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Abstract

While conventional material fabrication methods focus on form and strength to achieve function, 

the fabrication of material systems for emerging life science applications will need to satisfy a 

more subtle set of requirements. A common goal for biofabrication is to recapitulate complex 

biological contexts (e.g. tissue) for applications that range from animal-on-a-chip to regenerative 

medicine. In these cases, the material systems will need to: (i) present appropriate surface 

functionalities over a hierarchy of length scales (e.g. molecular features that enable cell adhesion 

and topographical features that guide differentiation); (ii) provide a suite of mechanobiological 

cues that promote the emergence of native-like tissue form and function; and (iii) organize 

structure to control cellular ingress and molecular transport, to enable the development of an 

interconnected cellular community that is engaged in cell signaling. And these requirements are 

not likely to be static but will vary over time and space, which will require capabilities of the 

material systems to dynamically respond, adapt, heal and reconfigure. Here, we review recent 

advances in the use of electrically based fabrication methods to build material systems from 

biological macromolecules (e.g. chitosan, alginate, collagen and silk). Electrical signals are 

especially convenient for fabrication because they can be controllably imposed to promote the 

electrophoresis, alignment, self-assembly and functionalization of macromolecules to generate 
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hierarchically organized material systems. Importantly, this electrically based fabrication with 

biologically derived materials (i.e. electrobiofabrication) is complementary to existing methods 

(photolithographic and printing), and enables access to the biotechnology toolbox (e.g. enzymatic-

assembly and protein engineering, and gene expression) to offer exquisite control of structure and 

function. We envision that electrobiofabrication will emerge as an important platform technology 

for organizing soft matter into dynamic material systems that mimic biology’s complexity of 

structure and versatility of function.
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1. Introduction: a roadmap for biofabrication?

In the middle of the last century, there were transformations in both communication theory 

and microfabrication that enabled the Information Age. Specifically, theories were 

developed to efficiently code, transmit and decode information, and a suite of fabrication 

methods also emerged that enabled the manufacture of solid state electronic circuits. This 

coupling of advances, both to create structure and to control the flow of information, enabled 

Gordon Moore to offer an empirical prediction that served as a roadmap to measure 

advances in the microelectronics industry over the last 50 years (figure 1(a)). In this section, 

we draw an analogy between the historical emergence of the microelectronics industry and 

the emergence of a nascent biofabrication-based industry. While there have been recent 

efforts to refine the definition of ‘biofabrication’ in terms of methods (bioprinting and 

bioassembly) for an important set of applications (tissue engineering and regenerative 

medicine) [1], we retain a broader perspective and suggest a focus on capabilities that span 

application areas and do not specify the methods used. In subsequent sections, we focus on 

electrofabrication methods that have been independently developed from different labs using 

different materials and for different applications. These methods share the common features 

that electrical inputs are imposed to solutions of biologically derived materials for the 

purpose of creating structure and conferring function. We suggest the term 

‘electrobiofabrication’ to capture the common features of these methods.

In contrast to the microelectronics industry, it seems impossible to imagine a 50-year 

roadmap for biofabrication—but why was a roadmap so relevant for tracking advances in 

information technologies, yet seemingly irrelevant for the biological technologies? One 

critical difference is that modern devices are designed de novo to satisfy user-defined 

objective functions, while living systems already exist but are so complex that much of life 

science research (even translational research) aims to clarify what is unknown. For 

microelectronics, it was possible to identify robust, generic and quantitative metrics that 

could be used to track progress in organizing structure (e.g. minimum feature size and 

transistor density) and system-level performance (e.g. memory and speed). In contrast, large 

research initiatives in biology (e.g. the human genome project) often lead to advances that 

were not initially anticipated, and these benefits are generally clearer in hindsight. Further, 

progress in biological technologies is commonly marked by discontinuities that result from 
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discoveries of new phenomena (e.g. gene amplification (PCR), gene silencing (RNAi), gene 

editing (CRISPR)) that provide previously unimaginable opportunities. The challenge of 

design in the midst of such biological uncertainties is illustrated by the low probability that a 

candidate drug will progress from discovery to the clinic (≈10−4). Thus, there are currently 

no simple, relevant and quantitative metrics of structure or performance that allow the 

advances in biofabrication to be tracked. And, it seems doubtful that generically useful 

metrics will soon emerge given the recent focus on biological systems of increasingly 

complex structure and interconnectivities (e.g. the gut and brain), and given that desired 

endpoints may be difficult to characterize, even qualitatively (e.g. wellness).

While it may not be possible to create a long-term roadmap for biofabrication and identify 

specific quantitative metrics to track progress, it does seem possible to recognize constraints 

and envision some desirable capabilities that could serve as targets for advancing the field. 

We especially focus on the fabrication of soft matter, with a particular goal of recapitulating 

the structure and interconnectivity of complex biological tissues for in vitro (e.g. animal-on-

a-chip) and in vivo (e.g. artificial organs) applications, and table 1 lists a set of features 

which we feel are, or will be, important for such applications. In addition to recapitulating 

tissue-like structure and function, biofabrication may also be able to provide the means to 

meet more specialized needs to create technological systems that can control the release of 

therapeutics [2], modulate biochemical signal generation [3] and interface with biological 

systems (e.g. implantable or wearable electronics and soft robotics) [4, 5].

If we look to nature for guidance, there are numerous examples of soft tissue that are 

organized as a series of layers (figure 1(b)). In these biological examples, each layer (≈10–

2000 μm) may have different components, structures and cell types that provide a localized 

microenvironment with a set of physical, chemical and biological properties that enable 

specialized tasks to be performed. However, these individual layers are not static and do not 

function in isolation: rather, the individual layers are interconnected to allow the tissue 

system to dynamically adapt its structures and functions in response to external or internal 

cues (e.g. neuronal connections in the brain emerge during learning). Integral to the 

emergence of these evolving contexts is the communication between and among the various 

layers, and this communication is often mediated by chemical, electrical and mechanical 

signals that cue responses to adapt, heal or maintain homeostasis.

Interestingly, many additive manufacturing methods (e.g. 3D printing and layer-by-layer 

self-assembly [7–11] also organize matter as a series of layers, often over similar length 

scales as tissue [12], and thus additive manufacturing would seem to be well-suited for 

biofabrication [13–17]. One well-recognized requirement for extending the capabilities of 

additive manufacturing to biological applications is biocompatibility. This requirement is 

motivating considerable current effort to develop biocompatible inks for printing and to 

develop aqueous-based processing methods [18–25]. However, biofabrication will need to 

do more than provide conditions that maintain cell viability. Rather, biofabrication will need 

to be able to create matrices with an appropriate suite of properties and interconnectivities 

that enable the emergence of complex biological contexts [26, 27].

