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Abstract

In this review, we provide general considerations for the planning and conduct of 

pharmacoepidemiological studies of associations between drug use and cancer development. We 

address data sources, study design, assessment of drug exposure, ascertainment of cancer 

outcomes, confounder adjustment, and future perspectives.

Aspects of data sources include assessment of complete history of drug use and data on dose and 

duration of drug use, allowing estimates of cumulative exposure. Outcome data from formal 

cancer registries are preferable, but cancer data from other sources, e.g., patient or pathology 

registries, medical records, or claims are also suitable. The two principal designs for observational 

studies evaluating drug-cancer associations are the cohort and case-control designs. A key 

challenge in studies of drug-cancer associations is the exposure assessment due to the typically 

long period of cancer development. We present methods to examine early and late effects of drug 

use on cancer development and discuss the need for employing ‘lag-time’ in order to avoid reverse 

causation. We emphasize that a new user study design should always be considered. We also 

underline the need for ‘dose-response’ analyses, as drug-cancer associations are likely to be dose-

dependent. Generally, studies of drug-cancer associations should explore risk of site-specific 
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cancer, rather than cancer overall. Additional differentiation may also be crucial for organ-specific 

cancer with various distinct histological subtypes (e.g., lung or ovary cancer). We also highlight 

the influence of confounding factors and discuss various methods to address confounding, while 

emphasizing that the choices of methods depend on the design and specific objectives of the 

individual study. In some studies, use of active comparator(s) may be preferable.

Pharmacoepidemiological studies of drug-cancer associations are expected to evolve considerably 

in the coming years, due to the increasing availability of long-term data on drug exposures and 

cancer outcomes, the increasing conduct of multinational studies, allowing studies of rare cancers 

and subtypes of cancer, and methodological improvements specifically addressing cancer and 

other long-term outcomes.

Introduction

Use of prescription and over-the-counter drugs represents exogenous exposures that may 

result in either increase or reduction of cancer risk. Clear associations have been established 

for a number of drugs, e.g., the preventive effect of aspirin use against colorectal cancer 

[1,2] or the increased risk of renal cancer with use of phenacetin [3,4]. Further, new 

hypotheses often arise, such as the recent concerns about carcinogenic effects of lithium [5–

7] and pioglitazone [8–12]. A significant challenge in the elucidation of drug effects on 

cancer development is that the effects typically first become manifest several years after 

drug initiation. The long period of cancer development and the relatively low incidence of 

most individual cancer types impede the ability of traditional pharmacovigilance systems, 

notably spontaneous reporting of adverse effects, to identify drug-cancer associations. 

Consequently, analyses based on large-scale health care data sets are essential to provide 

solid data on potential drug effects on cancer incidence.

The public health importance of identifying carcinogenic effects of drugs is apparent, as 

even small carcinogenic effects of widely used drugs will result in many additional cancer 

cases. Only about a dozen drugs have been established as ‘definitely carcinogenic to 
humans’ (Group 1) by the International Agency for Research on Cancer (IARC) [13,14]. 

However, about 50 drugs are currently classified as ‘possible or probably carcinogenic’ 

(Group 2A/2B), and additional studies are necessary to confirm or disprove these suspicions 

[15]. Importantly, and often ignored, pharmacoepidemiological studies may also substantiate 

lack of carcinogenicity for specific drugs. This has considerable value by reassuring 

prescribers and patients of the safety of drugs, and thus promote their appropriate use, which 

may be compromised by preliminary reports of carcinogenicity a variety of sources, 

including case series, adverse events reporting systems, or animal experiments. Finally, 

identification of potential beneficial effects of drug use on cancer risk or prognosis may 

provide important evidence that can be pursued further in experimental and intervention 

studies, as well as provide clues to development of new agents for medical cancer prevention 

and treatment.

In the present review, we provide general considerations on the conduct of 

pharmacoepidemiological studies of drug-cancer associations. Importantly, while we are 

aiming to describe aspects that should be considered when planning such studies, our 
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suggestions should be viewed as guidance rather than as mandatory requirements. 

Specifically, we address choices of (i) data sources and (ii) study design, (iii) assessment of 

drug exposure, (iv) ascertainment of cancer outcomes, (v) confounder adjustment, and (vi) 

future perspectives.

