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A B S T R A C T

This article explores the potential of a farm technology to simultaneously improve farm efficiency and provide
wider environmental and social benefits. Identifying these ‘win-win-win’ strategies and encouraging their
widespread adoption is critical to achieve sustainable intensification. Using a nationally representative sample of
296 Irish dairy farms from 2015, propensity score matching is applied to measure the impact of milk recording
on a broad set of farm sustainability indicators. The findings reveal that the technology enhances economic
sustainability by increasing dairy gross margin and milk yield per cow. Furthermore, social sustainability is
improved through a reduction in milk bulk tank somatic cell count (an indicator of animal health and welfare
status). Conversely, milk recording (as it is currently implemented) does not impact farm environmental sus-
tainability, represented by greenhouse gas emission efficiency. While the study shows that milk recording is a
‘win-win’ strategy, ways of improving current levels of utilisation are discussed so that milk recording achieves
its ‘win-win-win’ potential in the future.

1. Introduction

Sustainable intensification is seen as an important means of ad-
dressing major challenges faced by the global food system, such as food
security, environmental degradation and animal health and welfare
concerns. As such, fostering its development has become an essential
part of the agenda for policy makers and agri-food stakeholders
(Department of Agriculture Food and the Marine, 2015; Food and
Agricultural Organization of the United Nations, 2013; Franks, 2014).
That is, attention has shifted from solely maximising agricultural pro-
ductivity to optimising production across a wider set of economic, en-
vironmental and social sustainability objectives (Pretty et al., 2010). In
other words, the intention behind sustainable intensification is to in-
crease food production while simultaneously enhancing all three sus-
tainability pillars (i.e., economic, environmental and social). This is not
an easy task as it relies on systemic change at all levels of the food
supply chain (Firbank et al., 2018) and conflicts between economic,
environmental and social sustainability may arise in the intensification
process (Bos et al., 2013; Dawkins, 2017).

At the farm level, sustainable intensification translates into in-
creasing agricultural yields while using the same or a lower amount of
inputs so that adverse environmental effects of agricultural production
are reduced (Franks, 2014). It also entails ensuring that food is pro-
duced within a wider ethical framework (Garnett et al., 2013). When
applied to livestock production, sustainable intensification relies on
diluting the environmental costs of animal maintenance (environmental
pillar) through production efficiency gains (economic pillar) (Crosson
et al., 2011; Guerci et al., 2013), with socially acceptable standards of
animal welfare (social pillar) (Garnett et al., 2013; Lebacq et al., 2013).
Farm-level solutions must be found to help farmers undertake this
challenge and achieve sustainable intensification in comprehensive
terms. This article explores the potential of an agricultural technology
to concurrently increase farm efficiency and provide wider environ-
mental and social benefits in the context of dairy farming.

Technology adoption has traditionally been considered as a key
mechanism for increasing farm productivity (Ali et al., 2018; Läpple
and Thorne, 2018; Manda et al., 2016), but a stronger emphasis on
identifying ‘win-win’ strategies to simultaneously pursue several
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sustainability objectives has emerged more recently (Hocquette et al.,
2014; Llonch et al., 2017). While it is reasonable to expect concurrent
sustainability benefits from the adoption of certain agricultural tech-
nologies (Guerci et al., 2013; Huijps et al., 2010b; Lanigan et al., 2018),
claims must be further verified through rigorous empirical assessments
(Balafoutis et al., 2017; Tullo et al., 2019). To the best of our knowl-
edge, the current empirical literature provides limited indication as to
which technologies can help resolve the sustainable intensification
challenge across all three sustainability dimensions and lead to a ‘win-
win-win’ (Llonch et al., 2017) scenario.

In the present article, we address this issue and focus on the case
study of milk recording on Irish dairy farms. The need to find ‘win-win-
win’ solutions to achieve sustainable intensification is particularly
salient for the Irish dairy sector. Following the European Union (EU)
milk quota abolition in 2015, a process of dairy expansion and in-
tensification was set in motion in Ireland (Eurostat, n.d., 2020a, b) and
poses significant sustainability concerns (Buckley et al., 2019; Lanigan
et al., 2018). Milk recording is an agricultural technology, which pro-
vides per-cow information to farmers on a regular basis to support herd
monitoring and decision making (Läpple et al., 2017). The use of milk
recording information could lead to improve herd productivity and
health, and reduce the environmental impact of milk production
(Läpple et al., 2017). However, this ‘win-win-win’ potential has not yet
been empirically verified.