Li et al. Page 3

Biofabrication. Author manuscript; available in PMC 2020 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Currently, many of the most familiar applications of conventional additive manufacturing 

focus on creating static structures with highly controlled shapes and strength (e.g. metal and 

plastic parts). For biological applications, the fabricated structures must offer a more 

complex and subtle set of physical, chemical and biological properties [28–30]. For instance, 

the mechanical requirements will be more complex than simply Young’s modulus and 

strength to failure. Rather, advances in mechanobiology are demonstrating the importance of 

cell-substrate mechanical interactions for cueing processes, such as cell adhesion, spreading, 

migration and differentiation [27]. From a fabrication standpoint, these physical-mechanical 

requirements may not be homogeneous, but rather it may be necessary to create material 

systems with complex internal structures and spatially varying anisotropic properties [31–

38]. Further, the mechanical requirements may not be static, but rather material systems may 

need to undergo reconfigurations in shape [39–41] and properties [42–44]: in some cases in 

response to user-imposed external cues [45], and in other cases in response to internal 

biological cues [46]. In addition to considering microscopic mechanical requirements, there 

are also exciting opportunities to create material systems that can be actuated at the 

macroscale (e.g. for soft robotics) [47–50]. To meet these emerging needs, there is 

considerable current research to create material systems that can respond, heal and 

remember [35, 46, 51–53].

In addition to meeting mechanical needs, a biofabricated structure must also offer the 

molecular transport properties that enable the exchange of chemical components that are 

vital to cell survival and cell–cell communication. In contrast to electronic systems, which 

typically use electricity, biology tends to use chemicals to perform energy transduction (e.g. 

catabolism) and information processing functions (e.g. hormones). Importantly, biology 

enlists various structural approaches to overcome the slow-ness and randomness of 

molecular diffusion: the vasculature provides routes for various chemical resources (e.g. 

glucose and O2) to be distributed throughout the body, compartmentalization is used to 

control/segregate the flow of chemically based information (e.g. neurotransmitter vesicle 

trafficking) and responsive systems allow the delivery of chemical information at 

appropriate addresses (e.g. intracellular virus particle disassembly for the delivery of 

infectious nucleic acid). The challenges of controlling the flow of molecular information are 

well recognized [54], and considerable research aims to develop material systems that 

provide porosity [55], promote vascularization [56], target/control release [57–64] and allow 

control of motion, either autonomously [65] or externally controlled [66]. Given the 

importance of controlling the flow of molecular information in biology, we anticipate that 

there will remain great interest in creating structures to control the speed and directionality 

of molecular transport [2, 67, 68].

In addition to responding to diffusible chemical signals, cells also recognize chemical cues 

embedded on or within tissue. For instance, integrins mediate cell adhesion and spreading on 

the extracellular matrix (ECM), and also transmit information of such extracellular events 

within the cell to provide cues that regulate a wide range of cellular processes, including 

proliferation, differentiation, apoptosis and angiogenesis [69]. Thus, it is essential to develop 

fabrication methods that enable a soft matter matrix to be chemically modified to tailor cell–

matrix interactions and elicit appropriate cell responses.
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In summary, transformations in manufacturing (e.g. additive manufacturing) offer 

considerable promise for the fabrication of biological systems. While there are many 

exciting possibilities, there are also many important challenges to transition from an ability 

to create static shapes with homogeneous internal structures to enabling the creation of 

dynamic material systems with tailored hierarchical structures and adaptive functional 

properties. For example, many of the existing additive manufacturing approaches couple 

mechanical, optical, magnetic and thermal stimuli to spatially organize matter and induce the 

phase transitions and/or chemical reactions that create structure. Yet these existing methods 

often lack the ability to exert control at the nanoscale (e.g. for residue-specific crosslinking) 

or induce the hierarchical organization (e.g. collagen bundles) that is so prevalent in biology. 

In the remainder of this review, we explain our belief that electrically based fabrication with 

biologically derived materials (i.e. electrobiofabrication) provides exciting, and in many 

cases complementary, capabilities to meet some of these biofabrication needs [70]71 As 

discussed, electrical cues can induce phase transitions and chemical reactions to create 

structure, but can also impose forces to induce macromolecule movement and alignment to 

enable anisotropies and ordering to be built into this structure. We envision that the use of 

electrical cues will also allow the signal processing and data science advances of 

microelectronics to be applied to accelerate material discovery and development. Also, as 

discussed, the use of biologically derived materials allows access to the tools of modern 

biology to create structure and confer function.

2. Electrobiofabrication: imposing electrical signals to biological 

materials to create structure and confer function

It is well known that electrical inputs can be used for chemical synthesis (i.e. 

electrosynthesis [72–74]) and material fabrication (the interested reader is directed to several 

reviews of various aspects of this topic) [75–81]. For instance, electrical inputs are 

commonly used to electropolymerize monomers (e.g. for conducting polymers) [82, 83], to 

electrodeposit polymer-based functional coatings (e.g. electrodeposition paints) [84–91] and 

for electrospinning and electrowriting [92–94]. Electrically based fabrication offers 

unprecedented capabilities that can also be enlisted for biological applications. As will be 

discussed, electrical signals can be imposed with exquisite temporal and quantitative control 

to allow films to be electrodeposited simply, rapidly (sec–min) and with controlled 

thickness. These capabilities enable polymer electrodeposition to be used to conformally 

coat implants of arbitrarily complex sizes and shapes [95–97], and to assemble functional 

coatings on electrodes [98], even when they are embedded within a covered microfluidic 

channel [99, 100]. Obviously, electrically based fabrication has limitations, but when 

appropriate, it offers significant benefits in speed, simplicity and cost, as well as enabling 

precise electrical cues to be imposed to guide assembly.

Here, we focus on electrically based fabrication with biologically derived materials (i.e. 

electrobiofabrication) because biological materials often offer a unique combination of 

properties suitable for a wide range of biologically based applications [30, 101–103]. For 

instance, many biologically derived polymers possess stimuli-responsive self-assembling 

properties that allow fabrication to be cued by external inputs: this allows the coupling of 
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top-down and bottom-up fabrication approaches [104] to create hierarchical structures [105]. 

Often such self-assembly involves reversible interactions (i.e. physical crosslinks) that 

enable materials to heal and reconfigure [42], and confer mechanical toughness [35, 43, 53, 

106–116]. In some cases, biologically derived materials undergo molecular-recognition 

based associations that allow the generation of functional supramolecular assemblies [64, 

117] or engage biologically specific interactions (e.g. site specific cell attachment) [118]. In 

addition, biological materials can be acted upon by enzymes, which enables biological 

degradation [119, 120] or allows macromolecular structures to be built [121] and functional 

properties to be added (e.g. enzymatic conjugation of a protein to a biopolymer matrix). 

Finally, if biological polymers are used, then it is possible to enlist advanced biotechnology 

methods (e.g. protein engineering) to enhance functionality or facilitate assembly (e.g. 

engineer fusion tags to facilitate self-assembly [122] or enzymatic crosslinking/conjugation 

[123–129]).

