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ABSTRACT

Objective: This article methodically reviews the literature on deep learning (DL) for natural language processing

(NLP) in the clinical domain, providing quantitative analysis to answer 3 research questions concerning meth-

ods, scope, and context of current research.

Materials and Methods: We searched MEDLINE, EMBASE, Scopus, the Association for Computing Machinery

Digital Library, and the Association for Computational Linguistics Anthology for articles using DL-based

approaches to NLP problems in electronic health records. After screening 1,737 articles, we collected data on 25

variables across 212 papers.

Results: DL in clinical NLP publications more than doubled each year, through 2018. Recurrent neural networks

(60.8%) and word2vec embeddings (74.1%) were the most popular methods; the information extraction tasks of

text classification, named entity recognition, and relation extraction were dominant (89.2%). However, there

was a “long tail” of other methods and specific tasks. Most contributions were methodological variants or appli-

cations, but 20.8% were new methods of some kind. The earliest adopters were in the NLP community, but the

medical informatics community was the most prolific.

Discussion: Our analysis shows growing acceptance of deep learning as a baseline for NLP research, and of DL-

based NLP in the medical community. A number of common associations were substantiated (eg, the prefer-

ence of recurrent neural networks for sequence-labeling named entity recognition), while others were surpris-

ingly nuanced (eg, the scarcity of French language clinical NLP with deep learning).

Conclusion: Deep learning has not yet fully penetrated clinical NLP and is growing rapidly. This review

highlighted both the popular and unique trends in this active field.
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INTRODUCTION

Technical research is changing rapidly. Deep learning (DL) techni-

ques have begun to dominate because of their simplicity (no need for

handcrafted features), efficient processing (assuming dedicated, mas-

sively parallelized hardware), and state-of-the-art results (on a pleth-

ora of tasks). Meanwhile, the widespread adoption of electronic

health records (EHRs) has produced massive amounts of digital text

concerning patients, and the medical informatics community has

invested substantial effort to make use of clinical text via natural

language processing (NLP). Furthermore, research manuscripts

themselves are coming under greater scrutiny for rigor and repro-

ducibility,1–3 yet they are simultaneously being generated on

preprint servers with more momentum and less oversight than ever

before.
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This work aims to characterize the relationship between DL

techniques and the field of clinical NLP, in today’s wider landscape

of technical research, through a methodical review of the literature.

We seek to answer the following research questions:

1. RQ1: Methods. What deep learning methods are being contrib-

uted or applied?

2. RQ2: Scope. What types of problems are addressed and solved?

3. RQ3: Context. How do these articles fit into the wider research

context?

To answer these questions and draw out other insights, our

study methodically considers 25 variables across 212 articles

from a variety of venues, mostly published between 2014 and

April 2019. Notable data-based observations from this study in-

clude:

• Publications on DL in clinical NLP are more than doubling each

year, through 2018.
• The majority of this literature uses existing DL models on well-

known information extraction tasks in English clinical notes, but

there are many exceptions.
• There is growing acceptance of DL as the baseline for NLP

research and of DL-based NLP in the medical community.

Working definitions
Deep learning is a modern, popular paradigm for machine learning

(ML) heralded for avoiding the extensive manual feature engineer-

ing that was common in traditional methods. For the purposes of

this study, deep learning consists of neural network-based or -in-

spired methods that utilize modern optimization techniques and

training objectives. For example, recurrent neural networks (RNNs)

are frequently employed to model sequential data such as language;

convolutional neural networks (CNNs) are often used to model sig-

nals such as images. We include embeddings—dense, data-driven

vectorial representations of, for example, a word—under the deep

learning umbrella. Embeddings serve as the input layer of most mod-

ern neural networks; some embeddings are directly created as part

of larger neural networks, while other embedding methods have

none of the nonlinearities that are characteristic of neural networks.

Finally, though we do not consider older neural networks (eg, multi-

layered perceptron) to be “deep learning,” we nonetheless include

them in our study.

We take a broad view of natural language processing techni-

ques, namely, any work that computationally represents, trans-

forms, or utilizes text (or speech) and its derivatives. Thus, diverse

tasks can be viewed as NLP activities; from producing dependency

parses, to text-based event prediction, to image classification via

captions. However, our study only considers manuscripts with

NLP in the specific clinical setting of electronic health records—

digital profiles of patients’ health, primarily authored by health

professionals and administrators. Other health-related settings

such as social media, web forums, and messaging platforms differ

vastly from EHRs in linguistic profile and data availability and

were thus excluded.

Finally, unlike some recent work,4–6 we have titled this work a

methodical review, by which we mean that our work follows the

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines closely, but not completely. Because

this work (and with it, most computing literature) does not qualify

as a traditional Cochrane-style “systematic review,” we have chosen

to consider this a “methodical” review.

