].

It has been well established that all microorganisms that
populate our body are grouped into four major ecosystems.
The greatest number of associations is being gathered at the
level of the digestive tract, with a density of 10" This is
approximately ten times more entities than the total number
of cells involved in the structure of an individual. The human
microbiome possesses over one hundred and fifty times
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more bacterial genes and a biomass production weighing
equivalent to that of the human brain. The average total
number of microbes populating a reference male with a nor-
mal constitution is close to forty trillion. Increased numbers
of pluricellular organisms could be viewed as ideal amphi-
trions, alongside our tenants (large collections of archaea,
bacteria, fungi, and viruses), ensuring an invisible endo-
and exoskeleton thanks to this symbiotic bond [3-6].

The human body harbours between five hundred and
one thousand species which are subsequently divided into
three enterotypes: Ruminococcus, Bacteroides, and Prevo-
tella. Next-generation sequencing protocols are widely
used to both identify and to characterise these communi-
ties [7-9]. The gastrointestinal tract (GI) hosts trillions
of microbes, with each community exerting beneficial or
harmful effects upon the normal development of the central
nervous system (CNS). However, dysbiosis is associated with
an increased susceptibility to various diseases. The aforemen-
tioned echoes the “repair your gut and you will repair your
brain” [10-12].

Without a shadow of doubt, it is clear that we have
evolved in tandem with this microworld throughout the mil-
lennia, with the microflora becoming an integrated part of any
human being. Joshua Lederberg coined the term “micro-
biome” in order to describe the collection of commensal, sym-
biotic, and pathogenic entities. Antonie van Leeuwenhoek is
the first person who analysed the major differences at the fae-
cal and oral level in the 1680s [13]. They saw the light of day
about four billion years ago, long before the appearance of
the first man and oxygenation of the earth [14, 15].

Gastrointestinal (GI) microbiota fulfil crucial functions
with the aim of maintaining metabolic homeostasis such as
direct inhibition of pathogen overgrowth, development of
enteric protection, biosynthesis of vitamins, energy modula-
tion, and immunological and xenobiotic effects. In addition,
they aid drug metabolism by producing essential small bioac-
tive molecules like short-chain fatty acids (SCFAs) (butyrate,
acetate, and propionate), bile acids, choline, amino acids and
phenolic derivatives (AAA), polysaccharide A (PSA), indole,
and nicotinic, aminoethylsulfonic, or retinoic acids, precur-
sors involved in mediating interactions with the human body
by keeping the integrity of neurohormonal axes [16-19].

Unfortunately, the relationship between GI flora and the
brain is insufficiently understood. The influence that the
gut flora exerts on the local organs in the immediate vicin-
ity, as well as on those located distally, is taking place
through a variety of routes, for example, immune, enteric,
and neural pathways. Thus, the gut-brain axis (GBA)
could be defined as a dense network formed by cells from
the enteric, peripheral, and central nervous system in associ-
ation with the hypothalamic-pituitary-adrenal (HPA) axis
(Figure 1) [20-22].

Historically, there has been a tendency to believe that
each one of us possesses the same gut microflora, a theory
that has been proven to be only partially true. There are inter-
individual and intergenerational variations in the micro-
biome which is influenced by the changing environment,
nutritional factors, and genetic contributions. The literature
suggests numerous clues that sustain this hypothesis; for
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example, not even twins harbour the same composition of
microflora [23]. The similarities are even less prevalent
amongst siblings, but nonetheless, in very small percentages,
there are similarities in flora composition even in unrelated
individuals [24, 25].

One of the most important factors in shaping the normal
neonatal enteric colonization of microflora is the delivery
method. Although the gut of an unborn baby is theoretically
sterile in the mother’s womb, the development of the neona-
tal microbiota is initiated by the neonate transversing the
birth channel, where there is a subsequent exposure to a large
amount of maternal microbial communities which shapes
the microbiota of the infant. By analysing different cohorts
via computational research, a set of specific bacterial genes
were classified in limited habitats (e.g., placenta), evidence
that is sustained after the analysis of meconium samples
where it was revealed that colonization may be initiated
in utero [26-29].