Considerations regarding data sources

In pharmacoepidemiological studies, the exposure is usually not occurring as a single 

episode, but prolonged and variable over time, during one or more exposure periods, and 

thus needs to be handled in a time-dependent manner. Therefore, the most detailed drug use 

history should be sought – such as claims data on dispensed prescriptions or population-

based prescription data from drug registries. Apart from dates of prescription or dispensing, 

data on dose or duration are also necessary to estimate cumulative exposure. In designing 

studies to evaluate effects of a particular treatment on cancer incidence, it should be 

considered that individual cancer types have various induction and latent periods [16,17]. 

The relevant exposure periods for different drugs thus vary in relation to the time from 

initiation to manifest malignancy of specific cancers (induction period) or from initiation to 

diagnosis (latent period). While these induction and latent periods are usually unknown, 

long-term data on drug exposure and long follow-up allow us to make different assumptions 

about the relevant exposure periods.

Another challenge in assessment of drug-cancer associations is the low incidence of many 

cancer types, thus requiring very large sample sizes. One way to overcome this challenge is 

to perform multi-site, multi-database, or multinational studies. However, such initiatives 

involve several practical challenges, including legal issues and the lack of established 

common data models.

Minimum requirement for outcome assessment is to have individual level data on cancer 

incidence. Although data from population-based cancer registries is preferred, information 

from other sources such as diagnostic or treatment records may be sufficient. It is also 

important to obtain data on reasons of loss-to-follow-up – including migration or insurance 

gaps. Information on death and cause of death are helpful to deal with competing risks. It is 

also essential to have information on potentially important confounding factors. Some 

factors such as sex and age are necessary in all studies, while other factors depend on the 

specific study objectives and design.

As an example of registries useful for studies on drug-cancer associations, the Nordic 

countries (i.e., Denmark, Finland, Norway, Iceland and Sweden) have nationwide registries 

containing continuously updated, complete, individual-level data on, e.g., prescription drugs 

[18,19] and incident cancers [20]. Demographic (including socioeconomic) data and hospital 

diagnoses are also available and can be used for confounder adjustment. The unique 

personal identification number, assigned to all residents in each Nordic country at birth or 

immigration, allows for individual-level linkage of registries and databases continuously 

over time. Key prescription data include the Anatomical Therapeutic Chemical (ATC) 

classification [21], formulation, package size and number, number of defined daily doses 

(DDD) per package, and date of purchase. Further, in all Nordic countries, reporting of all 

Pottegård et al. Page 3

Basic Clin Pharmacol Toxicol. Author manuscript; available in PMC 2020 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



incident cancer cases to cancer registries is mandatory by health care providers. The cancer 

data include the primary site of the cancer, time of diagnosis, diagnosis code according to 

the International Classification of Diseases (ICD), currently version 10 (ICD-10), and 

histology and stage of the malignancy.

In the US, the introduction of drug coverage for older adults, Medicare Part D, in 2006 has 

facilitated use of the Medicare fee-for-service data for pharmacoepidemiological studies on 

cancer incidence [22,23]. The Medicare data cover inpatient (Part A) and outpatient (Part B) 

diagnoses and procedures, as well as prescription data at the pharmacy level (Part D). The 

advantages of the US Medicare data include population-based and nationwide coverage, size 

(over 20 million older adults with fee-for-service data within Parts A, B, and D coverage), 

age range (generally high morbidity, drug use, and cancer incidence), low turnaround (the 

great majority stay in these plans until death), and the linkage to US death data. Limitations 

include the lack of information before age 65, issues related to changing co-payments during 

the calendar year (the “doughnut hole”), and time to release (~18 months). Medicare data 

can be linked to other data sources (e.g., the National Death Index, cancer registries) but at 

considerable investment (both time and money).

Considerations for the choice of study design

The two principal observational designs relevant for studying drug-cancer associations are 

the cohort design and the case-control design. In the cohort design, drug users are compared 

with non-users or users of comparator drug(s) and followed over time with respect to the 

outcome of interest. In the case-control design, persons with the outcome of interest, i.e., 

cancer, are compared with persons without cancer with respect to their history of drug use. 

