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ABSTRACT

Objectives: We propose a one-shot, privacy-preserving distributed algorithm to perform logistic regression

(ODAL) across multiple clinical sites.

Materials and Methods: ODAL effectively utilizes the information from the local site (where the patient-level

data are accessible) and incorporates the first-order (ODAL1) and second-order (ODAL2) gradients of the likeli-

hood function from other sites to construct an estimator without requiring iterative communication across sites

or transferring patient-level data. We evaluated ODAL via extensive simulation studies and an application to a

dataset from the University of Pennsylvania Health System. The estimation accuracy was evaluated by compar-

ing it with the estimator based on the combined individual participant data or pooled data (ie, gold standard).

Results: Our simulation studies revealed that the relative estimation bias of ODAL1 compared with the pooled

estimates was <3%, and the ratio of standard errors was <1.25 for all scenarios. ODAL2 achieved higher accu-

racy (with relative bias <0.1% and ratio of standard errors <1.05). In real data analysis, we investigated the

associations of 100 medications with fetal loss during pregnancy. We found that ODAL1 provided estimates

with relative bias <10% for 85% of medications, and ODAL2 has relative bias <10% for 99% of medications. For

communication cost, ODAL1 requires transferring p numbers from each site to the local site and ODAL2

requires transferring ðp � p þ pÞ numbers from each site to the local site, where p is the number of parameters

in the regression model.

Conclusions: This study demonstrates that ODAL is privacy-preserving and communication-efficient with small

bias and high statistical efficiency.
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INTRODUCTION

Electronic health records (EHRs) contain patient health information

recorded during routine clinical care by various types of clinicians,

including physicians, nurses, and other ancillary medical personnel.

The last few decades have seen large-scale adoption of EHRs

throughout the United States, including providers in rural communi-

ties,1 although adoption in these settings was slower than that

among larger, urban medical centers.2 This availability of clinical

data from EHRs throughout the United States, from small-scale clin-

ics (eg, 1 or 2 providers) all the way to large academic medical cen-

ters, has led to new challenges and opportunities within the

informatics community.

Data integration across different institutions and clinical sites

can potentially accelerate knowledge discovery and enhance the gen-

eralizability of findings, and is consistent with the vision of a

national-scale learning health system.3–5 The growth of structured,

analysis-ready clinical data has also resulted in formation of several

collaborative groups and consortiums that were designed to specifi-

cally handle data integration challenges from across diverse institu-

tions.6,7 One organization is called the Observational Health Data

Sciences and Informatics (OHDSI) consortium (https://ohdsi.org/).

OHDSI has developed a Common Data Model that all community

members conform with by transforming their local EHR data to the

Common Data Model’s standards. This allows researchers to de-

velop methods that can be simultaneously applied to many institu-

tions. In addition, tools are made available in an open source

framework to enable further advancement of analytic methods.3,8,9

In many situations, it is not feasible to share patient-level data

across sites or provide data to a central site, especially if sites exist in

different countries. Distributed algorithms have been developed that

decompose computational tasks into pieces within each site without

sharing individual-level information.10–14 Among them, Chen et al12

proposed a distributed algorithm for linear regression. Owing to the

existence of the close-form estimator for linear regression, the algo-

rithm directly decomposes the estimator into parts that can be calcu-

lated separately in each site and then combined together without

loss of information. The combined estimator is lossless, which

means it is identical to the result where the model is fitted on the

combined individual participant data (pooled data). Moreover, the

algorithm is one-shot, which means transferring information across

sites is required only once.

However, for other commonly used statistical models without

close-form solutions, such as logistic regression or the Cox propor-

tional hazards model, the analogy of Chen et al12 is not available.

The parameters of these models are often estimated by optimizing a

likelihood function using the Newton method, which iteratively

updates the parameter value until a convergence is reached. As a

consequence, iterative distributed algorithms are developed to de-

compose each step of the Newton method and calculate them dis-

tributively. For example, Wu et al10 proposed an iterative algorithm

for distributed logistic regression named GLORE (Grid binary

LOgistic Regression) and successfully deployed it to the multi-

institutional pSCANNER (patient-centered Scalable National

Network for Effectiveness Research) network. Another iterative al-

gorithm called WebDISCO (a web service for distributed Cox model

learning) was developed for Cox proportional hazards model by the

same research team.11 These algorithms are lossless, yet the commu-

nication cost, which is characterized by the total number of bytes

transferred per iteration and number of iterations needed, is often

high, and therefore could lead to operational difficulty.