On the other hand, a recent publication contradicts these
findings. The study design was aimed at determining whether
preeclampsia, small for gestational age (SGA), and spontane-
ous preterm birth (PTB) were correlated with the existence of
bacterial signatures in the placenta. Authors concluded that
the placenta is devoid of such populations but nevertheless
provides favourable conditions for pathogenic species such
as Streptococcus agalactiae; this species is prevalent in almost
5% of the total samples collected before the beginning of
procedures [30].

There are a large amount of species facultatively anaer-
obic (enterobacteria and enterococci) that are found in the
GI of children, with their whole existence depending on
the dietary supply, thus creating propitious conditions for
the evolution of anaerobic microbes. However, the child-
hood microbiota may also be influenced by other environ-
mental factors, such as exposure to healthcare facilities
and other children culminating in complex and dynamic
microbiota [31, 32].

In this context, natural birth is supported in order to
maintain the balance between beneficial and harmful micro-
organisms. However, in the last few decades, the number of
caesarean sections (C-section) has increased dramatically
which is worrying. Women are not adequately informed
about the risk to the baby through a C-section delivery
method, possibly predisposing the infant to a series of epide-
miological illnesses. Obesity, allergies, anaphylactic reactions
to asthma, and autoimmune diseases are a few examples of
conditions which may be influenced by the commensal
bacteria and thus the delivery method. It is evident that
C-section indirectly promotes various diseases through
the effect of the neonatal microbiota [33, 34].

The delivery mode creates a disbalance amongst gram-
positive and gram-negative species, which can be beneficial
to certain species such as Lactobacillus, Bifidobacterium,
Eubacterium, and Bacteroides, to the detriment of those
pathogens like Clostridium, Campylobacter, Staphylococcus,
Shigella, Shiga toxin-producing Escherichia coli, Acinetobac-
ter, and Escherichia coli [35-38]. Breastfeeding has the
potential to reestablish this balance, alongside conventional
alternatives, for example, syn-, pre-, and probiotics, which
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FIGURE 1: Principal pathways in the gut-brain circuit. Deregulation of microbial associations will induce deficient signals by initiating specific
responses and subsequently inhibiting their whole functionality. Probiotics are usually used to reestablish these discrepancies (adapted

from [20]).

have proven to be powerful tools with extraordinary poten-
tial in restoring metabolic homeostasis [39].

Continuing on with this concept, there are numerous
other factors which have been shown to promote the devel-
opment of antibiotic resistance in certain cases. This is con-
ducted by activating the human resistome which has only
been recently discovered. Some examples of potential factors
that can promote antibiotic resistance include the maternal
diet, overall neonatal health, age, environmental factors,
and prolonged exposure to antibiotics [40-42].

In a recent study, researchers discovered that the resis-
tome (gigantic tank of Antibiotic Resistance Determinants
(ARDs)) of infants born prematurely is already preformed
because of the antibiotics used in order to prevent different
infections, with gene-drug-type studies becoming possible
through Mobile-CRISPRi. By using dedicated techniques,
they revealed distinctive patterns and an emerging multidrug
resistance of Enterobacteriaceae during and after hospitaliza-
tion [43, 44]. Ciprofloxacin, an antibiotic usually adminis-
tered to treat bacterial infections, has a long-term effect
upon bacterial diversity even after half a year since after the
end of the treatment [45].

2. The Relevance of Gut Microflora in
Parkinson’s
Disease Pathogenesis/Pathophysiology

Parkinson’s disease (PD) is the second most common neuro-
degenerative, progressive, and debilitating disorder of the
parkinsonism spectrum, clinically manifesting through
symptoms of bradykinesia, stiffness, trembling, and postural
instability. It is characterised by a perpetual loss of dopami-
nergic neurons from the substantia nigra pars compacta
(SNpc) and of cholinergic neurons from the posterior motor
nucleus of the vagus, along with a continuous accumulation
and aggregation of a-synuclein in the central nervous system
(CNS) [46].

There is no typical age of onset of this disorder; hence, it
was thought to be the result of exposure to various exogenous
factors, but genetics has proven to also play an important role
in its pathogenesis. Distinct genes and loci have been identi-
fied; however, the aetiology of this disorder remains largely
uncertain [47, 48].