Two main challenges arise from the estimation of technology impact
on farm sustainability. On the one hand, new technologies can only be
evaluated if their productive, environmental and social performances
can be reliably estimated (Fumagalli et al., 2012), thus emphasising the
need for relevant metrics to measure sustainability outcomes (Bélanger
et al., 2012). Additionally, the quantification of environmental and
social sustainability is limited by data availability, and subjectivity and
complexity in delineating these terms (Lebacq et al., 2013). This in-
evitably results in a greater representation of easily-defined and -re-
corded economic performance and thus an imbalance between sus-
tainability dimensions in the literature (Lebacq et al., 2013). We
overcome this problem by using the rich and original 2015 Teagasc
National Farm Survey (NFS) dataset, which comprises a nationally re-
presentative sample of 296 Irish dairy farms. Based on this data, we
apply an indicator approach to measure farm sustainability (Hennessy
et al., 2013; Lynch et al., 2016), with dairy gross margin and milk yield
per cow for economic sustainability, GHG emission efficiency for en-
vironmental sustainability and bulk tank somatic cell count (BTSCC) of
the milk produced for social sustainability.

On the other hand, as farmers ultimately decide whether or not to
adopt a particular technology, self-selection must be accounted for
when estimating technology impact. Drawing on previous theoretical
and empirical literature (Dehejia and Wahba, 2002; Fentie and Beyene,
2019; Imbens and Wooldridge, 2009; Rosenbaum and Rubin, 1983;
Schilling et al., 2014), we apply propensity score matching (PSM) to
estimate treatment effects and assess milk recording’s ‘win-win-win’
potential. As a robustness check, additional estimation methods (i.e.,
inverse-probability weighting (IPW), regression adjustment (RA) and
inverse-probability-weighted regression adjustment (IPWRA)) are im-
plemented. Moreover, as PSM is based on the strong assumption that
selection occurs only on observed characteristics, Rosenbaum bounds
are estimated to test the sensitivity of treatment-effects estimates to
hidden bias (Becker and Caliendo, 2007; DiPrete and Gangl, 2004;
Rosenbaum, 2002).

The present study has direct policy relevance by addressing the
topical issue of sustainable intensification and adds value to the existing
literature in at least two ways. Firstly, it provides important insights on
the suitability of a technology to overcome sustainability challenges
arising from on-going agricultural intensification and can directly in-
form farmers’ adoption decision. The article takes an original approach
by simultaneously investigating economic, environmental and social
farm outcomes to explore the technology’s ‘win-win-win’ potential.

Secondly, the study also contributes to the literature on the develop-
ment and application of sustainability indicators by extending their use
for measuring the impact of new technologies. A set of indicators has
already been created specifically for the Teagasc NFS dataset (Hennessy
et al., 2013; Lynch et al., 2016) and is utilised in this study. Thus far,
farm sustainability indicators have mostly been used to assess time
trends in sustainability (Buckley et al., 2016; Dillon et al., 2016a) or to
compare production systems (Buckley et al., 2015); consequently, our
application is new. Subject to data availability, this approach can be
replicated in other agricultural settings.

The remainder of the article is structured as follows: section 2 re-
views relevant literature. Section 3 introduces background information
on Irish dairy expansion and milk recording. Section 4 outlines the
methodology, followed by a description of the sustainability indicators
used in the study and the data in section 5. Section 6 presents and
discusses the results, while the final section provides the conclusions
and policy implications.

2. Relevant literature

Agricultural technologies encompass a wide array of innovative
practices implemented on farms. Among others, they can refer to new
seed varieties, fertilisers or irrigation procedures (Doss, 2006; Kassie
et al., 2018; Mutenje et al., 2016), new information and communication
techniques to precisely inform management decisions (Barnes et al.,
2019; Eastwood et al., 2012; Hennessy et al., 2016), milk meters
(Eastwood et al., 2012; Hostiou et al., 2017), and growth hormones
(Barham et al., 2004; McBride et al., 2004). In the literature, technology
adoption has been identified as a main driver of farm productivity and
profitability, and thus of farm economic sustainability (Ali et al., 2018;
Läpple and Thorne, 2018; Manda et al., 2016). In the Irish context,
Läpple and Thorne (2018) showed that innovation, as measured
through an index that combines technology adoption, acquisition of
knowledge and continuous innovation (Läpple et al., 2015), enhances
farm economic sustainability, represented by profitability, productivity
of land and market orientation.

