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ABSTRACT: Tak-242 (resatorvid), a Toll-like Receptor 4
(TLR4) inhibitor, has been identified as a potent suppressor of
innate inflammation. As a strategy to target Tak-242 to select
tissue, four TLR4-inactive prodrugs were synthesized for activation
via two different release mechanisms. Two nitrobenzyl Tak-242
prodrugs released the parent drug upon exposure to the exogenous
enzyme nitroreductase, while the two propargyl prodrugs were
converted to Tak-242 in the presence of Pd0.
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We have recently demonstrated that the potent toll-like
receptor 4 (TLR4) inhibitor Tak-2421,2 can be utilized

to significantly improve outcomes in islet transplantation.
While the free drug protects pancreatic islets from TLR4-
mediated innate inflammation during their isolation,3 the
conjugation of a Tak-242 prodrug to islet surfaces using a slow-
release linker provides localized and sustained protection of the
islets after transplantation.4 Due to the promising outcomes
from those studies, we have continued to explore strategies for
the targeted delivery of Tak-242, and herein we report our
work on the synthesis and characterization of two classes of
Tak-242 prodrugs for localized delivery.
Prodrugs are inactive compounds that are converted to

active drugs in vivo and are commonly developed to address
suboptimal chemical or pharmacokinetic properties in the
parent drugs.5,6 Site-selective prodrug activation, which can
take advantage of inherent differences in the tissue of interest
or rely upon the selective delivery of exogeneous prodrug
activators, is able to provide drug localization and limit off-
target effects. Two examples of prodrug targeting utilizing
exogeneous activators are directed enzyme prodrug therapy
(DEPT)7−13 and bioorthogonal organometallic (BOOM) drug
activation.14−17 In DEPT, a prodrug-activating enzyme (with
activity not found in “normal” tissue) is localized at the target
tissue, often using antibodies. Unciti-Broceta’s BOOM strategy
involves drug activation by localized biocompatible metal
catalysts. Implanting solid-supported enzymes (DEPT) or
metal catalysts (BOOM) in the vicinity of transplanted tissue
has the potential to afford local prodrug activation with
minimal systemic exposure (Figure 1).

For enzymatic activation we chose to explore the use of
nitroreductase, a bacterial enzyme commonly utilized in
DEPT.18,19 This enzyme efficiently reduces aryl nitro groups,
and p-nitrobenzyl-modified prodrugs can undergo this
reduction followed by a 1,6-elimination to release active drug
along with p-aminobenzylalcohol (Scheme 1A).20,21
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Figure 1. Co-transplantation of transplant tissue and immobilized
catalysts provides drug activation localized to the vicinity of
transplanted tissue.
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As an alternative strategy for site-specific prodrug activation
we chose to explore catalysis using Pd0 nanoparticles
immobilized on TentaGel resins (Rapp Polymere GmbH).
These catalysts have been used for the in vivo activation of
prodrugs containing propargyl, allyl, and benzyl groups.22,23

Propargyl prodrugs have been reported to efficiently undergo
hydrolysis to release the parent drug along with hydrox-
yacetone (Scheme 1B).24,25

Since biologically inactive carbamates of Tak-242 could be
readily synthesized from chloroformates,4 and as carbamates
have been widely utilized in prodrug design,26 carbamate
prodrugs 2 and 5 were chosen as the initial synthetic targets.
Additionally, due to the relatively acidic sulfonamide N−H
bond of Tak-242, we hypothesized that the drug itself could
also serve as a leaving group without the assistance of a
carbamate linkage and selected the alkylated compounds 3 and
4 as additional targets. In the event, racemic Tak-242 1 was

readily converted to p-nitrobenzyl prodrugs 2 and 3 and
propargyl prodrugs 4 and 5 (Scheme 2) with reasonable yields.
Initial examination of the proton NMR (27 °C; CDCl3) of

prodrug 2 revealed two distinct sets of peaks at a ∼2:1 ratio
(Scheme 3), which is not unexpected for this complex

carbamate.27,28 In DMSO-d6 (27 °C) the proton NMR of
compound 2 had broad peaks, while at 55 °C the proton NMR
spectrum coalesced to a single set of clean signals (Figure 2).
The proton NMR of carbamate 5 also exhibited two sets of
peaks at an approximate 2:1 ratio at room temperature in
CDCl3, but heating this NMR sample to 70 °C in DMSO-d6
only resulted in partial coalescence of the signals. The proton
NMR spectrum of noncarbamate prodrug 3 only revealed one
set of peaks, with the quartet and triplet associated with the
ethyl ester showing up as broad singlets that resolve to the
expected patterns at elevated temperature.
In order to better understand the conformational energetics

of these prodrugs (2−5), each compound was probed through
a set of relaxed torsional energy scans and subsequent full
geometry optimizations and harmonic vibrational frequency