Related work
While this work emphasizes methods, especially in deep learning,

we do not thoroughly discuss the underlying models. Instead, we re-

fer the reader to other treatments thereof, such as Shickel et al’s tax-

onomy of DL methods7 or classic works on embeddings,8,9

RNNs,10,11 CNNs,12,13 attention,14,15 and adversarial learning.16,17

Deep learning in a clinical NLP is an active and multidisciplinary

area of research, and has thus spawned numerous other review

articles, as shown in Table 1. Of note, Dreisbach et al had a similar

technical focus but overviewed symptom extraction techniques and

used patient-authored texts, rather than our focus of all NLP tasks

on clinician-authored texts in the EHR. Shickel et al wrote in the

context of EHR data, and as such also provided an informative enu-

meration of important clinical NLP tasks such as representation

learning. In contrast with their methodical conceptual survey, our

work offers a PRISMA-like review with quantitative analysis and fo-

cuses exclusively on NLP. Wang et al performed a thorough me-

thodical review on NLP from EHRs. However, their eligible articles

only included work up to September 6, 2016, before DL was really

adopted as mainstream in the informatics community (see

Figure 5a). Their work is also exclusively focused on applications of

NLP, whereas this work also considers primarily methodological

contributions. Xiao et al also methodically reviewed DL literature in

EHRs up until January 30, 2018, categorizing the tasks involved,

deep learning techniques, and the associated challenges. Our work is

similar but provides a narrower focus on NLP, more quantitative

analysis on a larger number of updated articles through 2019, and

consideration of contemporary factors, such as preprints and scien-

tific rigor.

MATERIALS AND METHODS

Our review adheres as closely as possible to the PRISMA guidelines

with most analyses considering categorical variables rather than the

results of the component articles. The overall workflow is shown in

Figure 1 and described below.

Eligibility, sources, and search
Articles eligible for inclusion in our study were characterized by: 1)

natural language processing, 2) deep learning or neural networks,

and 3) clinical domain tasks using EHR data. These criteria were ap-

proximated through librarian-assisted development of queries for

each database (the string for Scopus is in Figure 1). Ovid MED-

LINE, EMBASE, and Scopus, and the Association for Computing

Machinery (ACM) Digital Library were searched on April 10, 2019.

We subsequently included articles from “Other Sources.” Most no-

tably, we searched the Association for Computational Linguistics

(ACL) Anthology with EHR- and DL-related keywords, retrieving

61 articles before deduplication. “Other Sources” also included free

suggestions from all authors, who were given a 1-week span to sub-

mit relevant works that should be included, preserving the recall-

centric style of searching.

Duplicates were removed. The remaining papers were used for

screening according to our inclusion/exclusion criteria.

Individual papers’ risks of bias were not a concern for our

primarily count-based aggregate analyses of categorical

variables. Rather, there is the typical risk of selection bias in

these articles, since indexes such as MEDLINE or Scopus are

not exhaustive, and search strings may have left out relevant

articles.
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Study selection
Title-abstract screening

During the screening stage, 2 randomly assigned co-authors (and 1

adjudicator) screened articles, excluding 1 487 for the ordered list of

reasons shown in Figure 1. Thus, the 366 (under “Excluded at

screening”) that were not typical research manuscripts were already

considered to not be duplicates.

Note that 7 preprint articles (suggested by authors) were ex-

cluded, despite the fact that some such articles (eg, BioBERT28) are

influential in the research community at the time of this writing. A

preprint is a full draft of a research paper that is shared publicly be-

fore it has been peer reviewed. Preprints can bring broad and instant

visibility to research and have been widely utilized by research com-

munities, though not without controversy. We explore the impact of

preprints in RQ3.

Full-text screening

A full-text screening step, performed in conjunction with data col-

lection, further ruled out 38 papers. Here, aside from criteria that

were missed in other steps, we also excluded abstract-only publica-

tions (8 references), works with insufficient NLP or DL (6 and 16,

respectively), or those that were poor in quality (1 reference). Note

that we excluded out-of-the-box algorithms, which accounted for 4

of the 6 that were labeled “no NLP,” and 12 of the 16 labeled “no

DL”—these had no retraining of models, variation in architectures,

or systematic evaluation.

Data collection
Nine co-authors extracted 25 variables regarding DL Techniques,

Embeddings, Tasks, Data, Experimental Setup, Comparisons, Con-

tributions, and Venue & Timing (see Supplementary Appendix B)

from each of 212 included articles (see Supplementary Appendix A),

according to a data collection form. These data were normalized,

validated, and analyzed by team members.

For all analyses, note that 2019 was a partial year including an

imbalanced sampling of underlying data; for example, computer sci-

ence and NLP conferences tend to occur in the summer, after April

10, of any given year. Also, many of our variables allowed a single

paper to have multiple responses; in the text, numbers and percen-

tages represent portions of the 212 included articles unless otherwise

indicated, while figures and tables at times utilize relative percen-

tages.