Compared to ‘conventional’ biofabrication methods (e.g. photolithographic and printing 

methods), we believe electrobiofabrication is much less developed, and there is considerable 

opportunity for advancements. As discussed below, the response of biological polymers to 

the electrical inputs is complex and remains poorly understood [130–132], and incremental 

increases in our fundamental knowledge are enabling greater control of hierarchical 

structure and matrix function. Also, as discussed below, electrically based fabrication 

methods emerged independently for polysaccharides, silk and collagen, and different terms 

have been used to describe the observed phenomena. In most cases, the terminology cannot 

be generically extended, and thus we adopted the term ‘electrobiofabrication’ in an effort to 

capture the common features. To facilitate discussion of how biological polymers perceive 

and respond to electrical input signals, we divide the electrical input signal into two 

components that can affect the emergence of structure in different ways: the current (or 

current density) and the electrical field [133–135].

2.1. Electrical current quantifies electrochemical reactions

As illustrated in figure 2(a), electrochemical reactions involve the transfer of electrons 

across a conducting surface (e.g. across an electrode interface), and the electrical current is a 

quantitative measure of the rate of electron transfer (formally currents associated with 

electron transfer due to redox reactions are termed Faradic currents while non-Faradic 

currents are typically smaller and include polarization ion charges associated with re-

arrangements of surface charge). Electrochemical currents can induce structure formation by 

direct electron transfer (e.g. electropolymerization), and in these cases, the resulting film is 

generally localized on the electrode surface. However, there are several indirect electron 

transfer mechanisms that generate diffusible species or gradients that act over longer 

distances (μm to mm from the electrode surface) to trigger thin film or hydrogel formation 

[117, 136–138]. In these cases, the electrochemical currents indirectly transduce the 

electrical inputs into the generation of macromolecular and macroscopic structures (note: 

such indirect mechanisms require redox reactions at the electrode surface and diffusible 

chemical species that shuttle electrons to/from the electrode). By analogy to developmental 

biology, where one tissue generates diffusible chemical cues that induce morphogenic 

changes in distant tissue (e.g. in the developing embryo), the electrochemically generated 
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diffusible mediators that induce structure at a distance have been termed ‘morphogens’ 

[139]. In many, but not all, cases the films/hydrogels formed by these indirect mechanisms 

remain attached to the electrode surface, although they can often be purposefully detached if 

desired.

It is convenient to empirically divide diffusible electrochemical cues into two types based on 

whether the cues act through acid–base or oxidation–reduction mechanisms (table 2). The 

classic biopolymer example of such an acid–base mechanism is the cathodic neutralization 

reaction used to electrodeposit the pH-responsive aminopolysaccharide chitosan [140, 141]. 

As illustrated in figure 2(b), cathodic electrolytic reactions (e.g. of water or H2O2) can yield 

a localized increase in pH that results in a localized deprotonation of the chitosan chains that 

induces its reversible sol–gel transition (further details of this mechanism are provided 

below). In contrast, anodic electrolysis reactions generate a localized region of low pH 

adjacent to the electrode surface, and anodic biopolymer electrodeposition through a 

neutralization mechanism was first reported for the acidic polysaccharide alginic acid [142]. 

A related mechanism can be used to electrodeposit Ca2+-alginate hydrogels: electrolytic 

reactions locally generate H+ adjacent to the electrode; insoluble calcium carbonate 

(CaCO3) that is included in the deposition solution reacts to both neutralize this low pH and 

liberate soluble Ca2+ ions; and the free Ca2+ ions induce the localized gelation of Ca2+-

alginate [143]. Table 2 illustrates that electrodeposition through such acid–base reactions has 

been extended to additional mechanisms and materials.

In terms of reduction–oxidation (redox) reactions, several mechanisms have been reported 

involving different diffusible species. In some cases, these mechanisms involve the 

generation of reactive intermediates that undergo chemical reactions to covalently crosslink 

the polymers (e.g. the anodic oxidation of catechols generates quinones that can crosslink 

polymers through nucleophilic amine substituent groups) [144, 145]. In other cases, an 

electrochemical reaction can generate a diffusible species that can create chelation-based 

crosslinks (e.g. chitosan gels have been electrodeposited through mechanisms involving 

ruthenium salts [146] and copper [147]). In some cases, these electrodeposition mechanisms 

can be reversible based by changing the redox-state of such metal ions (e.g. Fe2+/3+-alginate 

hydrogels can be reversibly assembled and disassembled) [148]. As illustrated in table 2, 

there is a growing list of redox-based mechanisms for (bio)polymer electrodeposition.

While table 2 emphasizes examples of biopolymer electrodeposition, there is a growing 

interest in extending electrodeposition to life science applications using other materials (e.g. 

small molecule hydrogelators) [185–191], and also using novel electrically based 

mechanisms (e.g. bipolar electrochemistry) [105].

2.2. Electrical voltage quantifies electrostatic field

As noted above, the electrochemical reactions that are quantified by current density provide 

the cues for self-assembly. However, the electric field imposed at an electrode can also have 

important effects. The most obvious effect of an imposed electric field is that it can provide a 

force to drive charged particles to migrate toward/away from an electrode (figure 2(c)). In 

addition, the imposed electric field can align dipoles and confer anisotropies to the emerging 

structure [192–194]. Importantly, salt can screen the electric field and attenuate its effects. 
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Thus, it is possible to envision that a spatiotemporally varying electric field could be 

imposed to provide the cues needed to orient macromolecules to guide their hierarchical 

assembly along pathways that lead to desired structural features and functional properties. 

The examples discussed below illustrate initial successes toward this vision. However, we 

expect that fully exploiting the opportunity to enlist electrical inputs to control structure will 

require more detailed knowledge of how macromolecular systems respond to electrical 

fields, and a greater quantitative understanding of how to tailor the imposed electric fields.

3. Examples of biopolymer-based electobiofabrication

To our knowledge, the electrodeposition of biopolymers is a relatively new observation, with 

the first reports emerging in the early 2000s [135, 140, 141]. The electrodeposition methods 

are generally robust as various labs around the world have adapted and extended others’ 

work. However, as illustrated in the following examples, there are important subtleties that 

remain poorly understood. To illustrate this point we focus on the four best understood 

biopolymer systems—the aminopolysaccharide chitosan, the acidic polysaccharide alginic 

acid and the structural proteins collagen and silk.

3.1. Chitosan

3.1.1. Cathodic electrical inputs induce chitosan’s reversible self-assembly
—Chitosan electrodeposition was first reported in 2002 and is probably the best understood 

biopolymer deposition system [98, 195–198]. As noted earlier, chitosan is a pH-responsive 

self-assembling aminopolysaccharide that can be electrodeposited by the cathodic 

neutralization mechanism illustrated in figure 3(a) [140, 141, 199]. Cathodic electrolysis 

reactions generate a localized region of high pH adjacent to the cathode and chitosan chains 

in this region are deprotonated, which induces their gelation. This sol–gel transition involves 

a reversible self-assembly of the chitosan chains to form crystalline network junctions that 

serve as physical crosslinks [102]. In various experimental systems it has been observed that 

as a base penetrates into a chitosan solution, the gelation of chitosan occurs as a growing 

hydrogel front, and this self-assembly front co-localizes with a growing pH front and also a 

crystallization front [134, 200–202]. Growth of these fronts can be quantified in terms of a 

moving front model [134, 203].