The cohort and case-control designs are observational, i.e., the researchers do not interfere 

with the drug use of study participants but only retrieve data on the drugs they acquire on 

their own initiative, the outcome(s) of interest, and potential confounding factors.

Cohort vs case-control design

Although the case-control and cohort designs at first glance appear to be exact opposites, the 

underlying concepts of the two designs are similar, and the case-control study is best 

understood as an efficient sampling of the experience underlying a cohort study [24]. 

Specifically, the controls can be viewed as a sample of the exposure distribution in the 

source population that has not (yet) experienced the outcome of interest. In a well-designed 

case-control study, the estimated odds ratio provide unbiased estimates of the incidence rate 

ratio that would have emerged from a cohort study in the same source population [25]. If the 

case-control study is carefully nested within the source population, incidence rates, 

incidence rate differences, and attributable proportions can also be estimated. The cohort and 

case-control designs are equally vulnerable to the influence of unknown or imprecisely 

measured confounding. While we aim to highlight the differences in the applicability of the 

two designs below, we believe both designs have merit in studies of drug-cancer 

associations.

There are circumstances where a cohort approach would be most efficient. One such 

scenario is if the exposure is rare and the cancer outcome is not rare among users (e.g., risk 
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of skin cancer among immunocompromised patients [26]). Also, if outcomes other than 

cancer are of interest in the same study, establishing a dataset structured for cohort analyses 

will be more efficient. Further, the cohort study is generally easier to communicate to non-

epidemiological professionals and laymen readers than the case-control study. This not only 

stems from the seemingly more straight-forward “prospective” way of assessing exposure 

and outcomes, but also from the cohort study’s ability to display baseline characteristics that 

can even be balanced by use of propensity score methods [27]. A similar description of 

characteristics among study subjects in a case-control study (i.e., cases vs. controls) will, as 

it should, show a higher prevalence of established risk factors among the cases, which may 

be erroneously perceived as a problematic imbalance in the study [28]. Lastly, the cohort 

design more readily facilitates the implementation of a new-user design (see below) and the 

use of active comparators, which can be of great value in handling of confounding within 

some therapeutic areas.

In some situations, it would be more convenient to choose a case-control rather than a cohort 

approach. First, cancer is usually a rare outcome. All things equal, this renders a case-

control study markedly more efficient in terms of required size of the analytic dataset and 

computations than a cohort study. It should be emphasized, though, that when using already 

collected data (e.g., claims data), this gain in efficiency is purely computational, not 

statistical, and given current computing power often moot, even in very large databases. 

Second, a cumulative dose-response association is important for establishing plausibility of a 

causal effect. In a cohort design, this would imply that an exposed person should have 

his/her exposure level re-classified each time he/she crosses the boundary of an exposure 

level, which may be computationally demanding, if not difficult. In the case-control design, 

the exposure level of cases and controls could be computed once, i.e., on their index date, 

albeit under the assumption of no time-varying confounding. Lastly, the establishment of 

one dataset that enables investigation of various drug exposures in relation to one (or more) 

cancer types is more easily performed using a case-control approach, which is valuable in 

settings where extraction of raw data is taxing in terms of time and expenditure.

New user vs prevalent user designs

When assessing drug effects, including on cancer outcomes, drug initiation is the most 

principled starting point [29,30]. Studying prevalent rather than new (incident) users of 

drugs potentially violates several principles of causal inference, including the absence of an 

underlying hypothetical intervention. As such, using a ‘new user’ design, i.e., restricting the 

study population to new users of the drug under study, should be considered [30]. The new 

user design also reduces misclassification of drug use due to left truncation of the time 

period used for exposure ascertainment in prevalent users. Such misclassification is of 

particular importance when a carcinogenic effect of limited exposure needs to be assessed. 

Conversely, when only distant or very long-term drug use is anticipated to influence cancer 

risk, restriction to new users may hinder a meaningful evaluation [7].

Although the new user design is most readily implemented in cohort studies, it may also be 

applied in case-control studies, by nesting these within a new user cohorts [31]. Overall, the 

potential value of employing a new user study design, either as the main analysis or as a 

Pottegård et al. Page 5

Basic Clin Pharmacol Toxicol. Author manuscript; available in PMC 2020 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sensitivity analysis, should always be considered when conducting drug-cancer association 

studies [32].