To avoid the iterative communication across sites, Duan et al15

proposed a one-shot distributed algorithm for logistic regression

(ODAL), which requires transferring data from each site only once

and does not require sharing patient-level data from participating in-

stitutional data contributors. Following this work, we incorporate a

new one-shot algorithm (ODAL2) into the ODAL framework. With

the help of transferring more digits, ODAL2 can reach higher esti-

mation accuracy compared with the algorithm proposed in Duan et

al refer to as ODAL1 hereafter and provide estimates nearly the

same as the analysis based on the pooled data. In addition, our arti-

cle provides the variance estimators for both ODAL1 and ODAL2,

which allow quantification of the uncertainty, and enable the statis-

tical inference procedures.

MATERIALS AND METHODS

In this section, we briefly introduce the ODAL1 algorithm proposed

in Duan et al,15 and then propose the new algorithm ODAL2, in the

context of distributed research networks. We begin with a brief in-

troduction of the logistic regression model, which is arguably the

most commonly used model to study impacts of risk factors on a bi-

nary outcome in biomedical sciences.

Logistic regression model
Consider a setting where we have p� 1 risk factors, detonated by

x1; x2; . . . ; xp�1. Let x ¼ 1; x1; x2; . . . ; xp�1

� �T
. The outcome

Y is binary and the logistic regression model assumes

logit Pr Y ¼ 1ð Þjxð Þ ¼ xTb;

where logit tð Þ ¼ logft=ð1� tÞg and b is the vector of intercept and

regression coefficients.

Algorithms
Suppose that we have N ¼

PK
j¼1 nj identically and independently

distributed observations from K different sites. Let ðxij; YijÞ denote

the i-th observation in the j-th clinical site. The global log-likelihood

function combining data from all sites can be written as

L bð Þ ¼ 1

N

XK

j¼1

Xnj

i¼1

½Yijx
T
ij b� logfð1þ exp ðxT

ij bÞg�;

and the pooled estimator is obtained through maximum the previous

function, that is,

bb ¼ arg max
b

LðbÞ: (1)

This pooled estimator achieves the best possible estimation accu-

racy through directly combining the patient-level data from different

sites, and therefore can be treated as the gold standard estimator. To

avoid transferring patient-level data, we extend the distributed com-

puting method proposed by Jordan et al13 and Wang et al14 and de-

velop the following algorithms to estimate the coefficient b.

1. The first-order algorithm- -ODAL1

With the assumption that the patient-level data from one of the

sites (termed as the local site) are accessible, Duan et al15 adopted

the surrogate likelihood approach in Jordan et al13 and constructed

the following first-order surrogate likelihood function as an approx-

imation of the global likelihood function:
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~L
1

bð Þ ¼ L1 bð Þ þ rL �b
� �
�rL1

�b
� �

b;
�

(2)

where �b is an initial value. The term Lj bð Þ is the log-likelihood func-

tion of the j-th site defined as

Lj bð Þ ¼ 1

nj

Xnj

i¼1

½Yijx
T
ij b� logfð1þ exp ðxT

ij bÞg�; (3)

and j ¼ 1 is assumed to be the local site where patient-level data are

accessible. The term rL �b
� �

is the first gradient of the likelihood

function L bð Þ evaluated at �b, where

rL �b
� �
¼
XK

j¼1
njrLj

�b
� �

=N: (4)

The gradient of the log-likelihood function of the j-th site is cal-

culated as

rLj
�b
� �
¼ 1

nj

Xnj

i¼1

fYij � pijð�bÞ gxij (5)

where pij
�b
� �
¼ f1þ exp �xT

ij
�b

� �
g�1. The quantity rLj

�b
� �

is a p-di-

mensional vector. When rLj
�b
� �

is transferred to the local site, rL

�b
� �

can be calculated by ð4Þ. The terms L1 bð Þ and rL1
�b
� �

in the

surrogate likelihood function are obtained locally using the patient-

level data from the local site. The ODAL1 estimator is then defined as

~b1 ¼ arg max
b

~L
1

bð Þ:

Intuitively, a more accurate initial value �b increases the accuracy

of ~b1 . A reasonable choice of �b suggested by Duan et al15 is the max-

imum likelihood estimator of the local likelihood, which does not

require extra communication to obtain, that is,

�b ¼ arg max
b

L1ðbÞ:

We derived the variance estimator of ~b1 , which can be estimated

within the local site by Supplementary equation S1.