The incidence has increased exponentially since the
nineties. In 2016, more than six million people were diagnosed
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FIGURE 2: Schematic representation of the cycle in which the delivery mode and daily habits could gradually create dysbiosis and cause

chronic conditions.

with PD, and it became the second most common
neurodegenerative disorder worldwide [49].

A relationship amongst enteric neurons and gut micro-
flora has been reported due to new discoveries around toll-
like receptors, proteins with a key role in the innate immune
system [50, 51], and their modulation potential upon the
HPA axis [52], followed by a further production of chemicals
involved in the brain’s optimal functioning [53]. There is new
evidence concerning the importance of toll-like receptor 4 in
mediating neuroinflammatory states, resulting in the disrup-
tion of intestinal flora, while rotenone KO-treated mice had a
reduction of specific symptomatology [54]. In rotenone
models, chronic stress induces a deregulation of HPA which
may culminate in dysbacteriosis, characterised by a signifi-
cant reduction in the number of species belonging to the
genus Bifidobacterium, to the detriment of Escherichia coli.
Prolonged exposure leads to an increased intestinal per-
meability which creates a “leaky gut,” dysosmia, and colitis
by inducing specific neuroanatomical and neurochemical
changes [55-59].

An imbalance in the host’s microbiota (dysbacteriosis)
can manifest in the development of low-grade inflamma-
tion, cellular degeneration, and an imbalance of cellular
energy followed by an increasing oxidative stress (OS) state
[60]. An overactivity of clusters of differentiation 4, 1, and
17 [61] will inhibit the responses of peripheral immune
cells [62] which will disturb the integrity of the blood-
brain barrier (BBB) and its role against bacterial lipopoly-

saccharides (LPS) and other toxins [63, 64]. Dysbiosis can
cause numerous disorders, and one of these conditions is
PD (Figure 2) [65].

The importance of the influence of microflora on the BBB
is demonstrated by the species Enterococcus faecalis and
Eggerthella lenta, both of which have the ability to metabolise
levodopa, which is the principal drug that is administered
to people who have PD. It was shown that L-dopa did not
cross the BBB in order to release dopamine, resulting in a
much shorter route because of these microorganisms [66].
According to the literature, microbial tyrosine decarboxylase
(TDC) is a bacterial amino acid which has the ability to
restrict the release of dopamine thus inhibiting the effects
of levodopa [67].

According to the Food and Agriculture Organization of
the United Nations, which is in agreement with the guide-
lines established by the World Health Organization, probio-
tics can be defined as “living microorganisms in adequate
doses ensuring a shield to the host by improving the general
state of health.” Unlike probiotics, prebiotics are food supple-
ments recommended for stimulation of the growth and/or
activity of those that are beneficial [68]. For example,
in vitro observations led to the conclusion that Bacillus sp.
JP] can produce levodopa from 4-hydroxyphenylalanine
which is subsequently converted to dopamine [69].

In addition, mixtures of lactic bacteria obtained from
fermented products restore the integrity of the microbiota
by enhancing the gut barrier following an exposure to



Oxidative Medicine and Cellular Longevity

antibiotics in certain intervals [70]. There are novel tech-
niques which facilitate the manipulation of the gut microflora
by suppressing pathogens in the epithelium and intestines, in
order to regulate the activity of immune cells [71]. Finally,
synbiotics are a mixture of the two categories mentioned ear-
lier, with the main aim of increasing the duration of life and
settlement of those already existing in the GI [72].

Faecal Microbiota Transplantation (FMT) is a treatment
that facilitates the reconstruction of the gut flora whereby
faecal matter from a healthy donor is donated to a patient
thereby changing the underlying microflora. This treatment
is used in the treatment of resistant Clostridium difficile infec-
tions. Microbial Transfer Therapy (MTT) is a similar proto-
col to FMT, both of them demonstrating their potentials in
treating metabolic deficiencies [73, 74].