Other study designs

The advantage of clinical trials over observational studies is that randomisation effectively 

addresses confounding, as covariate balance between drug initiators and non-initiators is 

guaranteed at baseline. Importantly, this balance extends to covariates that are unmeasured 

or unknown at the time of the study. The downsides of randomized clinical trials are the 

prohibitive resource requirements, potential ethical and logistic challenges, and with respect 

to cancer outcomes, the typically relatively small number of outcomes. For obvious ethical 

reasons, no randomised clinical trials have been launched with the purpose of demonstrating 

a carcinogenic effect of a drug. There are, however, some examples of trials aimed at 

establishing cancer preventive drug effects, e.g., of 5α-reductase inhibitors [33,34], aspirin 

[35,36] and selective COX2 inhibitors [37–39]. In addition, secondary analyses are 

increasingly being conducted of clinical trials with primary intervention outcomes other than 

cancer, e.g., cardiovascular trials of aspirin use [40–43]. Since the original study material 

were based on randomisation, these secondary analyses preserve some benefits of a clinical 

trial. Randomisation only removes baseline confounding, however, and treatment changes 

during follow-up should generally not be ignored when assessing cancer outcomes [44–46].

Several observational self-controlled designs have emerged since the 1990s. These designs 

share the common feature of comparing the occurrence of outcomes between exposed and 

unexposed follow-up within the same individual [47]. Thereby, confounders that are stable 

over time are eliminated by design. However, since they all focus on acute and transient 

effects of drugs, they have little if any relevance for studying drug-cancer associations.

Finally, ecological, or macro, designs should be mentioned. Here, the unit of analysis is a 

population rather than an individual. An ecological design would for example compare the 

use of a drug and a specific cancer incidence rate in one country with another country (or 

region). Although often surprisingly persuasive for lay readers, epidemiologists generally 

consider ecological designs as weak. It requires a high population attributable proportion for 

an ecological design to be effective, i.e., a substantial proportion of the cancer occurrence in 

the population should be attributable to use of the specific drug. To our knowledge, there are 

only few good examples of this approach within drug-cancer epidemiology [48–50].

Considerations regarding assessment of drug exposure

For most suspected drug-cancer associations, the relevant exposure window during 

carcinogenesis is unknown. If the drug exposure influences carcinogenesis (early stage), 

then the risk period would only start long after initial drug exposure. If the drug has 

influence on later stages in cancer development, the risk period would start earlier. The 

period between the first occurrence of a cluster of cancer cells to a stage detectable by 

screening measures or clinical symptoms is typically long; for some cancer types up to 20–

30 years [16]. Hence, it is almost inconceivable that manifest clinical cancer can be an 

immediate effect of drug exposure due to the long period of development for most cancer 

types. There are a few examples of relatively rapid cancer development induced by exposure 
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to drug use, e.g., the association between use of systemic immunosuppressants and increased 

risk of non-Hodgkin’s lymphoma and skin cancer in organ transplant recipients [51–53]. An 

example of very long cancer development – about twenty years – is the association between 

use of diethylstilbestrol and adenocarcinoma of the vagina and cervix [54,55].

Variability in latency of carcinogenic drug effects is often described in terms of the drug 

being either a cancer “initiator” or “promotor”. Conceptually, a cancer initiator is one that is 

a contributory cause of the first clone of malignant cells, whereas a promotor does not 

possess this property, but acts a contributory factor in accelerating cancer growth of an 

already existing neoplastic lesion [17,56]. As such, cancer initiators are thought as having a 

longer latency than promotors. However, in most drug-cancer studies, the mechanisms 

underlying a potential carcinogenic, or anti-neoplastic, effect are unknown, at least in terms 

of what stage of carcinogenesis is affected. Consequently, a conceptual framework of 

potential promotors and initiators typically provides little guidance when designing a 

specific study. Nevertheless, as drugs may influence later stages of carcinogenesis, studies 

monitoring drug-cancer associations relatively shortly after initiation of drug therapy also 

hold scientific value.