However, technologies allowing for productivity gains might only
resolve part of the sustainable intensification challenge. Not all tech-
nologies are equally suited to achieve this goal as their adoption might
not always lead to synergies but also to trade-offs across sustainability
dimensions (Dawkins, 2017; Lanigan et al., 2018; Llonch et al., 2017).
For instance, from the perspective of environmental synergies, Lanigan
et al. (2018) identified several efficiency measures (e.g., inclusion of
white clover in pastures, use of sexed semen, improved genetic merit)
that simultaneously increase farm economic performance and mitigate
greenhouse gas (GHG) emissions from Irish milk production. Therefore,
the adoption of these technologies can result in enhanced farm eco-
nomic and environmental sustainability.

Additionally, technology-driven productivity gains can only show
GHG mitigation benefits if emissions associated with intensification,
particularly from off-farm sources, are offset by higher levels of effi-
ciency (Crosson et al., 2011). In other words, increased productivity can
mitigate GHG emissions of agricultural production if excessively high
levels of external input application (e.g., concentrate feed and fertiliser)
are avoided (Basset-Mens et al., 2009; Crosson et al., 2011). This can be
a concern in intensive pasture-based production systems such as the
Irish one. In fact, since higher-yielding cows might have greater nu-
tritional requirements, not always achievable from grazing alone
(Charlton et al., 2011), increased productivity might also lead to en-
hanced reliance on external inputs (Foote et al., 2015). In the New
Zealand context, Basset-Mens et al. (2009) found that high-input pas-
ture-based systems emit more GHGs per kg of milk produced than low-
input ones. Therefore, not all technology-driven productivity gains
might enhance farm environmental sustainability. Similarly, Lanigan
et al. (2018) proved that not all mitigation strategies can increase farm
efficiency nor be profitable (e.g., low emission slurry spreading
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techniques), which questions their voluntary adoption by farmers and
ability to simultaneously reach economic and environmental sustain-
ability objectives at the farm level.

From an animal welfare perspective, mastitis provides an interesting
example of sustainability synergies and trade-offs. Mastitis is a con-
tagious production disease widely spread on dairy farms at global scale
(Sharma et al., 2011) and in Ireland (Geary et al., 2012; More et al.,
2012), with adverse effects on animal welfare (Medrano-Galarza et al.,
2012). In the last thirty years, its incidence has risen due to genetic
selection heavily focused on milk production traits (Algers et al., 2009;
Oltenacu and Broom, 2010). These traits are genetically antagonistic
towards mastitis resistance, which is now increasingly taken into ac-
count in breeding programmes (Algers et al., 2009; Oltenacu and
Broom, 2010). Decreasing mastitis occurrence and improving herd
health and welfare are a promising path towards more sustainable dairy
systems (Dawkins, 2017; Llonch et al., 2017). Indeed, the disease leads
to substantial milk yield losses, decreased raw milk quality and
avoidable culling decisions (Geary et al., 2012; Huijps et al., 2010b;
Sharma et al., 2011). Beyond negative economic implications, mastitis
also causes reduced GHG emission efficiency of dairy production
(Özkan Gülzari et al., 2018; Özkan et al., 2015).

In that regard, routine hygiene measures such as carrying out post-
milking teat disinfection were proven to be efficient to combat mastitis
incidence in the Dutch (Huijps et al., 2010b) and Irish (Dillon et al.,
2018) contexts. Thus, these results indicate that the uptake of such
technologies could lead to increased herd health and welfare status, and
thus farm social sustainability (Lebacq et al., 2013). Huijps et al.
(2010b, a) also showed that these measures can be cost-efficient, no-
tably by avoiding costs associated with mastitis, and suggest an eco-
nomic benefit from implementing routine hygiene measures. Because of
the association between mastitis, economic performance and GHG ef-
ficiency (Geary et al., 2012; Huijps et al., 2010b; Özkan Gülzari et al.,
2018; Özkan et al., 2015; Sharma et al., 2011), technologies reducing
mastitis occurrence could have a subsequent ‘win-win-win’ effect across
sustainability dimensions.