The differences in the clinical manifestation of PD mean
that the management needs to be individualised. For exam-
ple, chronic idiopathic constipation (CIC) is encountered in
PD subjects and can be associated with anorectal and colonic
dysmotility [75]. FMT intervention caused motor impair-
ment in mice and humans, promoting a reduction in Lach-
nospiraceae and Ruminococcaceae strains [76]. In progeroid
mice, however, FTM reduced both morbidity and mortality.
These observations can also be applied in human patients,
where a reduction in Proteobacteria in parallel with increased
Verrucomicrobia concentrations was documented [77].

The discovery of bacteriophages with more recent clus-
tered regularly interspaced short palindromic repeats
(CRISPR) and the associated nuclease 9 has led to an array
of possibilities to manipulate the human microbiome
[78, 79]. This technique started from the discovery of foreign
sequences of DNA from viruses that were incorporated into
bacteria. Those sequences confer immunity against future
interactions with viruses and have shown extraordinary
potential in manipulating the human genome. This tech-
nique is used to influence the genome of those resistant to
antibiotics [80] or metabolise various drugs with the aim of
integrating this system into conventional products.

Surveys published over the years support the concept of
the gut-brain network and vice versa; some of them regarding
a better understanding of influence exerted by the micro-
biome on PD patients are summarised in Table 1.

3. Gut Infections as a Promoter in
Parkinson’s Disease

The implications of Helicobacter pylori in dyspepsia and gas-
tritis are well documented. However, in PD, it appears to be
associated with an increased severity of motor functions
[91], by inhibiting and controlling dopamine levels in the
brain [92]. Antimicrobial treatments against H. pylori
improved absorption of levodopa [93]. However, no clear
conclusions can be drawn regarding the implications of
H. pylori in PD because there has been a lack of clinical trials.
It is certain that the presence of H. pylori in the GI tract could
interfere in different PD treatment regimens by initiating
autoimmune or inflammatory reactions [94-96].

There are increased populations of intestinal bacteria in
patients with PD with estimates alluding to an overpopula-

tion of greater than 50% when compared to the intestinal
microbiota populations of patients without PD [97, 98].
There are frequent treatment failures of patients treated for
PD, with a recent randomised trial suggesting that possible
eradication of surplus will not affect the pharmacokinetics
of L-dopa [99]. Another study analysed the role of infection
as a cause for PD by analysing the serum antibody titre
through ELISA. They analysed the antibody titres to com-
mon pathogens including cytomegalovirus, herpes simplex
virus type 1, Helicobacter pylori, Epstein-Barr virus, Borrelia
burgdorferi, and Chlamydophila pneumoniae. They conclude
that the bacterial and viral burden was independently associ-
ated with PD [100].

Matheoud et al. [101] provided a pathophysiological
model following an infection with Citrobacter rodentium.
PINKI1 is a repressor of the immune system and as a result
is engaged in mitochondrial antigen presentation and auto-
immune mechanisms that elicit the establishment of cyto-
toxic T cells in the brain. Any alteration of PINK1 can
induce tumorigenesis, while parkin, encoded by the PARK2
gene, is usually involved in early-onset parkinsonism.

In a 16S rRNA NGS and quantitative polymerase
chain reaction analysis, Influenza A virus induced insignif-
icant changes after the infection at the level of the tracheo-
bronchial tree with a minor reactivity of the immune
system, but in the intestines, there was a depletion of the
bacterial composition with an increase in the host defence
peptides (HDPs) in Paneth cells and a tear of the mucous
membrane [102].

In 2005, Nerius et al. [103] initiated the largest prospec-
tive German study (n = 228,485 individuals with an average
age of 50 or older), with the main objective of determining
the prevalence of PD in patients who have previously suffered
from common gastrointestinal infections (GIIs). The study
identified that 77.9% did not suffer from any GI infections,
while 22.1% reported previous infections. The results sug-
gested that the predisposition to PD is significantly higher
(p<0.001) in people who have suffered from GIIs when
compared to the control group.