At a macroscopic scale, chitosan’s cathodic electrodeposition is convenient and versatile. 

Chitosan’s self-assembly is triggered from aqueous solutions using low cathodic voltages 

(typically less than 2 volts versus Ag/AgCl) that are imposed over short times (sec–min). 

Further, chitosan’s electrodeposition is controllable: hydrogel film growth can be controlled 

by the electrical input [205]; deposition can be controlled spatially if a patterned electrode is 

used [206–208]; and deposition can conformally coat complex surfaces (e.g. wire electrodes 

[209] or implant surfaces [210–216]). In addition, chitosan’s electrodeposition is simple, 

reagentless and reversible (the films can be re-dissolved under acidic conditions [217]). 

Finally, hydrogel electrodeposition is versatile: a variety of materials (e.g. nanoparticles, 

vesicles and macromolecules) can be co-deposited and entrapped within the chitosan matrix 

[49, 152, 157, 218, 219], and chitosan’s electrodeposition can be coupled with layer-by-

layer electrostatic self-assembly (e.g. with alginate) [220].
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At the molecular level, chitosan’s electrodeposition is much less understood, which provides 

a rich opportunity to control structure over a hierarchy of length scales. The molecular 

modeling results illustrated in figure 3(b) [221] indicate that the internal regions of the 

crystalline network junctions are hydrophobic with comparatively little water, and this 

localized hydrophobic microenvironment results in a structure-induced decrease in the pKa 

of the glucosamine residues [204]. Importantly, formation of these crystalline regions is 

highly favorable thermodynamically, and thus the organized crystalline regions can co-exist 

adjacent to less-ordered (e.g. amorphous) regions. One consequence of the stability of these 

crystalline network junctions is that the microstructure of the deposited hydrogel can be 

controlled by the specific conditions used to trigger gelation. The sensitivity of the internal 

structure to deposition conditions is illustrated by the following two examples.

In 2008, the Domard group reported an experiment in which chitosan’s base-induced 

gelation was performed in a sequence of steps that systematically interrupted and then re-

initiated gelation, and they observed that the resulting hydrogel had a multilayered internal 

structure [222]. Several groups have reproduced and extended these observations [49, 223–

225], and these reports motivated a study in which the electrical inputs that induced 

chitosan’s electrodeposition were also imposed as an oscillating sequence [203]. Figure 3(c) 

shows that a multilayered segmented chitosan hydrogel emerged in response to such an 

oscillating electrical input sequence: during the electrical ‘on’ signal, segments were grown 

while boundaries were formed during the ‘off’ signal [134]. Importantly, the microscopic 

structure and modulus of the boundary regions were highly dependent on the presence of 

salt, presumably through screening of the electric field, although these salt effects are 

incompletely understood [226]. We believe the ability to enlist highly controllable electrical 

signals to guide the emergence of structures will provide exciting opportunities to create 

matrices with anisotropies in mechanical properties and aligned structures with preferred 

directions for molecular transport.

A second example illustrating how localized electrical inputs can induce the emergence of 

internal structures involves electrical writing onto a dual responsive hydrogel medium [204, 

227]. As illustrated in figure 4(a), this dual responsive medium was first prepared by 

blending a warm solution of agarose with an acidic solution of chitosan, and cooling this 

blend to form the agarose hydrogel. A small cylindrical electrode (a stainless-steel 

acupuncture needle) was used as a cathodic ‘pen’ that was rastered across the surface of this 

medium to create localized regions of high pH that induced the disorganized chitosan chains 

in the hydrogel medium to assemble into crystalline domains (figure 4(b)). Importantly, the 

structural gradients induced by cathodic writing are stable and persist after the pH gradient 

has dissipated. Specifically, regions in which neutral chitosan chains are organized into 

crystalline domains (designated Chit0) stably co-exist adjacent to regions in which 

protonated chitosan chains remain disassociated from each other (designated Chit-H+). 

Presumably these structural gradients are stabilized by the structure-induced decrease in the 

pKa for the glucosamine residues in the crystalline regions. A variety of experimental 

methods were used to demonstrate that the written and unwritten regions of the agarose–

chitosan medium possess markedly different functional properties: the formation of 

crystalline network junctions in the written regions increases the mechanical strength; the 

neutral glucosamine residues in the written region are more chemically reactive (i.e. 
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nucleophilic) compared to the protonated glucosamine residues in the unwritten regions; and 

fibroblast cells were observed to preferentially adhere to the written (versus unwritten) 

regions. Also, important to note is that the structural information written into the agarose–

chitosan medium can be erased by adding acid to disassemble the chitosan chains and heat 

to disassemble the agarose chains.

A final example illustrates the ability to couple cathodic electrodeposition with other, more 

conventional, additive manufacturing methods. In this study, a cathodically deposited 

chitosan film was created and then printed on using an ‘ink’ containing acidic sodium-

dodecyl sulfate (SDS) micelles, as illustrated in figure 5(a) [42]. This acidic ink can 

protonate the chitosan chains and induce disassembly of the crystalline network junctions, 

while the negatively charged SDS micelles can electrostatically crosslink these cationic 

chitosan chains [228–233]. Figure 5(b) indicates that this printing step yields patterned films 

with different regions being crosslinked by independent physical mechanisms: the unprinted 

regions retain the original neutral crystalline network junctions (Chit0), while the printed 

regions are electrostatically crosslinked to form an SDS–chitosan network (Chit-H+-SDS). 

Again, the spatial gradients imposed by printing persist for days—long after the pH has been 

equilibrated. One important feature of this patterning is that the different crosslink types 

confer different mechanical properties: the neutral crosslinks of Chit0 confer elastic 

properties [111], while the Chit-H+-SDS crosslinks confer viscoelastic properties. Thus, 

figure 5(c) shows that printing allows the creation of patterned films with anisotropic 

mechanical properties. A second important feature is that both of these physical crosslinks 

are reversible, such that immersion of a patterned film in a base induces the cationic chitosan 

chains to be deprotonated, the SDS micelles to detach and diffuse out of the film and 

crystalline network junctions to re-form in the previously patterned region (as illustrated in 

figure 5(b)) [42]. Thus, the use of physical, reversible and pH-responsive crosslinks allows 

the hydrogel films to be reconfigurable.