RESULTS

RQ1: What deep learning methods are being

contributed or applied?
Methods: Deep learning architectures

Figure 2 illustrates the rise and fall of broad categories of DL archi-

tectures (see Supplementary Material Table 1 for more fine-grained

categories and mappings). We focus on RNNs, CNNs, feed forward

neural networks, and Embeddings-only articles, where Embeddings-

only papers used embeddings without neural networks in a similar-

ity function or in a more traditional ML classifier, for example,

support vector machine. Note that Figure 2 intentionally double-

counts papers that combine multiple methods (n¼41, 19.3%).

Table 1. Comparison of review articles related to this one, with their methods and scope

Year Authors PRISMA Review? DL? NLP? EHR?

2019 This paper � � � �

2018 Al-Aiad et al18 – � Broader �

2018 Ching et al19 – – Broader Broader: biology

2019 Dreisbach et al4 � � Narrower: IE Patient-authored; Narrower: symptoms

2019 Esteva et al20 – – Broader �

2017 Gonzalez et al21 – – � Broader: with social media

2016 Liu et al22 – – Narrower: IE Broader: biology

2018 N�ev�eol et al23 Selection – � Broader: with social media

2018 N�ev�eol et al24 – – � Non-English; Broader

2019 Sheikhalshahi et al5 � – � Narrower: chronic diseases

2017 Shickel et al7 Methodical � Broader �

2018 Velupillai et al25 – – � � with health outcomes

2018 Wang et al26 � – Narrower: IE �

2018 Xiao et al6 � � Broader �

2018 Zeng et al27 – – � Narrower: computational phenotyping

Abbreviations: DL, deep learning; EHR, electronic health record; NLP, natural language processing.

Figure 1. PRISMA flowchart for including articles in our study, with example

search string (for Scopus) and primary reasons for exclusion.
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The volume of DL publications is currently increasing quickly

each year (>200% through 2018), and the same is true of each type

of architecture (with the possible exception of “Other DL”). Across

years, RNN variants were the most common (60.8%), split among

memory units, such as long short-term memory (LSTM, 52.8%),

gated recurrent unit (7.5%), and the “vanilla” RNN (2.4%). The

second-most common architecture type was CNNs (n¼83, 39.2%).

Both show consistent growth in the last few years.

Interestingly, traditional neural networks (largely multi-layer

perceptrons) also grew in percentage usage (from 5% in 2017 to 9%

in 2018), perhaps as a byproduct of excitement over neural meth-

ods. On the other hand, Embeddings-only papers (n¼21, 9.9%) de-

creased in percentage after initial interest, similar to general domain

NLP. Other DL architectures employed in this study included

autoencoders,29–32 residual neural networks,33–36 deep belief net-

works,37 capsule networks,38 memory networks,39 seq2seq exten-

sions,40 and the attention-based Transformer via BERT.41

Attention mechanisms (in Figure 2, the line and right-hand axis),

which can increase predictive performance and—debatably42—im-

prove model explainability, were often combined with other meth-

ods and are increasingly popular (overall n¼26, 12.3%). We

anticipate a significant future uptick in attention mechanisms due to

BERT.43 Adversarial learning, while typically popular and even mo-

tivational in natural language generation tasks,31 was surprisingly

only used by 2 papers.38,44

Though the norm was to repurpose or combine existing models

for clinical NLP tasks, a few unique architectures were introduced

that reflected their clinical task and domain particularly well. For

example, Xie et al44 used a tree-of-sequences LSTM to fit the tree

structure of ICD codes, along with adversarial learning, isotonic

constraints for ordering, and attention-matching. A second case is

the deep averaging network used by Dligach & Miller,45 whose in-

put is concept-level embeddings that are simply averaged and passed

to a downstream layer. This allows the model to robustly focus on

sets of conditions for a variety of phenotyping tasks without over-

emphasizing specific context.

Methods: embeddings

Table 2 details the embedding techniques in our study. Overall, the

most prominent embedding model is word2vec (74.1%, combining

values in Table 2a and Table 2b), followed by GloVe (9.9%). To

avoid out-of-vocabulary problems in representing clinical words,

many studies combine character embeddings with word-level

embeddings (13.7%), or utilize the fastText subword model (3.8%).

Especially for the tasks of concept and relation extraction, a

number of studies explored additional lexical features combined

with word embeddings: syntax embeddings, such as parts-of-

speech68,69 and dependency trees;70–72 semantic embeddings, such

as dictionary features,35,73–76 controlled unclassified information

from Unified Medical Language System (UMLS),77–79 and semantic

role labels;78 and position embeddings, such as word34,38,70,75,80–84

and section85 positions. The number of embedding methods com-

bined with different input features is shown in Table 2a. A few stud-

ies (Table 2b) compared multiple word embedding algorithms in

Figure 2. Growth of broad architectures in deep learning over the years. Percentages are relative to the number of studies published in that year. Overall, RNN

variants were the most common (n¼ 129, 60.8%), CNNs were second (n¼83, 39.2%), traditional feed-forward networks were third (n¼22. 10.4%), and embed-

dings-only were fourth (n¼ 21, 9.9%).