The gradual dysfunction of the enteric nervous system
(ENS) amplifies the probability of small intestinal bacte-
rial overgrowth (SIBO). There are extensive cross-
sectional studies which highlight an increased prevalence
of SIBO in PD patients compared with the control groups
[104]. This is supported by a study in which the authors
revealed that SIBO is a condition that could be treated
with an appropriate treatment regime, such as rifaximin
200mg 3 times per day for 1 week, which improves not
only gastrointestinal symptoms but also motor fluctua-
tions [105].

In addition, the clinical features of irritable bowel syn-
drome (IBS), which include bloating and flatulence, are also
common symptoms in PD patients, while constipation or
rectal tenesmus does not define the clinical panel of IBS but
is however present in patients with PD [104]. However, a
recent study revealed an unusual case in which early PD
was treated by using antibiotics and colchicine. Moreover,
these drugs improved constipation and diminished the
PD-like symptoms [105].
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4. Gastrointestinal Deficiencies? The
Links between the Gut Communities’
Structure and Parkinson’s Disease

Aside from motor dysfunctionalities, patients with PD also
manifest metabolic disturbances with half of them suffering
from constipation prior to the onset of other clinical features.
This suggests a possible link between early gastrointestinal
problems and later evolving stage of PD [106]. Over the last
half decade, a limited number of studies were conducted,
with the aim of exploring the impact of the gastrointesti-
nal microbiota in the prodromal and early stages of PD
[107, 108]. Since gastrointestinal deficiencies like constipa-
tion significantly contribute toward the morbidity in PD, a
recent clinical study has identified that regular intakes of
Lactobacillus casei Shirota could diminish such disturbances
and bowel movement in PD [109]. Vitamin D3 prevented
deterioration in the Hoehn and Yahr stage in PD patients,
and vitamin D exerted beneficial activity both in vivo and
in vitro against 6-hydroxydopamine [110, 111]. Another
study identified that following a twenty-four-week adminis-
tration of riboflavin, there was a significant increase in the
motor capacity in PD patients by normalising vitamin B6 sta-
tus and after all red meat was eliminated. Symptomatology
did not reappear even if the treatment was interrupted for
several days; this suggests that low levels of vitamin B6 may
promote motor impairment [112].

Variations in the patient’s inclusion/exclusion, statistical,
and molecular criteria and bioinformatic methodologies
amongst the studies are presented in Table 1. The majority
of the studies focused on the bacterial 16S ribosomal DNA
amplicon sequence, in particular next-generation sequencing
(NGS) protocols at the species, genus, and phylum level, 1
quantitative polymerase chain reaction using preselected taxa
and 1 metagenomic shotgun sequencing. The cohorts had
varied sizes, with the smallest group containing a total of 24
individuals and the largest one having 197 individuals. In
each one, particularities were noted, both in PD and in
healthy controls, and together, the overall characteristics in
faecal gastrointestinal flora composition were distinct. It is
not certain whether or not these changes are the cause or
result of GI dysfunctionality.

Heintz-Buschart et al. [82] propose that the gastrointesti-
nal microbiome (GM) alteration most likely precedes the
development of motor symptoms in PD. The genus Ralstonia
was responsible for proinflammatory reactions in the mucosa
compared to the controls [76]. In some cases, it was observed
that there was an alteration of several metabolic pathways
(lipopolysaccharide and ubiquinone and bacterial emission
and xenobiotic metabolism or tryptophan) [76, 83, 90]. In
addition, low levels of faecal SCFAs were reported in PD
patients by a theoretically deteriorating enteric nervous
system [88].

Barichella et al. [84] evaluate atypical parkinsonism,
more specifically, the composition of the gut in multiple
system atrophy (MSA) and Steele-Richardson-Olszewski
syndrome, in which some bacterial taxa have undergone
changes similar to PD, while drug-naive persons displayed
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low abundance of Lachnospiraceae, almost 43% reduction
identified in contrast to Bifidobacterium [81].

The gram-negative Prevotella population was diminished
to almost 78% compared to controls with 38.9% specificity in
PD [85]. Dysbacteriosis that occurred in Chinese patients
promoted features such as disease duration, levodopa equiv-
alent doses (LED), and cognitive impairment, while in the
German cohort, alpha and beta analysis highlighted a similar
pattern with the exception of the Barnesiella genus and
Enterococcaceae family who were present in abundance [86,
87]. Furthermore, cellulose-degrading bacterial concentra-
tion is lower, whereas putative pathobionts are dramatically
increased [89].