Lag-time

The typically long period of cancer development and latency of any carcinogenic or anti-

neoplastic drug effects supports implementation of a ‘lag-time period’. In practical terms, 

this means that cancer outcomes diagnosed shortly after drug initiation should not be 

regarded as occurring during ‘exposed time’, as these outcomes cannot meaningfully be 

ascribed to the drug exposure. Correspondingly, a certain period after drug discontinuation 

should be considered as time at risk. Since the lag period after drug initiation covers both 

induction and latency of the specific cancer, and the lag period after drug discontinuation 

primarily covers the latent period (plus any potential carry-over effect), a longer lag period 

after initiation than after discontinuation should be considered.

A second reason for lagging drug effects is the possibility of protopathic bias (reverse 

causation). Consider a middle-aged man who consults his general practitioner (GP) because 

of obstructive urinary symptoms. Initially, the GP would be likely to interpret the underlying 

condition as benign prostate hyperplasia and prescribe a drug relieving the obstructive 

urologic symptoms. However, additional diagnostic work-up may reveal a prostate cancer as 

the underlying condition. Since the use of symptomatic drugs preceded the cancer diagnosis, 

an apparent association between these drugs and prostate cancer would emerge. In most 

cases, however, such reverse causation has a time-frame of less than six months [57].

The typically long induction and latent periods, the possibility of reverse causation, and the 

likely higher probability to detect prevalent pre-clinical cancer due to medicalization around 

treatment initiation are the main reasons for employing a lag-time in drug-cancer analyses. 

Reverse causation justifies a lag-time in the order of minimum a few months [57]. The 

optimal time-frame for addressing the long induction and latent periods is unknown and 

depends on the specific drug-cancer association being studied. However, for most drug-

cancer associations, it is likely considerably longer than the period necessary to address 

reverse causation. Acknowledging the uncertainty surrounding the mechanisms of single 
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drug-cancer associations, and thus the optimal (biologically relevant) lag-time, studies 

should generally evaluate various lag-periods in sensitivity analyses [58].

Dose-response association

Most known drug-cancer associations are dependent on cumulative amount, i.e., stronger 

associations with higher dosages and longer-term use. This may be expressed either by 

cumulative duration of drug use, by cumulative quantity of the drug, or by the prescribed 

daily dose (coupled to duration of use). The choice is often driven by the available data, but 

mechanistic considerations are also relevant. If it is believed that the dose intensity, i.e. the 

daily dose, is less important, it would be most appropriate to perform analyses according to 

the cumulative duration. If the dose intensity does matter, then the cumulative quantity or if 

feasible a direct measure of intensity over time would be more appropriate. Regardless of the 

measure used, dose-response or duration of use analyses should always be carried out.

When interpreting dose-response analyses, special attention should be paid to trivial, low-

level exposure. If very low exposure shows an association with cancer, there is a chance that 

the association is explained by confounding [59,60]. While a dose-response pattern is 

generally considered supportive of causality, caution is advised as some confounders may 

act in a graded fashion. As an example, progressively heavier use of bronchodilators will 

likely correlate to smoking history and thereby show a confounded but dose-dependent 

association with lung cancer risk. Lastly, another good reason for analyzing cumulative 

dose-response effects is that associations that are explained by reverse causation often have 

an inverse cumulative dose/duration-response association and thereby can be distinguished 

from causal effects.

Defining treatment episodes

Constructing treatment episodes for study subjects from prescription registries may be 

challenging. If prescription data do not include information on the prescribed dose and 

duration of a specific treatment, treatment episodes need to be estimated on the basis of 

purchasing dates and quantities of drug prescribed. In the attempt to construct treatment 

episodes, investigators encounter temporal gaps and overlaps among prescriptions, and 

different methods accounting for various prescription patterns may lead to different 

estimates of drug effects [61,62]. As there is typically long latency between the relevant drug 

exposure and cancer diagnosis, such considerations of the precise period of drug intake may 

be less important in cancer pharmacoepidemiology than in studies of acute or semi-acute 

outcomes. Nevertheless, varying prescription patterns without specific knowledge of dose or 

duration of treatment introduces an additional source of uncertainty regarding exposure 

ascertainment, and researchers are, for this and the aforementioned reasons, encouraged to 

apply different exposure measures in individual studies.