So far, the empirical literature focuses on identifying ‘win-win’
technologies, notably for joint improvements in economic performance
and animal health (Huijps et al., 2010b), or concurrent enhancements
of production efficiency and greenhouse gas (GHG) emission efficiency
(Lanigan et al., 2018). ‘Win-win-win’ potential is often discussed in
reviews (Llonch et al., 2017; Tullo et al., 2019), but there is a lack of
empirical proof to verify whether these technologies can indeed help
achieve sustainable intensification in comprehensive terms (i.e., eco-
nomic, environmental and social). We fill this gap by assessing milk
recording’s ‘win-win-win’ potential. The methodology implemented in
this study can be replicated to evaluate the ‘win-win-win’ potential of
other technologies.

3. Background

3.1. Irish dairy expansion

The Irish dairy sector offers an excellent framework to explore
sustainability issues associated with agricultural intensification, given
large scale expansion post-EU milk quota abolition. Between 20101 and
2017, dairy cow numbers and milk production increased by 33% and
40%, respectively (Eurostat, n.d., 2020a, b). Ireland’s export-oriented
dairy sector gains from a competitive advantage in international mar-
kets by relying on a low-cost pasture-based production system, with
further scope for and expectations of continued growth (Donnellan
et al., 2015; Lanigan et al., 2018).

However, significant sustainability concerns arise from on-going,

rapid growth (Buckley et al., 2019; Lanigan et al., 2018). Predicted
growth in Irish agricultural output, mainly driven by increased dairy
cow numbers and fertiliser use, is anticipated to result in a 9% rise in
agricultural GHG emissions by 2030 relative to 2005 levels, thereby
challenging the achievement of EU emission reduction targets (Lanigan
et al., 2018). Agriculture is the largest single contributor to Irish GHG
emissions by sector, accounting for about one-third of national emis-
sions and half of emissions from non-Emission Trading Scheme (ETS)
sectors2 (Duffy et al., 2017). In the context of the EU Effort Sharing
Decision, the country must decrease non-ETS emissions by 30% by
2030 relative to 2005 levels (Environmental Protection Agency, 2018).

Moreover, even though the Irish grass-based milk production system
is generally associated with high standards of animal welfare, dairy
expansion and intensification could lead to challenges in that regard.
There are international precedents for these concerns, notably in rela-
tion to udder and foot health (Lean and Playford, 2008; Algers et al.,
2009).

Hence, this article addresses sustainability challenges at a critical
time for the Irish dairy sector and is representative of situations faced
by other agricultural sectors. It draws attention to the need to find ‘win-
win-win’ technologies to achieve sustainable intensification and thus
examines whether milk recording can provide solutions to alleviate
sustainability conflicts.

3.2. Milk recording

Milk recording is an agricultural technology, which supports herd
monitoring and farmers’ decision making (Läpple et al., 2017). Through
the use of milk meters, it measures milk volumes and samples the milk
from individual cows during milking, with two implementation options:
1) a manual option, for which a milk recording agent visits the farm to
milk record, or 2) an electronic ‘Do-It-Yourself’ option, for which the
farmer handles the recording himself/herself (in this case, appropriate
training and support is provided by a technician) (Irish Cattle Breeding
Federation, n.d., 2020a). Milk samples are then collected by milk re-
cording organisations to be analysed. Result reports are returned to
farmers through an online service or on a paper version, with further
support to interpret them. They include detailed per-cow information
about milk yield, constituents and somatic cell count (SCC) levels.
Historical data is also reported. If utilised, milk recording data allows
for better-informed decisions in several areas of farm management
(Läpple et al., 2017).

In terms of reproductive management, milk recording information
can help farmers identify the most profitable animals (i.e., high
yielding, producing high-quality milk and with strong genetic merit) for
breeding dairy replacements and informing culling decisions. In this
way, farmers can increase milk quality and herd production perfor-
mance (Läpple et al., 2017). Moreover, improved productivity through
milk recording might be beneficial from a GHG mitigation perspective
(Crosson et al., 2011; Guerci et al., 2013). Since agriculture is under
pressure to reduce its emissions in Ireland (Buckley et al., 2019), active
participation in the national GHG mitigation effort through the adop-
tion of mitigation strategies by farmers is likely to increasingly gain in
importance. Some caution must be exercised in verifying milk record-
ing’s GHG mitigation potential. Because efficiency gains might lead to
enhanced reliance on external inputs (Foote et al., 2015), off-farm re-
allocation of environmental burdens must be accounted for by applying
a cradle-to-farm gate GHG estimation approach (O’Brien et al., 2014b).