Scheme 1. Release of Active Drugs: (a) a p-Nitrobenzyl
Prodrug and Nitroreductase (NTR) and (b) a Propargyl
Prodrug and Pd(0)

Scheme 2. Synthesis of Racemic Tak-242 Prodrugs 2−5a

a(i) p-nitrobenzyl chloroformate, sodium carbonate (aq), EtOAc, 55% yield. (ii) p-nitrobenzyl chloride, TEA, DCM, 47% yield. (iii) propargyl
bromide, potassium carbonate, MeCN, 83% yield. (iv) propargyl chloroformate, TEA, DMAP, DCM, 54% yield.

Scheme 3. Rotation of the N−C Bond Results in the
Existence of Two Unique Conformers of Tak-242
Carbamate Prodrug 2
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computations using the hybrid B3LYP29−31 density functional
in conjunction with a split-valence triple-ξ quality 6-311G(2df,
2pd) basis set32−35 within the Gaussian 09 software package.36

The cross sections of the potential energy surfaces of prodrugs
2 and 5 exhibit clear minima and relatively large energetic
barriers of rotation (ΔErot = 13.41 kcal mol−1 and 12.99 kcal
mol−1, respectively). Along with the similar energies calculated
for the low energy rotamers of these carbamate prodrugs (ΔE
< 2 kcal mol−1), these barriers are consistent with the
observation of two distinct conformers in the experimental
NMR spectra.37 As an example, the complete cross section of
the potential energy surface for 2 is shown in Figure 3; the full
results from these quantum chemical computations for all four
compounds are found in the Supporting Information.
In order to determine whether compounds 2−5 would

function as inactive prodrugs, a TLR4 reporter cell assay was

performed. All four racemic prodrugs demonstrated a
significant reduction of TLR4 antagonism compared to the
active drug (racemic Tak-242; Figure 4). Perhaps unsurpris-

ingly, the simple propargyl-alkylated prodrug 4 was most Tak-
242-like, inhibiting the TLR4 response to LPS stimulation with
an IC50 approximately 10× the parent drug (Table 1).

Figure 2. Stacked proton NMR spectra for compound 2 run in (a)
chloroform-d at 27 °C, (b) DMSO-d6 at 27 °C, (c) DMSO-d6 at 40
°C, and (d) DMSO-d6 at 55 °C.

Figure 3. Cross section of the potential energy surface about torsional angle τ (C−N−C−O)° and the energetic barriers of rotation (ΔErot and
ΔGrot) between the two minima of prodrug 2 computed at the B3LYP/6-311G(2df,2pd) level of theory. The green markers denote the fully
optimized stationary points identified by the relaxed torsional energy scan.

Figure 4. TLR4 reporter cell assay. HEK TLR4 reporter cells were
treated with compounds 1−5 at various concentrations and
stimulated with LPS. Complete suppression of TLR4 was defined as
the optical density at 650 nm of cells incubated with racemic Tak-242
(1) at 15 μM.