In summary, cathodic inputs can induce chitosan chains to self-assemble through physical 

interactions. Evidence indicates that this electrically triggered self-assembly is highly 

controllable, with the emergent structure being sensitive to how the electrical signals are 

imposed and the conditions of the deposition bath (e.g. the presence of salt [226]). We 

anticipate that the capability to precisely control structure will provide exciting opportunities 

to create matrices with anisotropies in mechanical properties and preferred directions for 

molecular transport. Further, the ability to couple electrodeposition with other methods (e.g. 

layer-by-layer and 3D printing) suggests that materials can be generated with a subtle 

balance of physical interactions that mimic the dynamic materials in biology that can 

respond, heal and reconfigure. The critical limitation to achieving these dynamic properties 

is our understanding of the underlying molecular phenomena, which we expect will require 

both advances in theory and experiment. Molecular modeling provides the opportunity to 

understand molecular-level details of how chains self-assemble and how conditions (e.g. an 

applied electric field) affect this self-assembly [221, 234]. Presumably, all atom modeling 

will need to be integrated with coarse-graining methods to understand the emergence of 

structure over a hierarchy of length scales, and to understand the dynamic features of the 

non-equilibrium assembly [235]. Experimentally, there remains relatively few methods 

capable of characterizing hydrogel structure and function at various length scales. 
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Particularly interesting methods include quantitative polarized light microscopy [134, 202, 

236], which can characterize chain organization, and Brillouin spectroscopy [134, 237], 

which can access microscale mechanical properties. Both of these imaging methods can be 

used in real time to observe the emergence of structures.

3.1.2. Anodic electrical inputs induce oxidative reactions—In contrast to 

cathodic inputs that induce chitosan to self-assemble through reversible physical 

mechanisms, anodic electrical signals can induce oxidation reactions that result in covalent 

modifications to chitosan. This is illustrated in figure 6(a), which shows a two-step 

electrobiofabrication process in which a chitosan film was first cathodically deposited onto a 

platinum electrode, and then this film-coated electrode was rinsed and immersed in a 

buffered solution containing 0.5 M salt and an anodic potential was applied to the underlying 

platinum film [238]. As illustrated by the reactions in figure 6(a), anodic reactions generate 

reactive chlorine species (e.g. HOCl) that can covalently react with chitosan to generate 

chloramine residues. Quantitative analysis demonstrated that the film thickness was 

controlled by the cathodic charge transfer (Q = ∫idt where i is the current and t is time) 

while the generation of N-Cl bonds was controlled by the anodic charge transfer. These 

electrobiofabricated chloramine films could then be peeled from the electrodes, and were 

shown to offer antimicrobial properties (e.g. for wound dressings) [238].

Anodic reactions have also been shown to allow chitosan to be electrodeposited in a single 

step [177]. In this case, chitosan is first dissolved in an acetic acid buffer with 0.15 M NaCl 

and then electrodeposited using a gold-coated silicon wafer. As illustrated in figure 6(a), 

anodic reactions generate reactive chlorine species that oxidize the chitosan chains 

(presumably generating reactive aldehyde moieties) that can induce covalent crosslinking of 

the chitosan chains through Schiff-base reactions (figure 6(b)). Again, this anodic deposition 

step can be controlled by deposition conditions and yields a gel that could swell but not 

dissolve under acidic conditions (consistent with a covalent crosslinking). Importantly, the 

aldehyde group generated by chitosan’s oxidation is reactive toward the amine of proteins 

(e.g. surface lysine residues), and thus if this anodic deposition step is performed in the 

presence of proteins, the protein can be deposited with and covalently conjugated onto the 

gel. This single step electrobiofabrication approach provides a particularly convenient 

approach to generate a hydrogel with functional proteins (note, this approach may not be 

universal as some proteins appear to be damaged during anodic deposition) [177]. An 

alternative approach for protein conjugation is to first cathodically deposit the chitosan film, 

then anodically oxidize the chitosan (to generate the reactive aldehydes), rinse these 

activated films to remove soluble reactive chlorine species and finally contact the activated 

films with protein [241].

One final example of anodic chitosan modification involves the electrobiofabrication of 

catechol–chitosan films, as illustrated in figure 6(c) [242]. In this case, chitosan is first 

cathodically deposited (not shown), the film is rinsed and then immersed in a solution 

containing catechol, and an anodic potential is applied to initiate oxidation of the catechol to 

reactive quinones that can graft to the chitosan. These catechol-modified chitosan films were 

shown to be non-conducting as electrons do not flow in response to an applied potential, and 

there was no direct exchange of electrons with the electrode (presumably the catechol 
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moieties are physically separated from each other and from the electrode surface to preclude 

electrical conductivity). However, the films were shown to be redox-active, and could 

exchange electrons with diffusible oxidants and reductants. It should be noted that the 

oxidative grafting of catechol can be performed by alternative methods, such as by chemical 

oxidation (e.g. using NaIO3) or by enzymatic oxidation (e.g. using tyrosinase) [243–245]. 

As will be discussed, one important application for the catechol–chitosan film is as a redox-

capacitor for bioelectronics [197, 239, 246, 247]. As illustrated in figure 6(d), an alternative 

application for the redox-active catechol–chitosan film is as an antimicrobial film that can 

accept electrons from a biological reductant ascorbate (i.e. vitamin C), and transfer them to 

O2 to generate reactive oxygen species (ROS) [240]. In an analogous reaction, the catechol–

chitosan film could be used as a protective coating that transfers electrons from ascorbate to 

quench an oxidative free radical [248].

In summary, chitosan can be electrodeposited anodically through redox reactions that 

covalently modify the chitosan chains. By appropriate selection of conditions, it is possible 

to use such electrical inputs to graft moieties (e.g. chloramine or catechol groups) that confer 

functional activities (e.g. antimicrobial). In some cases, it is also possible to use such anodic 

reactions to ‘activate’ chitosan for the covalent conjugation of proteins to confer protein-

based functional properties.

3.2. Alginate

Alginic acid is a Ca2+-responsive self-assembling polysaccharide that has been widely 

investigated as an immobilization matrix for microbes, a scaffold for tissue engineering 

[249] and more recently as bead/capsule devices for molecular communication [250–252]. 

Like chitosan, Ca2+-alginate forms hydrogels through self-assembling reversible crosslinks 

(i.e. through eggbox network junctions). The reversibility of these crosslinks confers 

responsive properties to the Ca2+-alginate networks [43, 253], while the dynamic (i.e. 

healable) nature of these crosslinks makes it a suitable choice for mechanically tough dual 

network systems [35, 43, 107, 108]. Increasingly alginate is viewed as a biocompatible 

material for biofabrication applications [49, 115].

In 2008, the electrodeposition of alginic acid through an anodic neutralization mechanism 

was reported [142], and the following year the anodic deposition of Ca2+-alginate was 

reported through the mechanism in figure 7(a) [143]. The electrodeposition of Ca2+-alginate 

shares many of the same benefits as those described for chitosan’s electrodeposition: 

deposition is performed from aqueous solution using mild conditions; it is controlled by the 

electrical input [168, 171, 254, 255]; it can be spatially selective for patterned [256] or 

arrayed electrodes [257]; it allows conformal coating of complex shapes (e.g. to create 

tubular structures) [258]; it can be used to assemble biologically active components for 

sensor applications [259]; and Ca2+-alginate electrodeposition can be coupled with other 

assembly methods (layer-by-layer polyelectrolyte complexation [260] and 3D printing 

[172]).