In terms of animal health management, milk recording allows for
the monitoring of mastitis by providing SCC readings for individual
cows. Mastitis is mainly caused by bacterial infection in the udder and
leads to elevated SCC (Geary et al., 2012; Huijps et al., 2010b; Sharma

1 In 2010, the period of ‘soft landing’ started and milk quotas were increased
by 1% every year until 2015.

2 Non-ETS sectors include agriculture, transport, residential, commercial,
waste and non-energy intensive industry.
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et al., 2011). The threshold of 200,000 somatic cells per millilitre is
generally accepted as an indicator of mastitis incidence (International
Dairy Federation, 1997). Thus, SCC can be used to reliably detect
mastitis incidence, even when clinical symptoms are not yet observable,
and react accordingly (AHI, 2012; Sharma et al., 2011). Previous re-
search has concluded that Irish dairy farmers tend to adopt a reac-
tionary as opposed to a precautionary approach when managing mas-
titis, responding mainly to an indication of infection (Dillon et al.,
2018). This suggests that (subclinical) mastitis is not identified or
treated on time and underlines milk recording’s potential herd health
benefits.

From an implementation perspective, milk recording does not re-
quire any upfront investment. It costs approximately €12 per cow to
milk record six times per year (Irish Cattle Breeding Federation, n.d.,
2020a), but farmers can do it as frequently as they wish. The tech-
nology is risk-free and easy to use because it necessitates little or no
technical skills. Implementation does not generally disrupt the milking
routine, although it does slightly lengthen the milking task and requires
the presence of an extra person in the parlour.

Finally, the use of milk recording is less prevalent in Ireland com-
pared to some EU counterparts, with the technology utilised on 52% of
Irish dairy cows in 2015 as opposed to 86% and 69% in Germany and in
France, respectively (ICAR, n.d., 2020). Reasons for these stark differ-
ences in adoption rates across countries are not fully understood, but
one possible explanation may be that the benefits of milk recording are
not clear or, alternatively, not effectively communicated in Ireland.
This article contributes to resolving these issues by evaluating the
technology’s impact across all sustainability dimensions. We define
adopters as farmers who milk record at least once per year and non-
adopters as farmers who do not milk record at all.

4. Methodology

4.1. The impact evaluation problem

Ideally, the impact of technology adoption would be estimated by
calculating the difference in outcome at time t between a state where
the farmer adopts the technology (Yt

1) and a state where he/she does not
adopt the technology (Yt

0), as follows:

= =ATT E T( 1) , (1)

where ATT is the Average Treatment Effect for the Treated (i.e., the
average return only for the pool of adopters) and T indicates whether
the technology has been adopted ( =T 1) or not ( =T 0). However,
calculating is impossible as farmers can only be observed in one of the
two states (i.e., adopter or non-adopter), thus highlighting the need to
construct counterfactuals (Blackman and Naranjo, 2012; Imbens and
Wooldridge, 2009).

This problem could be solved by randomly assigning treatment,
such that = = =E Y T E Y T( , 0) ( , 1)t t

0 0 , and Eq. (1) would become:

= = =ATT E Y T E Y T( | 1) ( | 0).t t
1 0 (2)

However, when using non-experimental data, individuals choose
their treatment rather than being randomly assigned, which introduces
well-known self-selection bias. In other words, technology adoption
could lead to enhanced sustainability, but ‘better’ farmers are also more
likely to adopt the new technology. This suggests the presence of initial
differences between adopters and non-adopters, which may invalidate
causal comparisons of outcomes by treatment status (Imbens and
Wooldridge, 2009).

While several methods allow to control for self-selection bias and
estimate treatment effects (Imbens and Wooldridge, 2009), data avail-
ability often limits choice. In absence of suitable panel data or credible
instruments, PSM has emerged as a popular approach in agricultural
contexts (Fentie and Beyene, 2019; Schilling et al., 2014).