Considerations regarding cancer outcome ascertainment

Important objectives of cancer classification and registration are to assemble and compare 

cancer incidence data across populations and countries, and to provide valid cancer 

diagnoses for specific research purposes in analytical studies. During the last two decades, 
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official cancer registration and establishment of cancer registries have increased steadily 

worldwide, substantially facilitating epidemiological and other cancer research [63]. 

Valuable sources of international cancer incidence data include the United States’ SEER-

program [64]; the NORDCAN program covering Scandinavian countries [20]; and the 

GLOBOCAN program estimating cancer incidence and mortality data on a global scale [65].

Traditionally, the most important diagnostic and clinical modalities used to establish cancer 

diagnoses are reports from pathology departments (providing histological diagnoses), 

hospital records, and death certificates, although the proportion of cancer cases identified 

solely by death certification is low today in most countries [63]. Together, clinical and 

histological diagnoses provide a high level of precision in the diagnosis. However, access to 

records from radiotherapeutic and oncology departments, medical records, imaging 

measures, and hematology laboratories can also provide important information, e.g., for 

diagnosis of brain and other tumors of the central nervous system and for haematological 

malignancies. In general, completeness and validity of cancer registration increases with the 

number of modalities used to ascertain the diagnoses; and significant omissions may raise 

concerns that case finding is incomplete. Use of multiple sources of cancer ascertainment 

demands efficient registration procedures to ensure that all records pertaining to the same 

case are combined into a single registration [66].

In the absence of data from cancer registries, claims based algorithms can be developed to 

identify cancer incidence. These algorithms usually cover a combination of diagnostic 

codes, procedures, and take relative timing of these into account. They need to be validated 

against a gold standard (usually cancer registry data), ideally in a similar population to the 

one studied. Examples include the commonly used algorithms published by Setoguchi et al. 

[67] that showed high specificity of a definition using two specific cancer codes within 2 

months for a variety of cancers. These algorithms are relatively crude, however, and more 

work is needed to refine and extend them to specific populations.

Using ‘cancer overall’ as outcome should be discouraged, as this essentially goes against our 

understanding of cancer as a heterogeneous disease [56]. It is inconceivable that a 

pharmaceutical agent should act as a universal carcinogen, and not even strong carcinogens, 

such as tobacco smoking and radiation, are universally carcinogenic [13]. An analysis of 

cancer overall is essentially driven by the effect of the drug on the cancers with the highest 

incidence. Currently, cancer diagnoses are most often classified according to organ site, 

using ICD diagnostic codes. However, in continuation of aspects of specificity, it is unlikely 

that a given drug would induce all types of cancers, even within the same organ. Thus, if 

feasible, differentiation according to histological subtypes should be employed in studies of 

drug-cancer associations. Consider immunosuppressants that are known to induce skin 

cancer; currently there is only firm evidence that the association pertains to non-melanoma 

skin cancer, not melanomas [14]. In some organs, e.g. the prostate or colorectum, one 

histological type (adenocarcinoma) comprises most cancer cases, and as such restriction to 

adenocarcinomas makes little difference, although it should still be carried out, if feasible. 

However, at many cancer sites, e.g. esophagus, lung, breast, ovary, testis, and kidney, 

differentiation into distinct histologic subtypes are important, as an analysis lumping 
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together all histological cancer types would be driven by the effect of the drug on the most 

prevalent subtype.

Increasing knowledge of the epidemiology, histopathology, and today also molecular 

profiles of cancer diseases will facilitate even more detailed classifications categorizing 

subtypes of cancer both within and across organ sites. Identification of more “refined” 

cancer subtypes may thereby, in the years to come, increase the specificity of risk 

associations and predictions. While beyond the scope of the present review, readers 

interested in the application of molecular biology in cancer classification are referred to 

reviews specifically addressing this issue [68–70].

Considerations regarding confounder adjustment

Adjustment for confounding in drug-cancer association studies should generally follow the 

same principles as in any other pharmacoepidemiological study. As one noticeable 

exception, the assessment of confounder variables should take into account the induction/

latency period of cancer outcomes, as discussed above. If, for example, no lag-time is 

considered in the assessment of baseline or time-varying covariates, early symptoms of a 

cancer or other effects of the increased medical attention preceding a cancer diagnosis may 

inadvertently be included in the adjustment model. This is especially important in case-

control studies, where confounders are often defined on the index date. Further, it is 

important to emphasize that while many databases used for drug-cancer studies lack 

information on important and well-established cancer risk factors, e.g., family history, many 

of these will have no apparent effect on the prescribing of the majority of drugs, and thus 

will confer no confounding effect in drug-cancer association studies.