5. The Relationship between Oxidative Stress
and Gut Microbiota in the Context of PD

One of the most defining capabilities of nicotinamide ade-
nine dinucleotide (NAD) as a ubiquitous metabolite is its
involvement in the production of energy. It therefore follows
that mitochondrial dysfunction was associated with various
disorders, including PD. Cumulative learnings highlight the
NAD role in processes like neuroprotection as well as playing
a role in maintaining the integrity of DNA by activating spe-
cific mechanisms against oxidative stress. NAD also contrib-
utes toward the synthesis of adenosine triphosphate (ATP),
calcium signalling, gene expression, and apoptosis. Three
NAD-consuming enzymes, poly (ADP-ribose) polymerase
(PARPs), sirtuins (SIRT), and CD38/157, secure the integrity
of DNA [113, 114]. In vivo imaging data indicates that aging
is the main factor involved in the build-up of insults, implic-
itly resulting in diseases such as diabetes and cardiovascular,
metabolic, and neurological problems, or may result from a
depletion or restriction of vitamin B3 [115].

In contrast, NAD usually participates in the processes
that contribute toward energy homeostasis, generally associ-
ated with the subsequent production of reactive oxygen spe-
cies (ROS). Its phosphorylated derivative NADP, a result of
NAD kinase (NADK), plays a vital role in maintaining anti-
oxidant defences, but in some tissues, it can serve as a cofac-
tor in the reactions that generate free radicals [116-118].
There are pros and cons to the importance of oxidative stress
in processes like apoptosis of dopaminergic neurons and in
the accumulation of insults in PD [119, 120].

Wistar male rats were used in Y-maze and shuttle box
tasks. This is a procedure that is used to determine the neu-
rotoxic effect of 6-hydroxydopamine (6-OHDA) in experi-
mental rodents in which the ventral tegmental area (VTA)
or SN is targeted using a defined apparatus and protocol.
Modifications were observed in both procedures in VTA
and SN, with 6-OHDA affecting their cognitive sphere for
a short duration of time, in parallel with a depletion of
SOD and GPx; this approach further supports a link amid
OS and PD [121]. Moreover, it was examined whether OS
in the hippocampus has any implications upon memory
by injecting two different unilateral doses of LPS (memory
impairment action) into the SN of adult male Wistar rats.
Rodents were examined in a pergolide-induced rotational
behaviour test to determine the amount of damage inflicted



Oxidative Medicine and Cellular Longevity

upon nigrostriatal dopaminergic neurons. In the hippocam-
pus of LPS-treated rats, levels of malondialdehyde were sig-
nificantly higher compared with those in controls which
were measured in Y-maze (within was noted correlations
between behavioural deficiencies as indexes for OS) and
radial arm maze tasks [122]. In a quite similar manner,
all of the aforementioned compounds and tests were com-
bined into one study, with behavioural deficiencies being
more pronounced only in LPS- and LPS+6-OHDA-treated
rats [123].

Even though our cells are equipped with mechanisms
which counteract the accumulation of insults, the fact that
we are strictly aerobic organisms can have severe repercus-
sions on the state of health and the reduction of molecular
oxygen to O, and H,O during the cellular respiration process
that leads to the synthesis of adenosine triphosphate (ATP).
This promotes the production of free radicals, with 20% of
the total oxygen supply consumed by the brain being con-
verted into ROS. These reactive species generated by nicotin-
amide adenine dinucleotide phosphate oxidase (NOX) and
nitric oxide synthase (NOS) perform functions like resistance
against infections and the activation of various signalling
pathways [124, 125].