4.2. Propensity score matching

In this article, we apply PSM and estimate the ATT of milk recording
adoption on farm sustainability. Assuming that selection occurs only on
observables, adopters and non-adopters with the same probability p of
adopting the technology ( =T 1), given a set of covariates X , can be
compared and matched (Rosenbaum and Rubin, 1983). Under this as-
sumption, the within-matched-pair difference in outcomes is then at-
tributable to the technology’s impact and treatment effects are esti-
mated by averaging within-matched-pair differences in outcomes
(Imbens and Wooldridge, 2009). Thus, Eq. (2) becomes:

= = =ATT E Y T p E Y T p( | 1, ) ( | 0, ).PSM t t
1 0 (3)

Additionally, we use PSM to predict for each farmer both potential
outcomes (Yt

0 and Yt
1), adjusted for observables, and estimate potential

outcome means (POM) for the whole population, such that
=POM E Y( )k

t
k , where =k {0; 1}. In this way, ATTs can be expressed as

a percentage of potential outcome means.
The use of PSM involves a series of practical choices before esti-

mating ATTs. First, we estimate propensity scores = =p P T X( 1 )i i for
each farmer i with a logit model (Dehejia and Wahba, 2002). Xi are a set
of farm and farmers’ characteristics that simultaneously affect milk
recording adoption and farm sustainability, but are not impacted by
adoption status (Caliendo and Kopeinig, 2008). This model is equiva-
lent to an adoption decision model and is reported in Appendix A
(Model 1). Moreover, the model specification must meet two require-
ments: the overlap assumption and the balancing property (Caliendo
and Kopeinig, 2008). For the overlap assumption, a match with similar
propensity score value must be found for each adopter. We ensure that,
for each farmer i, pi is included between 0 and 1 and that there is
significant overlap between adopters’ and non-adopters’ propensity
scores by plotting their distribution by treatment status (Dehejia and
Wahba, 2002; Schreinemachers et al., 2016). The plot is presented in
Appendix B. For the balancing property, estimated propensity scores
must balance the covariate distribution between adopters and non-
adopters. We base the balance diagnosis on standardised differences.
The aim is to reach post-matching values of at most 10% across cov-
ariates and on average over all covariates (Austin, 2009;
Schreinemachers et al., 2016). Appendix C displays these standardised
differences before and after PSM and shows significant reduction in
covariate imbalance after PSM.3

Second, following the propensity score estimation, we perform
Nearest-Neighbour Matching (NNM), which matches adopters to their
closest non-adopter(s) in terms of propensity score value. This method
is common in PSM (Dehejia and Wahba, 2002; Schreinemachers et al.,
2016). Its implementation relies on two practical choices that entail a
trade-off between precision of treatment effect estimate and bias re-
duction (Dehejia and Wahba, 2002). One must select the number of
matches for each adopter and whether to match with or without re-
placement (i.e., whether to match non-adopters more than once). To
reach the best trade-off, we choose two matches with replacement4.

Finally, we evaluate matching quality by ordering propensity scores
from lowest to highest and plotting them for adopters and matched non-
adopters (Dehejia and Wahba, 2002). The plot is displayed in Appendix
D and indicates that matching was performed successfully.

3 Age has a post-matching standardised difference of 10.01%. However, it is
kept in the model as it improves the balance across other covariates that play a
greater role in the adoption decision model (Lee, 2013).
4 Other numbers of matches investigated during the exploration process in-

cluded one to four non-adopters. Moreover, matching without replacement was
not a viable option in this analysis as the reservoir of non-adopters relative to
adopters is small (151 vs. 145 observations).
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4.3. Sensitivity analysis

As a robustness check, we estimate ATTs with alternative treatment-
effects estimation methods, including IPW, RA and IPWRA (StataCorp,
2013). We then check whether resulting ATTs differ significantly by
estimating the overall coefficient of variation (CV) (Schreinemachers
et al., 2016). The latter measure shows the extent of variability relative
to the mean and is calculated as the ratio of the standard deviation to
the mean for the results of each outcome variable. This robustness
check ensures that ATT results are insensitive to changes in the esti-
mator (Schreinemachers et al., 2016).