We summarize the ODAL1 in the following algorithm and also

in Figure 1.

2. The second-order algorithm- -ODAL2

To achieve higher estimation accuracy, we propose the ODAL2

algorithm, which requires transferring small amount of extra aggre-

gated information than ODAL1. More specifically, ODAL2 is based

on the following second-order surrogate likelihood, which calculates

the second-order gradient r2L �b
� �

in a distributed manner to further

improve the approximation accuracy.

~L
2

bð Þ ¼L1 bð Þ þ frL �b
� �
�rL1

�b
� �
gTb

þ 1

2
b� �b
� �T r2L �b

� �
� r2L1

�b
� �

b� �b
� �

:
�

(6)

In the previous function, L1 bð Þ, rL1
�b
� �

and r2L1
�b
� �

can be

calculated from the local site. The term rL �b
� �

is calculated the

same way in equations 4 and 5, and r2L �b
� �

is calculated in a dis-

tributed way by r2L �b
� �
¼
PK

j¼1 njr2Lj
�b
� �

=N, where r2Lj bð Þ is

defined as

r2Lj bð Þ ¼ 1

nj

Xnj

i¼1

pijð�bÞf1� pijð�bÞgxijx
T
ij :

We note that the second-order gradient r2Lj bð Þ is a

p� p matrix and contains only aggregated information. Similarly,

the ODAL2 estimator is obtained by

~b2 ¼ arg max
b

~L
2

bð Þ:

The algorithm is summarized below and in Figure 1.

Simulation study
In our simulation study, we consider 4 risk factors: x1; x2;x3, and

x4. The variables x1 and x2 are continuous variables mimicking the

standardized weight and age in the University of Pennsylvania

Health System (UPHS) dataset, respectively. The variable x3 is a bi-

nary variable generated from a Bernoulli distribution with probabil-

ity 0.45, which matches the proportion of white patients in the

UPHS dataset (see Table 1). The variable x4 is a binary variable

mimicking the medication status, which is also generated from a

Bernoulli distribution, in which the probability of the Bernoulli dis-

tribution is sampled from the empirical distribution of the preva-

lence of the top 100 medications in the UPHS dataset. The

histograms of the distributions used for x1, x2, and x4 can be found

in Supplementary Figure S1.

To account for a wide range of the possible association param-

eters, we randomly choose each of the regression parameters

b1;b2; b3;b4ð Þ from a uniform distribution between (–1, 1). The

intercept b0 is then chosen to maintain the prevalence of the

outcome to be around 14%, which is close to the prevalence of fe-

tal loss in the UPHS dataset (see Table 1). To evaluate the

Algorithm 1 ODAL1

1. Initial value: obtain �b ¼ arg max
b

L1ðbÞ using data in the

local site 1.

2. Initial communication: transfer �b to the other sites.

3. For site j¼2 to K,

4. do compute rLj
�b
� �

using equation 5

5. transfer rLj
�b
� �

to site 1

6. end

7. Compute the surrogate likelihood ~L1 bð Þ using equation 2

8. Obtain ~b1 ¼ arg maxb
~L1 bð Þ

9. Obtain V ð ~b1Þ using Supplementary Material equation S1

10. return ~b1 and V ð ~b1Þ.

Algorithm 2 ODAL2

1. Initial value: obtain �b ¼ arg max
b

L1ðbÞ using data in the

local site 1.

2. Initial communication: transfer �b to the other sites.

3. For site j¼2 to K,

4. do compute rLj
�b
� �

;r2Lj
�b
� �

5. transfer rLj
�b
� �

;r2Lj
�b
� �

to site 1

6. end

7. Compute the surrogate likelihood ~L2 bð Þ using

equation (6)

8. Obtain ~b2 ¼ arg maxb
~L2 bð Þ

9. Obtain V ~b2
� �

using Supplementary Material equation S2

10. return ~b2 and V ~b2
� �
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performance of the proposed algorithms, we design the following

2 simulation settings.

A. We randomly generate data from K sites. The local site has

1000 samples and each of the other K-1 sites has 10r � 1000

samples, where r is randomly chosen from –1 to 1. We per-

form separate simulations for different values of K ranging

from 2 to 100.