NADPH is in excess compared to NADP whose ratio
is much lower than 1; in this context, apart from the
NAD/NADH ratio, cells maintain two opposite redox pairs
with NADP/NADPH in a continuous reductive state, and
this redox stability is compatible with the NADPH role in
biosynthesis and detoxification with oxygen. NADPH is a
key reducing substrate for transforming oxidised glutathione
into reduced glutathione as a protective element against tox-
icity of ROS. An increased ratio of NADH/NAD is associated
with a petulant production of reactive oxygen species and the
inhibition of a-ketoglutarate dehydrogenase due to a mito-
chondrial dysfunction and the inability of antioxidant
enzymes such as superoxide dismutase (SOD) and glutathi-
one peroxidase (GPx) to maintain balance [126, 127].

Besides ROS, cumulative surveys highlight the impor-
tance of reactive nitrogen species (RNS), entities generated
as a result of interactions between superoxide (O,") and nitric
oxide (NO), resulting in large amounts of peroxynitrite. NO,
produced by NOS, commonly exists under three isoforms,
known as endothelial NOS (eNOS), neuronal NOS (nNOS),
and inducible NOS (iNOS), which can be found in glial cells
[128-131]. Peroxynitrite has the ability to induce DNA frag-
mentation and lipid peroxidation because of its oxidative
structure and even dose-dependent impairment indepen-
dently of dopamine normal cycle and death [129, 130]. In situ
hybridisation and immunohistochemistry of postmortem
brain tissue revealed high expression of iNOS and nNOS in
PD patients which further highlights the role of NO. In the
substantia nigra, the gliosis is linked to an upregulation of
the iNOS, while it is linked to the inhibition of nNOS against
cytotoxicity of MPTP (neurotoxin). Neuronal death still
remains an enigma, but with the current evidence, it can be
concluded that oxidative stress and mitochondrial dysfunc-
tions are interconnected, especially at the level of respiratory
chain, highlighted by a petulant production of reactive oxy-
gen species which leads finally to apoptosis in PD [132, 133].

Dopamine (DA) (excitatory and inhibitory role of synap-
tic transmission) as a construct produced from DA neurons
can in turn be a source of OS due to its unstable nature selec-
tivity for SNpc (substantia nigra pars compacta) which
undergoes self-oxidation in order to form dopamine qui-
nones and free radicals, reactions catalysed by oxygen,
enzymes, or metals [134, 135]. Interestingly, with an exces-
sive amount of cytosolic DA outside of the synaptic vesicles,
this neurotransmitter is easily metabolised by monoamine
oxidase (MAO), a participant in the regulation of DA levels
by monoamine oxidase A (MAO-A), localised in catechol-
aminergic neurons [136].

Alternatively, in degeneration that occurs in PD or aging,
monoamine oxidase B (MAO-B) becomes the predominant
enzyme that metabolises DA and can be found in glial cells
and then taken up by astrocytes [137]. In transgenic mice,
the wilful induction of this enzyme in astrocytes had as result
a selective and progressive loss of nigral dopaminergic neu-
rons [138]. It has been shown that DA quinones have the
ability to shape proteins which subsequently may be involved
in PD pathophysiology, for example, a-synuclein, parkin,
protein deglycase DJ-1, and ubiquitin carboxy-terminal
hydrolase L1, in a-synuclein DA quinone modifying its
monomer by promoting the conversion to a cytotoxic proto-
fibril form [139]. These quinones can be oxidised into amino-
chrome, whose redox cycle capacity ultimately causes the
depletion of NADPH and the generation of superoxide. This
is subsequently transformed into neuromelanin (brain pig-
ment that might play a role in neurodegeneration), occurring
within the SNpc [140, 141]. Taking into account the cir-
cuit of PD and that the dorsal motor nucleus of the vagus
nerve (DMnX) is the primary hive cluster to a-synuclein,
in vivo models provide additional clues regarding the partic-
ipation of oxidative stress into the spreading of a “mutated”
a-synuclein within and outside the CNS by promoting cell
and protein interrelations. They show that cholinergic neu-
rons are very sensitive to the accumulation of reactive oxy-
gen species (ROS) [142]. Accumulation of a-synuclein,
encoded by the SNCA gene, is also a risk factor for PD, con-
taining inclusions in the enteric nervous system and poste-
rior motor nucleus of the vagus [143, 144], determining
overinflammatory reactions, intestinal permeability, and
oxidative stress [145, 146].