Abbreviations: CNN, convolutional neural networks; RNN, recurrent neural networks.
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terms of extrinsic, downstream tasks, finding no significant differen-

ces between the popular methods.

Less common embedding models are reported in Table 2c, in-

cluding Collobert’s ranking-based embeddings;55 the early RNN-

based language model RNNLM;58 Wu et al’s60 generalization of

fastText, StarSpace; the VecMap62 framework for learning cross-

lingual word embeddings; contextual word embeddings ELMo;64

and the recent language model, BERT.43

Large, unlabeled data sources are often used to train effective of

word embeddings. Among the 63% of articles that reported using

pre-trained resources, clinical word embeddings are built on clinical

notes (29%), like MIMIC-III; health-related text from biomedical

literature (25%), like PubMed; and healthcare websites (5%), like

WebMD. The rest (46%) have randomly initialized the word

embeddings and are trained on specific target data. Few works di-

rectly compared the effectiveness of pretraining on different resour-

ces, yet large pretraining data does not guarantee effective word

embeddings for clinical NLP. Notably, in 1 study,86 embeddings

concatenating domain-specific with domain-agnostic embeddings

yielded the best results.

Methods: medical knowledge

Clinical NLP has traditionally relied heavily on medical-specific

knowledge resources, such as the UMLS.87 Interestingly, only 38

papers (17.9%) used external (ie, not entirely derived from the train-

ing samples) medical knowledge. Of these 38, only 12 papers

(5.7%) incorporated that knowledge into the deep learning architec-

ture itself. With only 1 exception,44 these 12 produced and incorpo-

rated knowledge-resource embeddings (eg, concatenating a UMLS

controlled unclassified information embedding with a word embed-

ding). Further detail on popular knowledge resources is in the Sup-

plementary Material Table 2.

Methods: implementation

Many papers did not clearly report the use of DL libraries (only

53.4%) or NLP tools (only 36.8%). The most popular DL libraries

in our study are TensorFlow and Keras, with increasing trends start-

ing from 2015. The most frequently used NLP tools were Gensim

(mostly for word-level or paragraph-level embeddings), cTAKES,

NLTK, MetaMap, Stanford CoreNLP, and Jieba (a word segmenta-

tion toolkit for Chinese). Further details on the DL and NLP imple-

mentation tools can be found in Supplementary Material Table 3

and Figure 2.

We also note that the vast majority had underspecified experi-

mental setups and did not report the type of hardware used (172 of

212, or 81.1%). Of those that did report computational equipment,

a few used commercially available resources (3 of 40, 7.5%), some

used local CPUs (3 of 40, 7.5%), but most used local GPUs (34 of

40, 85.0%).

RQ2: What types of problems are addressed and

solved?
Scope: tasks

Figure 3a illustrates the NLP and clinical tasks addressed among the

212 papers. We categorized the main NLP tasks in each paper into 4

types: Text Classification (40.5%), NER (34.0%), Relation Extrac-

tion (13.7%), and Others (10.8%). Note that the Text Classification

category is composed primarily of document-level tasks (64 of 86,

74%), but sentence-level (12 of 86, 14%) and Other (10 of 86,

12%) tasks are also present (not pictured). Figure 3a further subdi-

vides clinical domain-specific tasks. The top clinical tasks are clini-

cal concept extraction (ie, the extraction of common clinical

concepts, such as problem, lab test, treatment, time expressions, and

events); phenotyping (ie, the broad characterization of patients’ con-

ditions); and clinical relation extraction (ie, the identification of

relations between the common clinical concepts). The figure also

reveals a “long tail” of papers on more variegated tasks, include In-

formation Retrieval,86,88–90 Natural Language Generation,31,40,91

Abbreviation Disambiguation,57,68 Section Boundary Detection,92,93

Shallow Parsing,94 Machine Translation,95 Spelling Correction,96

and others. Overall, many common Clinical NLP tasks are present

(eg, negation/attribute identification,33,72,97,98 event detection,99–101

and adverse drug event relation extraction38,81,102,103) but other

tasks are infrequent or absent (sentence detection, part-of-speech

tagging, and text simplification) from our study, presumably be-

cause DL techniques have yet to be applied on these tasks.

Figure 3b shows the DL algorithm distribution for each task,

confirming widely held associations in the community: CNNs are

the most common approach to the Text Classification task, and

RNNs are the most common approach to NER and Relation Extrac-

tion.