B. We randomly generate data for 10 000 patients, and divide the

data in to 10 subsets where we assign n samples to the local site,

and the other 9 sites randomly split the ð1000� nÞ samples. We

perform separate simulations for different values of n ranging

from 100 to 9100. This setting investigates the performance of

ODAL when the relative size of the local site, compared with the

total number of patients, increases from a small percentage to a

large proportion.

Figure 1. Schematic illustration of the proposed one-shot, privacy-preserving distributed algorithm to perform logistic regression (ODAL) methods. (a) ODAL1:

The initial value �b is obtained by fitting logistic model at the local site and is transfer to the other sites. Then the intermediate term rLj ð�bÞ is evaluated at each site

j (j¼2, . . ., K) and transferred back to the local site. Combined with rL1ð�bÞ and L1ðbÞ, we obtain the first-order surrogate likelihood function ~L
1ðbÞ and the ODAL1

estimator is obtained by maximizing ~L
1

bð Þ: (b) ODAL2: The initialization is the same as ODAL1, and the intermediate terms rLj ð�bÞ and r2Lj ð�bÞ are evaluated at

each site and transferred back to the local site. Combined with rL1ð�bÞ, r2L1ð�bÞ, and L1ðbÞ, we obtain the second-order surrogate function ~L
2ðbÞ and the ODAL2

estimator is obtained by maximizing ~L
2

bð Þ:
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A graphical illustration of the design of the simulation study can

be found in Figure 2.

We compare the estimates from the proposed ODAL1 and

ODAL2 with the local estimate from equation 3 with j ¼ 1 and the

estimate from the GLORE algorithm in terms of the estimation ac-

curacy of b4. Relative bias and ratio of standard errors to the pooled

estimate (gold standard) are used as metrics. We also record the

number of iterations required by GLORE, and compare the amount

of numbers transferred in each methods. The simulation study is

conducted in R version 3.4.3 (R Foundation for Statistical

Computing, Vienna, Austria) and the R code is provided in the

Supplementary Material.16

Application of ODAL algorithms to study the

association between medication and fetal loss
We evaluate our algorithms using data from UPHS, which covers a

population that spans the entire Philadelphia Metropolitan area, in-

cluding Southeastern Pennsylvania, Delaware, and Southern New

Jersey. We extract data from UPHS for female patients whose preg-

nancy diagnosis was labeled as normal (ie, defined as those who are

coded with any of the Z34 International Classification of Diseases–

Tenth Revision codes or a V22 International Classification of

Diseases–Ninth Revision code) and those patients with a fetal loss

(ie, who are coded with any International Classification of Diseases–

Ninth Revision code 630-639 or International Classification of

Diseases–Tenth Revision code O00-O08). We select the 100 most

common medications prescribed within 1 year before the first diag-

nosis of either the fetal loss or a normal pregnancy. For legal con-

cern, we are not able to release the specific drug names in this

article. Instead, we label them from 1 to 100. We exclude patients

for whom no medication information is available. Demographic var-

iables including age, race, body mass index (BMI), and weight are

also extracted within 1 year before outcome (ie, normal pregnancy

or fetal loss). Age, weight, and BMI are averaged across the 1-year

period before the outcome. We fit logistic regression models to eval-

uate the risks of fetal loss associated with various medication expo-

sures. Medications included in our analysis were prescribed at any

time point from 1 year before first diagnosis of outcome until the di-

agnosis date of outcome. We include one medication at a time

adjusting for maternal age, race, weight, and BMI.

To mimic a distributed network, we randomly extract 10% of

the samples to construct the local site, and for the remaining data,

we randomly split them into 9 subsets, in which each subset serves

as a site in the network. We apply the ODAL algorithms and the

GLORE algorithm using the 10 datasets. The pooled estimates are

obtained by fitting regression models on the whole dataset, and the

local estimates are obtained using patients in the local site only. See

Figure 3 for a graphical illustration of the study design. This study

was reviewed and approved by the University of Pennsylvania

Institutional Review Board.