Following the analysis of 117 tissue samples and 161 from
controls, biopsies revealed an accumulation of a-synuclein at
the level of the various oesophageal tunics and ganglia, with
implications of this protein usually involved in neurotrans-
mitter release being much more complex [147, 148]. Also,
the 465-residue E3 ubiquitin ligase parkin is covalently mod-
ified by dopamine becoming insoluble, leading to ubiquitin
E2 ligase inactivation, in the SN, with catechol-“mutated”
parkin being observed in patients with PD, but not in other
regions of the brain [149].

The modification of ubiquitin carboxy-terminal hydro-
lase L1 (UCH-L1) and protein deglycase DJ-1 by dopamine
quinones was observed in dopaminergic cells, but also in
mitochondria, and because of the cysteine residue they pos-
sess, quinones are responsible for the inactivation of these
enzymes [150]. In a transgenic murine model ((Thy-1)-
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h[A30P]-a-synuclein) with SOD2 haplodeficiency, at 1 year
and 4 months, exhibiting significant features of synucleino-
pathy compared full SOD2 control, the results indicate that
an elevated level of OS could mediate the progression of PD
[142]. Kim et al. [151] tested Braak’s theory that a-syn could
spread into the brain from the gut via the vagus nerve. They
injected preformed a-syn fibrils in a novel gut-to-brain
mouse model and found that a-syn is dispersed first into
the posterior motor nucleus of the vagus and then in caudal
portions of the rhombencephalon. Furthermore, specific
symptoms were present temporarily, but truncal vagotomy
and deficiency of a-syn prevented its further spreading.

In the model gut bacterium Enterococcus durans (MTCC
3031), oxidative stress induced by C,H,(CO),C,H(CH;) and
H,O, deregulates the redox ratio (55% for menadione and
28% for H,0,) by decreasing folate synthesis of these gram-
positive bacteria, known to play an important role against
colorectal cancer [152]. By measuring the amount of hydro-
gen production for both gram-negative and gram-positive
bacteria, it is speculated that the bacteria participate in the
progression of PD [153].

Pathogen-associated molecular patterns (PAMPs) are
conserved motifs that activate pattern recognition receptors
(PRRs) found on the surface of diverse pathogens and induce
ROS. Lipopolysaccharides (LPS) produced by bacteria are
usually recognised by these PRRs which generate down-
stream signals and activate the NF-«B pathway and induce
inflammatory responses [154]. In the case of commensal
bacteria, the lipopolysaccharides produce and release for-
myl peptides which are recognised by formyl peptide
receptors (FPRs), a class that belongs to the G protein-
coupled receptors; many signalling cascades utilise these
receptors for converting a large variety of external stimuli
(agonist neurotransmitters, ions, and hormones) into intra-
cellular responses, perceiving and stimulating ROS produc-
tion [155]. Due to the fact that our intestines house distinct
cell types by initiating specific responses, ROS produced by
mucosa-resident cells or by recruiting innate immune cells
are crucial for an optimal antimicrobial activity. An unbal-
anced ROS synthesis through activating certain gene variants
and upregulation of oxidases or of a mitochondrial dysfunc-
tion is associated with Crohn’s disease or ulcerative colitis. In
this way, the abnormal profiles of intestinal flora may lead to
inflammation of the intestines often seen in people with
inflammatory bowel disease (IBD) [156, 157].

6. Conclusions

It can be concluded that there are numerous factors (antibi-
otics, diet, birth mode, or stress) which gradually promote
the onset of enteric dysbacteriosis which may trigger disor-
ders of the CNS. There are relatively few studies that
highlight the relationship between intestinal flora and PD;
researchers argue that these limitations will be overcome
due to the fact that the human microbiome is currently the
main barrier to the emergence of personalised medicine. Oxi-
dative stress is an integrative component to the function of all
organisms, regardless of the current status (homeostasis or
disease). This paper summarised most of the existing evi-
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dence in the literature, and it can be concluded that the wider
implications of the human microbiome are complex and
requires further research to improve the current understand-
ing of the mechanisms underlying neurodegenerative disor-
ders like Parkinson’s disease.
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