Scope: data sources

Table 3a shows the source of corpora for the included studies. Al-

most half of the studies used private datasets (n¼104; 49.06%),

which are rarely shared or replicated due to patient privacy con-

cerns. Though at times used in conjunction with private datasets,

publicly available data sources were employed by more than half of

the papers in our study. Excluding counts of multiple public corpora

in Table 3a, this is 54.7% of 212 papers, whether from research

Table 2. Embedding techniques among the included articles. Due

to the use of multiple approaches in individual papers, percentages

overlap and may not add up

(a) Popular embedding techniques

Method # papers

word2vec only 89 (42.0%)

þ character 26 (12.3%)

þ syntax 14 (6.6%)

þ position 8 (3.8%)

þ semantics 5 (2.4%)

þ 2 more features 6 (2.8%)

GloVe 17 (8.0%)

þ syntax 1 (0.5%)

þ character 3 (1.4%)

fastText 8 (3.8%)

(b) Embedding comparisons

Methods Reference

word2vec vs GloVe 46–50

word2vec vs fastText 51–54

(c) Less common embeddings

Method Task

Collobert55 NER,56 Abbrev. Disambiguation57

RNNLM58 De-identification59

Starspace60 Representation learning61

VecMap62 Cross-lingual concept extraction63

ELMo64 NER65–67

BERT43 NER,65 pretrained resource41

Abbreviation: NER, named entity recognition.
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challenges (i2b2/n2c2, CCKS, SemEval, etc; 34.0%) or otherwise

contributed by the research community (MIMIC, THYME, MED-

LINE, etc; 20.8%). Considering the publicly available corpora used

for each task, the most popular were: MIMIC data for text classifi-

cation (15 of 86 papers); i2b2 challenges for NER/concept extrac-

tion (19 of 74 papers); i2b2 challenges for Relation Extraction (5 of

17 papers); and SemEval challenges for temporal events and rela-

tions (4 of 7 papers).

Table 3b presents some statistics on the languages of these cor-

pora. As expected, most of the studies used datasets in English

(n¼151; 71.23%), but a significant proportion utilized Chinese cor-

pora (n¼42; 19.81%). Datasets in all the other languages (such as

Spanish, Japanese, and Finnish) were used by 5 (2.36%) or fewer

studies. Interestingly, this differed drastically from N�ev�eol et al’s24

recent review of non-English Clinical NLP, especially with the re-

versed roles of Chinese and French. Of course, N�ev�eol et al cannot

be considered head-to-head with this work, because it had an eligi-

bility cutoff date while DL was still nascent in the field (January

2017). However, our data suggest that deep learning-related articles

were published sooner in Chinese (2016) than French (2018),

and the disparity in volume is growing (see Supplementary Material

Table 4).

Further details on datasets available for specific tasks, size of cor-

pora, and subdomain of data are available in the Supplementary

Material Table 5 and data-related subsections.

Scope: contributions

RQ1 (Methods) asks what types of contributions are being made.

Thus, we judged each of our study articles for its contribution type:

Application (to a new dataset, new domain, or setting); Methods

(new DL architecture, new embedding method, new NLP task ap-

proach, or a variant of existing methods); Resource; or Evaluation;

44 articles made multiple contributions.

Pairing this with RQ3 (Context), we are interested in the novelty

of articles, which is typically quite subjective. Thus, we defined a

low bar of “novelty” as attempting methodological contributions

that included new DL architecture, new embedding method, or new

NLP Task approach (grouped together in the bottom center of Fig-

Figure 3. (a) Tasks and their prevalence in our study, from the NLP and the clinical perspective. (b) Deep learning architectures for major task groupings.

Abbreviation: NLP, natural language processing.
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ure 4), while excluding “variant of existing method” Methods con-

tributions. While there were contributions of each kind for each

task, Text Classification papers were overrepresented in Applica-

tions (43% vs 36% in Methods); NER papers were overrepresented

in Methods variants (40% vs 24% in new Methods and 30% in

Applications); and Relation Extraction was overrepresented in new

Methods (17% vs 7% in Methods variants and 8% in Applications).

Overall, there were 46 contributions of “novel” methods (ex-

cluding duplicates, this is 20.8% of papers), most introducing new

DL architectures of some kind, for example, concatenating 2 new

types of embeddings. The 5 papers proposing a new approach to an

NLP task were related to temporal extraction/relation/inference,105

spelling/grammar error identification and recovery,96 computational

semantics,106 information retrieval (IR),88 and NER.69 The 2 papers

proposing new embedding methods were associated with text classi-

fication107 and word sense disambiguation.57 One paper was

marked for having both DL and NLP innovation: Cai et al’s69 self-

attention to label part-of-speech tags and named entities.