Probably the most important feature of Ca2+-alginate’s electrodeposition is its ability to be 

applied to studies with living cells. For instance, electrodeposited RGD-modified Ca2+-

alginate hydrogel films were seeded and incubated to generate confluent cell sheets that 

Li et al. Page 12

Biofabrication. Author manuscript; available in PMC 2020 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



could be detached using a Ca2+-chelating agent (e.g. EDTA) [261]. Further, if cells can be 

blended into the deposition solution (e.g. sodium alginate plus CaCO3), then it is often 

possible to co-deposit hydrogels with entrapped cells. For instance, alginate entrapped cells 

were detached and stacked to form multilayer structures to mimic tissue [262]. Finally, it is 

sometimes possible to perform sequential deposition steps (with different deposition 

solutions) to yield multilayer alginate films with spatially segregated cell populations. This 

capability was demonstrated for the creation of a model biofilm with different bacterial 

populations addressed to the individual layers of a stratified multilayer [170, 263].

There are two additional recent reports of interest. First, it was observed that an electrode 

‘pen’ could be used to write Ca2+-alginate features onto/into a dual network hydrogel 

containing gelatin and alginate (analogous to figure 4 for writing onto the dual agarose/

chitosan network). Mammalian cells could be cultured within these written Ca2+-alginate 

regions, the unwritten regions could be removed by heating (to melt the gelatin) and 

independently fabricated hydrogel layers could be stacked to create 3D structures [264].

Finally, figure 7(b) shows a dual film system that was created using three sequential 

electrobiofabrication steps; cathodic electrodeposition of a chitosan film, anodic co-

deposition of a Ca2+-alginate film with E. coli reporter cells, and anodic oxidative grafting 

of catechol to the underlying chitosan film. The individual films of this dual film system 

performed separate functions. The bacteria in the Ca2+-alginate biofilm recognized a 

molecular signal (the bacterial quorum sensing molecule autoinducer-2; AI-2), and 

transduced this molecular ‘information’ into a redox output (a redox-active intermediate). 

The catechol–chitosan film served as a redox-capacitor to amplify the electrical output 

associated with this redox-active intermediate [265, 266].

In summary, alginate offers exciting possibilities as a matrix material that can be reversibly 

assembled and disassembled to incorporate cells into organized tissue-like structures. 

Increasingly, experimental studies are demonstrating the capabilities of electrobiofabrication 

to create such organized structures. We are unaware of complementary molecular modeling 

efforts to assist in understanding how alginate responds to imposed electrical cues, or that 

reveal molecular-level details of the alginate self-assembly mechanisms.

3.3. Collagen

Collagen is the most abundant protein in animals and is well known for the structural role it 

plays in the body. As a major component of the ECM, collagen is integral to maintaining the 

structural integrity of the ECM, it provides sites for cell adhesion and spreading, and it 

continually undergoes re-modeling to refine cellular behavior and tissue function [267]. 

Collagen-based biomaterials have attracted great attention because they are intrinsically 

biocompatible, bioactive, biodegradable [268] and can be readily fabricated into a variety of 

forms, including 3D tissue engineering scaffolds using bottom-up approaches [269–271]. 

Often the motivation for fabricating with collagen is to recapitulate important features of 

tissue: the aligned and hierarchically organized structure (figure 8(a)); and the molecular and 

mechanical cues that promote cell adhesion, ingrowth, proliferation and differentiation 

towards desired cell fates.
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There were early reports that electrodes could be used to align and precipitate collagen from 

solution [273], but these observations appeared to remain dormant for 40 years. In 2008 

there was a renewed interest in enlisting electrical inputs to generate collagen fibers [135] 

and collagen membranes [274]. These early studies observed the emergence of oriented 

structure using polarized light microscopy, and recognized the importance of both water 

electrolysis for establishing a pH gradient and the electric field generated between the 

electrodes [135, 273]. The collagen protein is ampholytic with the charge varying between 

positive values (low pH) and negative values (high pH). This reversal of charge with pH 

differs from chitosan and alginate, which are weak polyelectrolytes and are charged at one 

pH extreme, but uncharged at the other extreme. Figure 8(b) illustrates that the 

electrochemical fabrication of collagen (and other proteins) resembles isoelectric focusing 

with the imposed electrical field driving the migration of collagen until it localizes in a 

position in which the molecules have no net charge (this location is not necessarily at an 

electrode surface). The electric field also offers the opportunity to align the collagen 

molecules [275] and confer anisotropic order that could promote collagen’s hierarchical 

assembly toward a more native structure [276]. The electrochemically aligned collagen 

(ELAC) has been observed to be dense, aligned and strong [133], with considerably greater 

strength than randomly oriented crosslinked collagen gels [135].

Collagen’s electrobiofabrication is controllable, with the thickness (e.g. of the collagen 

membrane) controlled by the time of the imposed electrical input [276], while further 

treatments (e.g. with buffer) have been used to promote fibrillogenesis in the collagen 

network [277]. More recently, the term electrochemical compaction has been used to 

emphasize the ability to create dense collagen films and membranes [278, 279]. While 

several studies report how the electrical inputs control the structure and physical properties 

of collagen, the focus of most of the research has been translational and specifically to 

understand how collagen-based matrices can be created to yield desirable biological 

responses (e.g. to guide cell adhesion, proliferation, migration and differentiation) [135]. To 

satisfy such translational goals, collagen’s electrochemical fabrication has been extended in 

important ways. For instance, other components (e.g. polysaccharides) are being 

incorporated into the electro-compacted collagen [280–282]. Also, sequential 

electrocompaction steps were used to create collagen–hydroxyapatite multilayers with 

differences in composition across the layers [278]. In a study aimed at developing tissue 

engineered vascular grafts, elastin was incorporated into electrochemically aligned collagen 

fibers to lower the modulus (e.g. for compliance matching) and increase the yield strain 

[283]. A final example is a study in which collagen sheets were first formed by 

electrocompaction and then stretched to further align the collagen structure and tune the 

stiffness anisotropy (SA) between transverse and longitudinal axes. The resulting 

anisotropies in morphology and mechanical properties were reported to significantly affect 

the biological response to these collagen materials (e.g. mesenchymal stem cell (MSC) fate) 

[36].

One target application is for corneal implants [284], where electrochemically compacted 

collagen (ECC) provided dense transparent collagen matrices that could be subsequently 

crosslinked to improve mechanical properties and stability [279]. The inclusion of glycose-

minoglycans into such electrobiofabricated collagen was also suggested to improve water 
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retention abilities [278, 280]. A second target application is tendon replacement, where 

ELAC threads were reported to: mimic the alignment and strength of collagen-rich 

connective tissues; promote a tendon-specific differentiation of MSCs [36, 285, 286]; and 

allow hierarchical assembly into woven 3D biotextiles [118]. Additional applications 

reported for electrobiofabricated collagens include woven collagens for cartilage repair 

[287], matrices for skin autografts [282], conduits for nerve guidance [275] and mineralized 

collagen coatings for orthopedic implants [156].