Table 1. IC Values of Racemic Tak-242 and Racemic Tak-
242 Prodrugs

Compound 1 2 3 4 5

IC50(μM) 0.040 2.701 1.785 0.334 3.897
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The aqueous stabilities of the Tak-242 prodrugs were then
determined by incubation in phosphate buffered saline (PBS,
pH 7.4 containing 5% DMSO) at 37 °C. Analysis by HPLC
revealed that while the alkylated compounds 3 and 4 are stable
under these conditions, the sulfonamide bonds of carbamates 2
and 5 slowly underwent hydrolysis (Scheme 4). This reactivity

resembles the previously reported4 carbamate-functionalized
prodrug/linker and confirms our suspicion that adding a
carbamate functionality to the TAK-242 sulfonamide desta-
bilizes it toward hydrolysis. While only ∼25% of 5 remained
after 1 day of incubation, ∼85% of 2 remained at this point,
presumably due to the increased steric bulk (see Supporting
Information, Figure S14).
The catalyzed conversion of each prodrug to the parent drug

was then examined. Exposure of the nitrobenzyl prodrugs 2
and 3 to nitroreductase (from E. coli, 2 units/mL) and the
reducing cofactor β-nicotinamide adenine dinucleotide
(NADH; 1 mg/mL) in PBS (5% DMSO) resulted in the
rapid consumption of the prodrugs and the efficient release of
the parent drug 1 (Figure 5). The putative reduced amine

intermediate of carbamate 2 was not observed, presumably due
to a rapid 1,6-elimination and loss of CO2. Under the same
activation conditions, the alkylated nitro-benzyl prodrug 3 was
rapidly converted to the amine intermediate (visible in HPLC)
which slowly underwent 1,6-elimination and release of
compound 1 (Figure S13).
Similarly, the Pd0 catalyzed unmasking of propargyl

prodrugs 4 and 5 were evaluated. Incubating the prodrugs in
PBS (5% DMSO) with Pd0 immobilized on amino terminated

polystyrene beads17 (30 μm diameter beads, 1 mg/mL;
provided by Asier Unciti-Broceta, University of Edinburgh)
led to the release of racemic 1 (Figure 6). Once again, the
carbamate prodrug 5 released the free drug more rapidly than
the alkylated prodrug 4.

In summary, we have successfully synthesized four novel
prodrugs of Tak-242 for the localized inhibition of TLR4-
induced inflammation. While the propargyl-substituted pro-
drugs 4 and 5 are readily converted to the parent drug by Pd0,
they suffer from residual TLR4 activity (for the alkylated
derivative 4) or marginal aqueous stability (for carbamate 5).
On the other hand, nitrobenzyl prodrugs 2 and 3 were found
to have low TLR4 activity as well as good aqueous stability and
provide dramatically different release kinetics affording rapid or
slow delivery of the parent Tak-242. We are presently
exploring the application of the prodrugs to the protection of
transplanted pancreatic islets from acute peri-transplant
inflammation, are evaluating solid supports and conjugation
methods for generating biocompatible nitroreductase beads,
and are developing second-generation prodrugs to address the
increased hydrophobicity of compounds 2 and 3.
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Ruiz, B.; Galbraith, L. C. A.; Patton, E. E.; Leung, H. Y.; Unciti-
Broceta, A. Bright insights into palladium-triggered local chemo-
therapy. Chemical Science 2018, 9 (37), 7354−7361.
(18) Yang, Y.; Voak, A.; Wilkinson, S. R.; Hu, L. Design, synthesis,
and evaluation of potential prodrugs of DFMO for reductive
activation. Bioorg. Med. Chem. Lett. 2012, 22 (21), 6583−6586.
(19) Johansson, E.; Parkinson, G. N.; Denny, W. A.; Neidle, S.
Studies on the nitroreductase prodrug-activating system. crystal
structures of complexes with the inhibitor dicoumarol and
dinitrobenzamide prodrugs and of the enzyme active form. J. Med.
Chem. 2003, 46 (19), 4009−4020.
(20) Bae, J.; McNamara, L. E.; Nael, M. A.; Mahdi, F.; Doerksen, R.
J.; Bidwell, G. L.; Hammer, N. I.; Jo, S. Nitroreductase-triggered
activation of a novel caged fluorescent probe obtained from
methylene blue. Chem. Commun. 2015, 51 (64), 12787−12790.
(21) Zhai, B.; Hu, W.; Sun, J.; Chi, S.; Lei, Y.; Zhang, F.; Zhong, C.;
Liu, Z. A two-photon fluorescent probe for nitroreductase imaging in
living cells, tissues and zebrafish under hypoxia conditions. Analyst
2017, 142 (9), 1545−1553.
(22) Weiss, J. T.; Dawson, J. C.; Macleod, K. G.; Rybski, W.; Fraser,
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