Considering the temporal trends of these novel contributions

(see Supplementary Material Figure 3), the new embeddings Meth-

ods were the earliest (2015 and 2016), whereas Methods contribu-

tions proposing a new DL architecture began in 2016; Methods

papers did not take new approaches to NLP tasks until 2017. Over-

all, “novel” Methods contributions are perhaps the slowest growing

contribution type in recent history (from 10 to 17, from 2017 to

2018). Methods variants are the fastest-growing type of contribu-

tion (an increase from 18 to 52, over the same period), Applications

and Resource papers show intermediate rates of increase (from 22

to 51; and from 3 to 5, respectively).

RQ3: How do these articles fit into the wider research

context?
Context: research communities

In Figure 5a, we categorized each publication venue as being a Con-

ference or Journal, and arising from 1 of 5 communities:

1. Computer science (CS, 22.6%), such as NeurIPS, or AAAI;

2. Informatics (48.6%), such as AMIA, JAMIA, or JBI;

3. Medical (4.7%), such as Radiology, Drug Safety, or Nature

Medicine;

4. NLP (18.4%), such as BioNLP, EMNLP, or ACL; or

5. Other (5.7%), such as PloS One, or IEEE Transactions on Nano-

Bioscience.

The NLP community saw the earliest push (in 2016) in DL-related

papers, but the CS and Informatics communities followed quickly (in

2017). Interestingly, medical venues seem to exhibit an increasing ac-

ceptance (beginning 2018) of deep learning, despite its reputation as a

“black box” which clinical experts might hesitate to use.

Overall, more articles have been published in conferences than

journals, but the differences per community demonstrate implicit

community preferences; the computer science and NLP communities

tend to prefer conferences, which boast quicker turnaround times

and higher standards of novelty. In contrast, medical conferences

are not considered full publications, so only journals are present for

that community. The informatics community is a multidisciplinary

blend, and has thus far also produced the largest volume of literature

using DL for Clinical NLP.

Figure 5b shows what types of contributions each community

has made. This illustrates relatively similar contributions from the

Informatics and CS venues, though resources and evaluation are

stronger in the Informatics community. As might be expected, new

Methods are overrepresented in the NLP venues but underrepre-

sented in Medical venues.

Context: preprint status

We checked the preprint status of each article to see whether it had

been posted on the preprint servers arXiv (https://arxiv.org/) or

bioRxiv (https://www.biorxiv.org/). Out of 212 papers, 35 were

posted on arXiv, and 0 on bioRxiv. Of the 35, 9 were ultimately

published in peer-reviewed journals, including 8 informatics-related

journals (eg, JAMIA, JBI, BMC Medical Informatics and Decision

Making). The number of preprints is also increasing per year.

Context: scientific rigor

A renewed emphasis on scientific rigor has permeated the academic

establishment,108,109 with replicability and reproducibility studies

(eg, from ACM’s definitions110,111) showing how much of the litera-

ture has fallen short of its scientific goals. While a direct study on

the reproducibility and replicability of our 212 articles is beyond the

scope of this work, we labeled each article for methodological im-

plementation details that may contribute to later studies on scientific

Table 3. (a) Types of labeled corpora used among the included

articles, and their availability for 3rd party researchers. Each per-

centage uses 212 papers as its denominator, but, due to the use of

multiple corpora in individual papers, percentages do not add up

within any grouping. (b) The languages for labeled corpora, in

comparison with N�ev�eol et al’s104 reviewed papers. In 4 of our

cases of non-English corpora, an English corpus was also used

(a) Source of Labeled Corpus

Availability Corpus Count Percent

Private Institutional (proprietary) dataset 104 49.1%

Challenge i2b2 challenges 34 16.0%

CCKS 12 5.7%

SemEval challenges 8 3.8%

CEGS N-GRID challenge 7 3.3%

MADE challenge 7 3.3%

Other 11 5.2%

Public MIMIC data 21 9.9%

THYME 5 2.4%

MEDLINE case reports 2 0.9%

MedlinePlus 2 0.9%

Other 20 9.4%

Other �Not reported� 3 1.4%

(b) Language of Labeled Corpus

Count Rank

Language This study N�ev�eol et al This study N�ev�eol et al

English 71.2% 151 – – –

Chinese 19.8% 42 11 1 5

Spanish 2.4% 5 17 2 3

Japanese 1.9% 4 8 3 6

Finnish 1.9% 4 6 3 7

French 0.9% 2 36 5 1

Italian 0.9% 2 3 5 9

Dutch 0.5% 1 5 7 8

Thai 0.5% 1 – 7 –

German 0.5% 1 19 7 2

Swedish 0.5% 1 12 7 4

Not reported 0.5% 2 – – –
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rigor. First, regarding the type of contributed software, we catego-

rized papers as Open-source vs Restricted (the software exists but

requires, for example, a commercial license) vs Not provided. Sec-

ond, regarding hyperparameters (eg, number of layers in the model,

the size of dimensions for each layer, the learning rate, the opti-

mizer, dropout rate), we tagged each paper with Not provided, Par-

tially provided, and Present for the 212 papers.