Furthermore, we cannot directly assess whether bias was introduced
by the presence of unobservables that (are likely to) affect the adoption
decision (e.g., farmers’ ability, motivation). In fact, one of the main
shortcomings of PSM is that selection is assumed to occur only on ob-
servables and that this hypothesis cannot be formally tested. In this
context, Rosenbaum bounds are meant to simulate the effect of un-
observables on treatment effect estimates and to test the sensitivity of
PSM results to hidden bias (Rosenbaum, 2002). Following Becker and
Caliendo (2007), the adoption probability for each farmer i is given by:

= = = +p P T X F X u( 1 ) ( ),i i i i (4)

where ui is an unobserved variable and the effect of ui on the adoption
decision. If the analysis is free of hidden bias, will be zero and the
adoption decision will be determined only by Xi. Conversely, if un-
observables affect the adoption decision, farmers i and j with the same
observed X will have different probabilities of adopting milk recording.
Assuming F is the logistic distribution, the odds ratio between both
farmers i and j is given by:

= = = +
+

=
p p
p p

X u
X u

u u
(1 )
(1 )

exp( )
exp( )

exp( ( )).
p

p
p

p

i j

j i

i i

j j
i j

(1 )

(1 )

i
i

j
j (5)

if farmers i and j have identical observed X (as assumed in PSM). In
other words, both farmers i and j differ in their odds of adopting milk
recording by a factor equal to . If there are either no differences in
unobserved variables =u u( )i j or unobservables have no impact on the
adoption probability =( 0), then is 1, implying that PSM is suc-
cessful in estimating unbiased effects. Conversely, if an unobserved
characteristic impacts the adoption probability ( 0), it causes the
odds ratio of the adoption decision to differ between farmers i and j by
a factor different than 1 and ATTs are likely to be biased. More for-
mally, the Rosenbaum bounds approach is based on a Wilcoxon signed-
rank test. At each value, hypothetical significance levels are calcu-
lated and represent the upper and lower bounds of the ATT significance
level in case of endogenous adoption decision (DiPrete and Gangl,
2004). Critical values at which the p-values exceed the 10% threshold
correspond to the magnitude of hidden bias required to alter PSM re-
sults and question causal inferences.

5. Outcome variables and data description

5.1. Choice of sustainability indicators and data

Evaluating the impact of milk recording on farm sustainability is a
complex undertaking as it relies on the quantification of farm sustain-
ability outcomes. Measuring farm sustainability through indicators has
become a popular approach (Dillon et al., 2016a), which we apply in
this article through the Teagasc NFS data from 2015. Sustainability
indicators are “quantifiable and measurable attributes of a system that
are judged to be related to its sustainability” and can help reveal
movements in “the desired or undesired direction” in the data (Dillon
et al., 2016a: 32). In this manner, they can provide useful insights to
guide public policy (Bélanger et al., 2012; Dillon et al., 2016a;
Fumagalli et al., 2012), such as exploring the sustainability potential of
new technologies before encouraging widespread adoption.

The Teagasc NFS data is a rich and original enhancement of the data
recorded for EU Farm Accountancy Data Network purposes5 (Dillon
et al., 2016a). Professional farm recorders collect the data annually
through face-to-face surveys over two to three farm visits. Overall, a
randomly selected sample of approximately 900 farms participates each
year on a voluntary basis and is nationally representative of the Irish
farming population. Respondents are classified into six farming systems
depending on the main source of farming income: dairy, cattle rearing,
cattle other, sheep, arable and mixed livestock. In this article, we focus
on a sub-sample of 296 dairy farms from the 2015 survey, for which the
data required to calculate farm sustainability indicators is recorded.

Within the set of farm sustainability indicators available through the
Teagasc NFS, we choose the ones that are suitable in the context of milk
recording (Bélanger et al., 2012). More specifically, selected indicators
must be able to capture changes in farm sustainability related to the
technology’s uptake, they must be linked with the overall objective of
achieving sustainable intensification and they must also be relevant for
potential users (e.g., farmers, extension agents, policy makers). There-
fore, we focus on dairy gross margin and milk yield per cow to represent
economic sustainability, GHG emission efficiency of milk production as
an indicator of environmental sustainability and BTSCC of the milk
produced to measure social sustainability.