Active comparator

Important unmeasured covariates, like for example body mass index (BMI), can sometimes 

be balanced by study design rather than by statistical control. Take as an example a study on 

the effects of insulin glargine on cancer outcomes (including colorectal cancer, for which 

BMI is a risk factor). In this study, BMI would be an obvious confounder if we compared 

patients initiating insulin glargine with non-initiators, because a high BMI is one of the main 

reasons to initiate insulin therapy in patients with type 2 diabetes. However, by using an 

active comparator, human NPH insulin, the confounding potential of BMI is mitigated 

because BMI does not affect the choice of insulin after the indication for adding insulin has 

been made [71]. This highlights the value of the active comparator new user cohort study 

design to reduce the potential for unmeasured confounding. Subtle differences in the 

indication of comparator drugs might still exist and would need to be controlled for by 

standard analytic techniques. It is important to point out that with an active comparator the 

scientific question is changed from absolute effects (e.g., safety) to effects relative to a 

clinical alternative. The above example of a study with active comparator does not answer 

the question whether adding insulin in patients with type 2 diabetes increases the risk for 

colorectal cancer, but the question whether the effect of insulin glargine on colorectal cancer 

is different from the effect of NPH insulin. As such, if the active comparator has the same 

potential to cause cancer, e.g., through a shared pharmacological action, a carcinogenic 
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effect might be missed. Lastly, the idea of an active comparator should not be pursued at all 

costs, but only if a suitable active comparator can be identified, i.e., a drug with comparable 

indications. If the drug under study is first-line treatment in mild disease, using an active 

comparator that is only used as second-line treatment or for more severe disease might 

introduce more bias than it removes.

Time-varying confounding

While confounding at drug initiation can often be limited by study design (and remaining 

confounding removed during analysis), the time-varying confounding affecting drug 

persistence and changes in treatment over time is related to (lack of) effectiveness and side 

effects. Unfortunately, many registries that contain necessary data on drug prescribing do not 

contain much information (if any) on (immediate) effectiveness and (subtle) side effects. For 

example, many databases do not include measures of glucose control or other markers of 

diabetes severity that may affect persistence on antidiabetic drugs and risk for some cancers 

[72]. Confounding from disease severity can bias a study in either direction. On one hand, 

more severe disease may be associated with longer duration or higher intensity of treatment. 

Conversely, severe disease may also be associated with switching and thus shorter duration 

of first-line treatments [73]. If good data on the drivers of adherence/persistence are 

available in a database, methods that allow for control for time-varying confounders affected 

by prior treatment should be used to reduce bias [74].

Future perspectives

The study of drug-cancer associations is in many respects still in its infancy, and the field 

will likely evolve considerably over the coming years. Three drivers of this evolution 

deserve to be highlighted. First, the accumulation of long-term data on drug use and cancer 

incidence is of particular value in studies of cancer etiology, keeping in mind the potentially 

long induction periods of cancer development. For example, the Swedish Prescribed Drug 

Registry, covering the entire population of Sweden (approximately 10 million inhabitants), 

was established in 2005 [75] and in the US, drug coverage (part D) for the Medicare 

population was introduced in 2006. These databases have thus only recently achieved an age 

where they begin to contribute meaningfully to the field of drug-cancer studies. Second, as 

the pharmacoepidemiological community accumulates experience in conducting 

multinational studies, the door is open for the study of rare types of cancers (or drug 

exposures). Lastly, methodological work, specifically addressing studies of long-term 

outcomes, is both needed and ongoing. For example, further research on the implementation 

of advanced methods, such as marginal structural models or structural nested failure time 

models, is needed to properly adjust for time-varying factors [76,77]. These three drivers, 

coupled with other emerging opportunities, such as incorporation of genetic data, clearly 

indicate that we will be able to perform more comprehensive drug-cancer association studies 

in the future, to secure the safe use of drugs in the population and potentially identify new 

therapeutic avenues for cancer prevention and treatment.
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