The results in Table 4 demonstrate that although most papers did

not provide software (91.51%), many of these nonetheless offered

enough hyperparameters and details (55.19%) so that other research-

ers can potentially reimplement their methods. An encouraging ma-

jority of papers (63.68%, summing the values in bold and/or italic in

Table 4) have contributed software or offered hyperparameters.

In addition, we find that the papers whose contributions were

tagged as Method type tend to provide more implementation details

(either contributed software or presented enough hyperparameters)

(66.43% ¼ 93/140) than papers with types of Application and

Resources (58.33% ¼ 42/72).

Context: comparisons with traditional machine learning

Figure 6 shows that the percentage of studies comparing DL against

traditional ML decreased from 2016 (70%) to 2017 (63%) to 2018

(55%) and 2019 (47%). This is likely due to the increasing accep-

tance of other DL algorithms as baseline models. Of the 212 papers,

just over half compared their proposed methods with traditional

ML methods (n¼108, 50.9%). Within these 108 studies, the major-

ity (72%) proposed DL methods that outperformed the traditional

ML methods, though there were also some negative results (11% of

DL algorithms were worse than traditional ML).

DISCUSSION

Growing acceptance
There is evidence that in addition to growing in volume, DL for

Clinical NLP is becoming more widely accepted. This acceptance is

demonstrated in the fact that deep learning approaches are increas-

ingly considered the baseline technique, with no need for compari-

son with traditional ML. Additionally, despite their genesis in the

CS and NLP communities, DL-based NLP approaches have thor-

oughly permeated the informatics community and penetrated repu-

table clinical journals.

The implications are that informaticians and clinicians will in-

creasingly be willing to adopt DL technologies in clinical settings as

it becomes more familiar and widespread. This is both an opportu-

nity and a hazard, so health professionals need to both accept and

discern the associated risks appropriately.

Figure 4. Number of papers on various NLP tasks per contribution category. Articles tagged with multiple contributions and/or Tasks appear more than once.

Abbreviations: EN, Entity Normalization; IE, Other Information Extraction; IR, Information Retrieval; NER, Named Entity Recognition; NLG, Natural Language Gen-

eration; NLP, natural language processing; RE, Relation Extraction; TC, Text Classification; TE, Temporal Expressions; WSD, Word Sense Disambiguation.
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Figure 5. (a) Number of papers from different research communities and their publication types (Journal, Conference) over time; overall, the informatics commu-

nity produced the highest volume of literature (48.6%), followed by CS (22.6%), followed by NLP (18.4%), followed by Others (5.66%) and Medical (4.7%). (b)

Types of contributions for each community.

Abbreviations: CS, computer science; NLP, natural language processing.

Table 4. Availability of rigor-related implementation details (count and proportion)

Hyperparameters

Not provided Partial Present Total (row)

Software Not provided 48 (22.64%) 29 (13.68%) 117 (55.19%) 194 (91.51%)

Restricted 1 (0.47%) 0 (0.00%) 3 (1.42%) 4 (1.89%)

Open-source 2 (0.94%) 3 (1.42%) 9 (4.25%) 14 (6.60%)

Total (col) 51 (24.05%) 32 (15.1%) 129 (60.85%)

Bolded entries indicate that articles identified the software in some way. Italicized entries indicate that articles gave a sufficient set of hyperparameters.
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Substantiating vs surprising results
A number of commonly held assumptions were substantiated in our

data analysis. CNNs have dominated the Text Classification task

because of early, successful CNN-based methods.112 A similar effect

was noted for LSTMs with NER (typically cast as a sequence label-

ing problem). Also, as expected, early adopters of deep learning DL

for clinical NLP were publishing in NLP venues rather than infor-

matics or medical venues; there is a lag for adoption of cutting-edge

techniques in the informatics community, and an even longer one

for the medical community.

However, other analyses were surprising when compared with

conventional wisdom. Whereas previous approaches to clinical NLP

seemed to extensively utilize knowledge resources, only 17.9% of

DL-based approaches did so. Whereas earlier work24 found French

to be the most prolific non-English language in clinical NLP, our

study presents a previously unreported fact about non-English

clinical NLP: when dealing with deep learning, Chinese has more

representation than French. Whereas some have assumed that

cutting-edge DL research is entirely contained on preprint servers,

we found that only 16.5% of the papers in our study were posted as

preprints prior to their publication.

Projections
This review has suggested some potential future trends in DL for

clinical NLP. Because of the cost of annotating clinical corpora and

the privacy concerns with sharing in-domain training data, domain

adaptation and transfer learning strategies are important. However,

there has been little systematic analysis on this issue from a deep

learning perspective, perhaps in part due to the lack of convincing

results. With the rise of successful pretrained models like BERT, we

expect that the use and refinement of transfer learning will rise in

popularity quickly.