RESULTS

Evaluation of bias reduction through simulation studies
We presented the averaged relative bias, ratio of standard errors,

and the number of iterations of each compared method across 500

replications in Figure 4. We verified that GLORE is lossless, in

which bias is zero and the relative standard errors are equal to 1 for

all scenarios. In setting A, when K increases, the total sample size

increases while the local sample size remains unchanged. Therefore,

the relative bias and standard error of the local estimator increase

due to increasing total sample size across sites. Compared with the

pooled estimator, ODAL1 is observed to have small relative bias

(<0.5%) and relative standard errors between 1.02 to 1.25. ODAL2

is more accurate, with a relative bias <0.1% and ratio of standard

error <1.05. In setting B, when the total sample size is fixed, the per-

formance of the local estimator improves as the local sample size

increases. On the other hand, ODAL1 and ODAL2 have relative

biases <0.3% for all local sample size settings.

For communication cost, GLORE requires between 5 and 7

rounds of communications until the algorithm converges, and for

each iteration, it requires transferring p� pþ p numbers from each

site to a center. ODAL1 an ODAL2 require only 1 round of commu-

nication, where ODAL1 requires transferring p numbers from each

site to the local site, and ODAL2 requires transferring

p� pþ p numbers from each site to the local site.

In summary, both ODAL1 and ODAL2 can achieve comparable

estimation accuracy as the pooled estimator, while ODAL2 has a

more robust accuracy performance than ODAL1. The communica-

tion costs of ODAL1 and ODAL2 are less than GLORE.

Validation using the UPHS fetal loss dataset
Table 1 shows the summary statistics of the demographic features of

the UPHS dataset.

There were in total 30 810 normal pregnancies and 4763 fetal

loss cases (prevalence of fetal loss is 13.43%) included in the data-

set. The distributions of the age, weight, and BMI variables were sig-

nificantly different in the groups of patients. For simplicity, we

restricted our adjustment of race to a binary indicator variable of

white vs other races/ethnicities including African American, Asian,

Hispanic, etc.

Figure 5 shows the estimated odds ratio for each medication

using the 5 methods. As GLORE yields the same estimation results

as the pooled estimator, we plot them using the same line and sym-

bol. The drugs from the left to the right were sorted by the esti-

mated odds ratio from the pooled dataset and labeled from 1 to

100. The estimated odds ratios and 95% confidence intervals

from all 4 methods can be found in Supplementary Table S1. We

found that for 99% of medications, ODAL2 has estimates with

<10% of relative bias compared with the pooled estimator.

ODAL1 has slightly larger bias compared with ODAL2, and

ODAL1 provides estimates with relative bias <10% for 85% of

the medications. For a clearer presentation, we zoomed in the

Table 1. Demographics of Pregnancies Treated at the University of

Pennsylvania Health System

Demographics

Normal Pregnancy

(n¼ 30 810)

Fetal Loss

(n¼ 4763) P Value

Race/ethnicity

Whitea 13 911 (45.2) 2291 (48.1)

African American 12 918 (41.9) 1871 (39.3)

Other 1916 (6.2) 274 (5.8)

Asian 2065 (6.7) 327 (6.9)

Age, y 29.40 32.15 <.001

Weight, lb 123.45 115.43 <.001

Body mass index, kg/m2 16.95 16.61 .043

Values are n (%) or mean.
aFor race, we only used a binary variable (for white vs other races/ethnicities

including African American, Asian, Hispanic, etc.) in our regression model.
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region of 10 medications with odds ratio close to 1. The local esti-

mates were observed to be highly inconsistent with the pooled esti-

mates. For example, the odds ratio for the 72th drug was

estimated to be 0.93 by the pooled estimator and 2.82 by the local

estimator, while was estimated as 0.49 and 1.02 by ODAL1 and

ODAL2, respectively. Regarding the communication cost, for the

100 medications, GLORE required 6-9 (with a mean value of 6.7)

times of iteration to reach convergence.

For further validation, we computed the odds ratios and the

95% confidence intervals of the top 10 drugs that are positively as-

sociated with fetal loss (harmful), and also of the top 10 drugs with

negative association (protective), as shown in Figure 6, and com-

pared our results with the information from Food and Drug

Administration’s A-X category system, which is a pregnancy safety

evaluation system for drugs. In the A-X system, category A drugs

are drugs in which no fetal risk has been observed in controlled

Figure 2. Design of the simulation study. 1) Data are generated from a logistic regression with covariates X1, X2, X3, and X4; 2) Setting A considers the case in

which the local sample size is fixed at 1000. The number of sites K is growing from 2 to 100; and 3) Setting B considers the case where total sample size is fixed at

10 000 and there are 10 sites in the network. The sample size in the local site grows from 100 to 9100.

Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 3 381



Figure 3. Design of the real data evaluation. Patients with normal pregnancy and fetal loss are identified from the University of Pennsylvania Health

System(UPHS) database and randomly divided into 10 sites. The local site has 10% of the data and the other 9 sites randomly split the rest of the data. Local estimator

is conducted using data from the local site. The first-order one-shot, privacy-preserving distributed algorithm to perform logistic regression (ODAL1), ODAL2, and

GLORE (Grid binary LOgistic Regression) are performed using the distributed data. The pooled analysis is performed using the whole fetal loss dataset.

Figure 4. Relative biases and ratio of standard errors of the local estimator, first-order one-shot, privacy-preserving distributed algorithm to perform logistic re-

gression (ODAL1), ODAL2, and GLORE (Grid binary LOgistic Regression) compared with the POOLED estimator under settings A and B.
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human studies, category B drugs are drugs with no evidence of fetal

risk in animal models but for which well-controlled human studies

are lacking, category C drugs are drugs in which fetal risk has been

shown in animal models but the effects are unknown in humans,

and categories D and X are drugs with known evidence of some fetal

risk in humans and animals. Among the 10 “harmful” (which does

not imply causation) drugs we identified, 6 were category D or X,

each having known evidence of increase fetal loss risk in the litera-

ture, with 4 being known contraceptives. Three drugs were category

C pain relievers.

In the 10 medications that are negatively associated with fetal loss

(ie, “protective”), we found 8 types of prenatal vitamins, as well as fo-

lic acid, that are commonly considered beneficial for pregnancy.

These findings are consistent with the literature on the importance of

prenatal vitamins to prevent early term miscarriages and fetal loss.

In summary, the ODAL algorithms provide estimates that are

highly consistent with the pooled estimates, and the identified

associations are consistent with current understanding of these

medications.

DISCUSSION

In this study, we proposed distributed algorithms, ODAL, for lo-

gistic regression through the construction of surrogate likelihood

functions that act as good proxies of the global likelihood function

without the need for sharing individual patient-level data across

sites. The proposed algorithms are communication-efficient com-

pared with the existing iterative algorithms. Although the esti-

mates from ODAL is not completely identical to the pooled

estimate, the consistency between ODAL with the pooled estimate

is found to be extremely high over a wide spectrum of scenarios

considered in simulation studies and real data analyses. In practice,

when the total sample size or the local sample size becomes larger,

the deviation between ODAL and the pooled estimator could be

even lower.

In almost all cases, the accuracy of ODAL2 is higher than that of

ODAL1 and is almost the same as the gold standard estimator.

Although both ODAL algorithms are one-shot, ODAL1 requires

transferring fewer digits than ODAL2 does. The data transferred

from each site to the local site are p numbers for ODAL1 and p� p

þp numbers for ODAL2, where p is the number of parameters in

the logistic regression model. The iterative algorithm GLORE, on

the other hand, requires transferring p� pþ pð Þ �M numbers from

each site to the central machine, where M is the number of itera-

tions for the algorithm to reach a convergence. In practice, when

fitting a relatively low-dimensional model, the extra communica-

tion cost of transferring p� p numbers is negligible. In this sce-

nario, ODAL2 would be preferred as it can guarantee a better

performance. However, in some applications, the number of pre-

dictors included in the model can be large, for example, when

studying association between a certain disease and a large number

of genetic variants jointly. In such cases, transferring p� p num-

bers is more challenging, and ODAL1 might be favored because it

has less communication cost and can still provide reasonable esti-

mation accuracy. On the other hand, if iterative communication is

not a concern within the network, lossless methods such as

GLORE are preferred.

Implementing ODAL is relatively easy in distributive networks

such as ODHSI, as it does not require iterative communication.