In summary, electrobiofabrication methods are emerging for creating collagen-based 

materials that mimic the structure, mechanical properties and biological activities of native 

collagen. These methods are reported to offer numerous advantages: the electrical signals 

may enable a more precise means to orient individual collagen molecules; a large design 

space is available to control these structures and properties [133]; it may be possible to 

couple electrical signals with additional inputs to further control structure (e.g. mechanical 

or magnetic alignment [157]); no toxic solvents are used during collagen 

electrobiofabrication; and the methods are simple, economical and versatile, as electrodes of 

varying sizes and shapes can be used to enable diverse structures to be generated while 

numerous components can be incorporated with the collagen [135, 271].

3.4. Silk

Silk has emerged as an important protein-based material for biomedical applications. Initial 

interests in the silk fibrous proteins from the spider and the silk worm were focused on their 

unique mechanical properties, but increasingly silk proteins have been recognized as 

biocompatible and degradable materials [288, 289]. Recent studies have shown that 

controlling the protein’s structure (e.g. β-sheet content) can allow tailoring of the controlled-

release properties [290] and the rate of biodegradation [291]. In addition, the protein nature 

of silk enables the use of biotechnology methods to further tailor functionality. For instance, 

enzymatic methods have been employed to enhance strength (via horseradish peroxidase 

catalyzed crosslinking) [292], and to confer biological function (by transglutaminase 

catalyzed protein conjugation) [293]. Further, there has been considerable effort to use 

recombinant technology to develop large-scale biomanufacturing processes for silk 

production [294–298].

In 2008, it was reported that when a cast silk fibroin solution was exposed to an externally 

applied alternating electric field the protein’s dipoles were aligned to create an oriented 

supramolecular assembly and anisotropic structure [299]. In 2010, silk’s electrochemical 

gelation was reported [158, 162] through a mechanism involving both the electrically 

mediated pH gradient and the electric field. These initial reports noted the speed and 

reproducibility for creating silk electrochemical gels (e-gels) and noted the capability to coat 

complex surfaces [162]. Interestingly, it was also noted that the regenerated e-gel silk did not 

have the high β-sheet content characteristics of natural silk [159].

Analogous to the case of collagen [135], the electrogelation of silk protein could be 

considered a type of isoelectric focusing with the co-localization of gelation and pH fronts 

[164], and the electric field inducing both the migration and alignment of the protein. 

Experimentally, the molecular-level anisotropy of the e-gel could be measured by polarized 
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light microscopy, and the aligned structure was observed to confer mechanical anisotropy 

[300].

At the supramolecular and nanoscales, various mechanisms have been reported that appear 

to differ significantly in details. One mechanism indicated that silk fibroin electrogelation 

progressed through stages in which random coils organized into metastable nanoparticles, 

which subsequently aggregated [163]. Later studies emphasized that e-gelation converted an 

unstructured silk fibroin solution into gels with significant α-helix content, and that 

imposing shear forces could further modify the gel’s structure and properties [161]. In some 

cases, e-gels could be generated with significant β-sheet content [160], and the electrical 

inputs provide the capabilities to tune the β-sheet content, and once a locally aligned 

structure was generated it could be chemically crosslinked to preserve the structure [301]. In 

summary, electrogelation allows externally imposed electrical signals to accelerate the 

assembly and tune the hierarchical structure of silk to enable the coupling of top-down and 

bottom-up approaches for the programmed fabrication of high performance multifunctional 

materials [30].

As described above for the other three biopolymers, there have been recent efforts made to 

extend the capabilities of silk electrogelation. For instance, co-deposition has been used to 

load silk gels with gentamicin [95] and curcumin [302], and to generate composite films 

with silk, graphene and hydroxyapatite [303]. In addition biotechnological methods are 

being coupled to electrogelation. For instance, recombinant human tropoelastin has been 

enzymatically coupled to silk fibroin through dityrosine linkages [304]. More recently, 

protein engineering methods were reported to create a designer triblock protein for 

reversible electrogelation. This protein contained a central spider silk glue region flanked by 

two pH-triggered coiled-coil domains to enable pH-responsive self-assembly. This designer 

protein enabled an electrically triggered dynamic matrix for applications that included 

controlled drug delivery [122].

As with collagen, much of the research with silk e-gels has also been focused on translation. 

As mentioned, one proposed application is as a coating for bone [95] and dental [305] 

implants. Also, a recent report describes the electrogelation of silk nanofibers to generate 

stable β-sheet-rich hydrogels with oriented anisotropic structures. Stem cells seeded on these 

anisotropic hydrogels were reported to provide the physical cues to orient cell morphology 

and tissue outcomes [306].

In summary, research on the electrogelation of silk highlights the ability to enlist electrical 

signals to control the assembly of supramolecular structure, and also to apply advanced 

biotechnology methods to create dynamically responsive material systems.

4. Conclusions and future perspectives

Electrical input stimuli offer exciting capabilities for organizing soft matter into functional 

material systems. Electrical signals can be imposed with exquisite spatial, temporal and 

quantitative control, and can be imposed in parallel over arbitrarily large electrode areas (i.e. 

which suggests its scalability). Macromolecular building blocks can respond to such 
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imposed electrical signals in subtle ways through field-induced motion, conformational 

changes and chain alignments, and in not-so-subtle ways by mediator-induced chemical 

reactions. And these macromolecular responses are sensitive to solution conditions. For 

instance, the inclusion of NaCl in the deposition solution can screen electrostatic fields and 

attenuate their effects, and NaCl can also result in the anodic generation of reactive chlorine 

species (e.g. HOCl) that can oxidatively ‘activate’ macromolecules for further covalent 

reactions (e.g. crosslinking or conjugation). When the macromolecular building blocks are 

derived from biology, there are additional possibilities. Specifically, biological polymers 

(proteins, nucleic acids and polysaccharides) often can: self-assemble to organize structures 

over a hierarchy of length scales; recognize various physical–chemical stimuli and respond 

through structural transitions (e.g. sol–gel transitions); and serve as substrates for enzymes 

that can either build or dissipate structure and function. Further, biology provides the 

materials and insights for building multi-scale supramolecular systems that are held together 

through a delicate balance of competing/reinforcing physical interactions that confer 

dynamic capabilities to respond, heal and reconfigure. Finally, the use of biologically 

derived polymers (e.g. proteins) provides access to the biotechnology toolbox (e.g. protein 

engineering) to provide powerful capabilities to control structure and responsive-ness. Thus, 

there appears to be a large electrobiofabrication design space available for imposing 

electrical inputs to guide the emergence of structure and to confer function.