Despite this, we also believe medical knowledge resources have

been underutilized. Though the mantra of deep learning has been to

“let the weights determine what’s important” rather than to hand-

craft features, DL architectures and inputs still need human input, as

evidenced by a recent push to consider inductive bias (eg, gender

biases found in word embeddings). Knowledge resources may pro-

vide calculable and objective means to guide data-driven DL algo-

rithms, and the medical domain is uniquely equipped with such

resources.

Further, it is clear from other subfields involving ML for clinical

tasks that deep learning is not always successful.113,114 In this we

mean that oftentimes it fails to outperform basic models, such as lo-

gistic regression. In the current set of articles included in this study,

however, there were no in-depth analyses of the limitations or fail-

ures of DL methods for clinical NLP. In the few cases (n¼12) where

DL failed to outperform traditional ML, there was no investigation

into the underlying causes of the failure. Missing are investigations

into the relative merits and pitfalls of deep learning based on data

size, data quality, language, medical specialty, informatics task, and,

to our previous point, the inclusion of knowledge resources. There-

fore, we assert that there is a critical need for empirical investiga-

tions into the limitations of DL methods for clinical NLP tasks. For

example, accuracy improvements of DL methods often rely on large

computational resources that consume substantial amounts of en-

ergy, which can be detrimental to the environment.104

Figure 6. Comparisons between deep learning techniques and traditional machine learning, over time.
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Overall, we would argue that at this point it is dangerous to only

compare DL-based methods, especially in regard to applications

about to be deployed to the clinic. However, this paper also demon-

strates that it is scientifically naı̈ve to not compare to some kind of

DL baseline as well. Additionally, emerging DL practice suggests

some instability surrounding initialization and hyperparameter se-

lection. Few works presented here experimented with re-

initialization of random seeds, small adjustments to hyperpara-

meters, etc; 1 example of simple stability characterizations was

Tourille et al,115 who repeated each experiment 30 times and plotted

the results. We recommend that as best practices emerge in the NLP

community (and these practices still are in the nascent stages), the

clinical NLP community quickly adopt these and report results in a

consistent manner.

Finally, we suggest that truly novel core methodological contri-

butions in this field may eventually plateau or even decrease, but the

application and tweaking of deep learning to many (potentially

new) clinical tasks will continue beyond any such plateau.

Limitations
This methodical review has a number of limitations. First, there is the

possible selection bias inherent to the search methods used. This

includes bias both in the types of searches we performed as well as the

underlying limitations of those search engines. For instance, despite

the fact that the studies had already been published, our ACL Anthol-

ogy search missed both emrQA116 and CliCR117 whereas a current

search with the exact same criteria on the ACL Anthology would have

returned those studies. Similarly, we consider that a great variety of

relevant papers don’t explicitly contain the keywords of our method

in their titles, therefore additional papers were manually added based

on our authors’ research experiences. During the process, we noticed

that specific DL models mentioned in the title were probably missed

based on the current search and can be considered as keywords in the

future—for instance, condensed memory networks,39 graph-based

models, BERT41, etc. In addition, some conventional clinical tasks re-

lying heavily on NLP are also mentioned in the title, while missed in

the previous search, such as de-identification,59 automatic ICD-9 cod-

ing,44 diagnostic inference,39 and patient representation learning.45

If anything, the trend towards universality of DL methods for NLP

means that simple keyword searches such as “deep learning” and

“neural networks” will increasingly miss relevant papers as more and

more of these methods are the assumed default and not an element of

novelty.

Second, while our review attempted to define mostly objective

criteria for data collection, some data elements (eg, Application vs

Evaluation papers) were not precisely defined and still had an inher-

ent element of subjectivity. Related to that, third, many of the data

collection elements and the normalization to broader categories

were difficult to judge and agree upon, especially as papers are di-

verse in structure and style, and we allowed multiple tags for many

of the data collection elements. All authors who participated in data

collection (9) were tested for inter-annotator agreement on 11 of the

212 papers; in brief, this revealed that most data elements’ responses

could be normalized, but fundamental disagreements between the 9

annotators were still found in virtually every category.

Finally, regarding scope, we found it infeasible to address the

very interesting question of comparing clinical NLP vs open-domain

NLP. To do so, we would have needed to narrow our focus (eg, only

LSTMs or only text classification), which would have been a very

different scope than the current study.

CONCLUSION

We have reported quantitative and qualitative analyses on our me-

thodical review of 212 papers regarding DL in clinical NLP, finding

an active research area with multiple vibrant communities making di-

verse contributions. We quantitatively observed some widely held

associations in the community, regarding methods (eg, CNNs tend to

be used on classification) as well as preferences (eg, NLP community

prefers conferences, medical community prefers journals). We expect

deep learning to continue and extend its leading role in the wider re-

search context before other technological paradigms supplant it.
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