Iterative communication is a lengthy process whereby each individ-

ual site has to provide estimates and then the calculations are

Figure 5. Odds ratio estimates from the first-order one-shot, privacy-preserving distributed algorithm to perform logistic regression (ODAL1), ODAL2, POOLED

(identical to the estimates from GLORE [Grid binary LOgistic Regression]), and the local estimators for 100 medications and their associations with fetal loss. The

100 medications from left to right are sorted in descending order by their odds ratio, which was estimated from the pooled estimator. The list of drug name and

estimations can be found in Supplementary Table S1. We zoom in on 10 drugs with odds ratios near 1 in the highlighted box.
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recomputed and improved. We found that other methods (such as

GLORE) typically required 6 communication events. In practice,

this would involve 6 different requests made by researchers to each

individual site participating in a study. In many cases this is an un-

tenable situation. However, using our methods and other data

harmonization methods, such as those from the OHDSI collabora-

tion, the number of iterative communications is greatly reduced

(only 1 communication event is required). With the help of the

Common Data Model, researchers at different clinical sites can initi-

ate a common research question and transfer their data into the

same format. For ODAL, one site serves as the local site and pro-

vides an initial estimation of the exposure-outcome relationship.

This initial estimation is then provided to other sites, who calculate

site-specific estimates. These calculations can be performed using

prewritten code or software packages (see https://github.com/

Penncil/OHDSI-PDA).

Limitations
Our data application is not based on a real distributed research net-

work, but rather is done by splitting one dataset into different subsets.

This ignores the potential heterogeneity of data across sites. It would

be more meaningful to evaluate the performance of the ODAL algo-

rithms in a real distributed network. Our study using EHR clinical

data on medication exposure and risk of fetal loss shows that 13.43%

of pregnancies in our cohort ended in fetal loss. Our cohort contained

30 810 normal pregnancies and 4763 fetal loss cases. This is about

half of the expected rate between 25% and 50% of all pregnancies

that end in fetal loss (or miscarriage).17 Therefore, our clinical data

are underreporting the true effect of fetal loss; therefore, there may be

additional pregnancies that were not captured. Based on our results,

fetal loss is also likely underreported in clinical records. Therefore,

our results on medication exposure and fetal outcome are limited to

those reported in EHRs and may not apply to other pregnancies not

Figure 6. (Left panel) Point estimates and confidence intervals of odds ratios estimated from the first-order one-shot, privacy-preserving distributed algorithm to

perform logistic regression (ODAL1), ODAL2, POOLED, and local estimators for top 10 medications positively associated with fetal loss. (Right panel) Point esti-

mates and confidence intervals of odds ratios estimated from ODAL1, ODAL2, POOLED, and local estimators for top 10 medications negatively associated with fe-

tal loss. The dashed gray line indicates an odds ratio of 1, indicating no difference in risk from that expected by chance.
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captured in the clinical system. Moreover, the regression model in this

study controlled only basic demographic variables such as age, sex,

and race. There might be uncontrolled confounders that we would

like to explore in the following work.

Future work
While our methods are motivated by the analysis of EHR data, ODAL

can be applied in numerous other settings in which distributed analysis

is needed. For example, for population and global health studies that

utilize administrative data such as birth and death records, there is in-

creasing concern with releasing data out of the local or national

departments of health18,19 Also, data from prospective cohorts, espe-

cially for environmental health studies, often cannot be shared outside

of the parent study due to the collection of participants’ residential

locations, timings of exposure and outcome, and other identifiers.20–22

In the future, we plan to extend our method to other types of out-

comes, such as categorical and time-to-event data. In addition, we are

extending to high-dimensional setting in which the number of covari-

ates is considered to be large compared with the total sample size. We

are developing open-source software packages for directly implement-

ing ODAL in distributed networks. We believe that our algorithms

can be a useful complement to the existing distributed algorithms.

CONCLUSION

Here, we presented algorithms (ODAL) that allow for distributive

analysis across multiple clinical datasets. The algorithms are

privacy-preserving in the sense that patient-level data are not required

to be transferred across sites. We studied both the first-order algo-

rithm ODAL1 and is the second-order algorithm ODAL2 using simu-

lated data and a real clinical EHR dataset from UPHS. Our

simulation studies revealed that the relative estimation bias compared

with the pooled estimator was <3% for all scenarios. ODAL2

achieved higher accuracy but required extra information transferred

across sites. When evaluated against real clinical EHR data, we found

that ODAL1 provided odds ratio estimates with relative bias <10%

for 85% of medications and that ODAL2 has relative bias <10% for

99% of medications. In summary, we conclude that ODAL is a

privacy-preserving and communication-efficient algorithm that pro-

vides accurate estimation and efficient statistical inference.
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