A vision for electrobiofabrication is being driven by a convergence of contributions from 

across disciplines and labs. Several recent demonstrations have shown remarkable abilities 

to control structure by how/when/where electrical inputs are imposed, and electrochemistry 

is enabling the discovery of entirely new mechanisms for transducing electrical inputs into 

structural outputs. Advanced imaging is providing capabilities to observe, in real time, the 

emergence of structures in response to imposed electrical inputs. Molecular modeling is 

providing the insights to clarify assembly mechanisms and understand the stability of 

supramolecular assemblies. Biotechnology allows purposeful design to engineer proteins 

with fusion tags and domains capable of recognizing electrical inputs and promoting 

assembly. And increasingly electrobiofabrication is being performed with cellular systems to 

generate living material systems that incorporate contributions from cell and synthetic 

biology. Importantly, the comparatively simple and inexpensive methods of 

electrobiofabrication can be coupled with other assembly methods to extend the possibilities. 

For instance, electrodeposition has been coupled with polyelectrolyte layer-by-layer 

assembly, and also with 3D printing. Thus, recent studies are demonstrating that 

electrobiofabrication—alone or in combination with other methods—provides capabilities to 

meet the needs for emerging life science applications.

In the preceding paragraphs we highlighted the capabilities and recent successes of 

electrobiofabrication, yet it may be difficult to provide a broader comparison to more fully 

established biofabrication methods (e.g. based on photolithography and 3D printing). 

Historically, technology comparisons appeared simpler when assessing competing 

fabrication approaches for microelectronics because robust and generic metrics could be 

applied to assess progress on a roadmap that has served the industry for over a half century. 

One challenge is that the myriad of emerging life science applications may have more 

specialized requirements, while single-valued metrics of a material system (e.g. per cent cell 
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viability) may not adequately capture important subtleties. We suggest that a measure of 

success (albeit qualitative) may be how closely a biofabrication approach can recapitulate 

structural and functional features of complex tissue systems. For instance, recapitulating 

important mechanical properties will require more than simply matching a compliance 

metric, but may require matching a more complex set of mechanobiological requirements 

that may also vary with space and time. And creating hydrogels with complex internal 

structure may be integral to controlling the speed and directionality of molecular-based 

information flow. We suggest that electrobiofabrication provides important capabilities along 

a cost-effective and sustainable path toward the bio-based manufacturing of high 

performance material systems for a broad range of applications.
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Figure 1. 
Layered thin films are used to process information in technology and biology. (a) Moore’s 

law tracks progress in information technology using generic metrics for structure and 

performance. Reprinted by permission from Macmillan Publishers Ltd: [Nature] [6], 

copyright 2016. (b) A common goal for biofabrication is to recapitulate biology’s layered 

structures and spatiotemporal signaling.
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Figure 2. 
Electrodes provide electrical signals for electrobiofabrication. (a) The current quantifies the 

electrochemical reactions (i.e. the exchange of electrons at the electrode–solution interface) 

that can (b) provide localized chemical gradients (e.g. in pH) that cue self-assembly. (c) The 

electric field can induce macromolecules to migrate and undergo changes in conformation 

and alignment.
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Figure 3. 
Cathodic electrodeposition of chitosan. (a) Chitosan deposition (i.e. self-assembly) is 

induced by the high pH generated by cathodic electrolysis reactions. (b) Molecular modeling 

shows the pKa of an individual glucosamine residue is lowered when it is buried within the 

crystalline domains that serve as the physical network junctions (i.e. crosslinks). Reproduced 

with permission from [204]. John Wiley & Sons. © 2018 WILEY-VCH Verlag GmbH & Co. 

KGaA, Weinheim. (c) When an oscillating electrical input sequence is used to cue chitosan’s 

electrodeposition, the resulting hydrogel has a segmented internal structure that is controlled 

by the input sequence. Reproduced from [203] with permission from The Royal Society of 

Chemistry.
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Figure 4. 
Cathodic writing onto a dual responsive (chitosan–agarose) medium induces the formation 

of an internal structure. (a) The dual responsive hydrogel is formed by cooling an acidic 

blend of chitosan and agarose. (b) The internal structure is created using a cathodic ‘pen’ to 

create regions of high pH that induce the localized self-assembly of chitosan chains within 

the agarose network. (c) The gradients in the structure induced by writing also yield 

gradients in mechanical, chemical and biological properties. Adapted with permission from 

[204]. John Wiley & Sons. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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Figure 5. 
Chitosan can be crosslinked by independent physical mechanisms enabling films to be 

reversibly patterned, erased and reconfigured. (a) An acidic SDS solution is used as an ‘ink’ 

that is printed onto a cathodically deposited chitosan film. (b) One physical crosslinking 

mechanism involves electrostatic interactions between protonated chitosan chains and SDS 

micelles (Chit-H+-SDS), while a second physical crosslinking mechanism involves the 

crystalline domains that serve as network junctions (Chit0). (c) Films that are patterned with 

different crosslinking mechanisms offer anisotropic mechanical properties. Adapted with 

permission from [42]. John Wiley & Sons. © 2017 WILEY-VCH Verlag GmbH & Co. 

KGaA, Weinheim.
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Figure 6. 
Anodic (oxidative) deposition of chitosan involves covalent modifications. (a) Two-step 

fabrication of chitosan film to obtain chloramine residues that confer antimicrobial activities. 

(b) An analogous single step anodic deposition mechanism for chitosan. (c) The anodic 

fabrication of a catechol–chitosan film. Adapted from [239]. CC BY 4.0. (d) Catechol–

chitosan films are redox-active and allow for the sustained in situ generation of ROS that can 

inhibit the growth of methicillin resistant Staphylococcus aureus (MRSA). Adapted from 

[240]. Copyright 2018, with permission from Elsevier.
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Figure 7. 
Electrobiofabrication of functionalized alginate hydrogel films. (a) The mechanism for the 

anodic deposition of Ca2+-alginate hydrogels. Reproduced with permission from [143]. John 

Wiley & Sons. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (b) 

Three-step electrobiofabrication of a dual functional film that transduces the detection of a 

bacterial signaling molecule (autoinducer-2; AI-2) into a redox-active intermediate that is 

detected electrochemically. Adapted with permission from [266]. John Wiley & Sons. © 

2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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Figure 8. 
Electrical signals can be used to induce the migration, alignment and assembly of proteins. 

(a) The hierarchical organization of collagen. Reproduced with permission from [272]. © 

2006 by The National Academy of Sciences of the USA. (b) Electrochemical alignment of 

collagen at a location where the pH is equal to its isoelectric point.
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Table 1.

Capabilities likely to be important for the biofabrication of soft matter systems that mimic biological tissue.

• Creation of stratified interconnected multilayered systems that enable the emergence of complex biological contexts

• Matrix-forming materials/methods that: are biologically compatible; allow control of shape; can provide appropriate physical, 
chemical and biological properties; and can dynamically respond to external or internal cues

– Mechanical properties: match requirements for compliance and viscoelasticity, enable spatial variation (patterned 
anisotropies and topographies), and allow dynamic responses (to degrade, respond, heal and reconfigure)

– Transport properties: permit selective cellular ingress and control of molecular transport, delivery and release

– Chemical properties: provide surface-bound chemical cues to promote/preclude adhesion, spreading, migration and 
differentiation
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