Dairy gross margin per cow is calculated as gross output minus di-
rect production costs of the dairy enterprise on a per-cow basis. Milk
yield per cow is measured as the total amount of milk produced on the
farm, including milk sold and milk fed to other livestock, divided per
cow.

GHG emission efficiency of milk production is the GHG emissions
per kg of unit produced and thus a measure of farm environmental
sustainability. For each farm, estimates of agricultural GHG emissions
are derived by using a cradle-to-farm gate life cycle assessment (LCA)
approach developed by O’Brien et al. (2010, O’Brien et al., 2014a, b).
The LCA methodology is internationally standardised (International
Organization of Standardization, 2006a, b) and specific guidelines have
been developed to assess GHG emissions of milk production (British
Standards Institute, 2011; Carbon Trust, 2010; International Dairy
Federation, 2015). Following these guidelines6, a holistic-systems ap-
proach to quantifying GHG emissions throughout the production pro-
cess is adopted (i.e., from off-farm production and acquisition of inputs
to on-farm production of milk). All off- and on-farm GHG emissions
associated with dairy production are modelled by combining the in-
formation from the Teagasc NFS dataset and emission factors estimated
using the Intergovernmental Panel on Climate Change (IPCC) guide-
lines or other resources in the literature (Dong et al., 2006; Duffy et al.,
2017)7. Emissions are then converted to total kg of carbon dioxide
equivalent (CO2e) using the 100-year Global Warming Potential
(Forster et al., 2007), as used for national emissions reporting. They are
reported per kg of Fat-Protein-Corrected-Milk (FPCM) (International
Dairy Federation, 2015), which controls for differences in milk solids
between individual farms.

BTSCC depicts risk for mastitis incidence at the herd level and thus
general herd health status (Geary et al., 2012; More et al., 2012;
Sharma et al., 2011). It reflects farm herd health management and
animal welfare levels (Huijps et al., 2010b; Medrano-Galarza et al.,
2012), which is an important component of the social sustainability of
livestock-based agricultural systems (Lebacq et al., 2013). Through the

5More specifically, the NFS fulfils Ireland’s statutory obligation as a EU
Member State to provide the European Commission with financial and technical
data relating to agriculture.
6 The LCA methodology used in this study was implemented according to the

publicly-available PAS 2050:2011 specification from the British Standards
Institute (BSI, 2011) and validated by the Carbon Trust, an accredited third
party (O’Brien et al., 2014a).
7 For a full description of the GHG emission sources and corresponding

emission factors, see O’Brien et al. (2014a).
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Teagasc NFS, monthly data on herd-level SCC based on milk bulk tank
readings is available and is utilised to calculate a yearly weighted
average so that the seasonality in Irish milk production is accounted for
(Dillon et al., 2015).

5.2. Descriptive statistics

We assess the difference in sustainability performance between milk
recording adopters and non-adopters in Table 1 by dividing farms by
adoption status and running a bivariate analysis. The results show that
adopters have higher dairy gross margins and milk yields per cow, are
more efficient in terms of GHG emissions and achieve lower BTSCCs.

The summary statistics reported in Table 2 reveal that adopters and
non-adopters also differ in terms of farm and farmers’ characteristics,
which suggests that self-selection may be at play. Adopters have larger
and more specialised dairy operations. They apply more fertiliser per
hectare, which indicates a higher reliance on external inputs. They are
more likely to have completed some level of agricultural education and
have larger households. They also spend less on extension per cow.
Among the variables presented in Table 2, we include herd size, spe-
cialisation, soil, education, age and household in the selection model to
estimate propensity scores (see section 3.2 and Appendix A for more

detail)8.

6. Results and discussion

6.1. Results of the treatment effect estimation

PSM results are reported in Table 3. They indicate that milk re-
cording has a positive impact on farm economic sustainability. Firstly,
it increases dairy gross margin by €54 per cow on average at the 10%
significance level. Secondly, the technology increases milk yield by 406
litres per cow on average at the 1% significance level. When expressing
these results in terms of percentages of potential outcome means (i.e.,
POM1 in Table 3), we find that milk recording increases dairy gross
margin and milk yield by 5% and 7% on average, respectively. When
accounting for implementation costs (Irish Cattle Breeding Federation,

Table 1
Sustainability performance of Irish dairy farms, by technology adoption status.

Outcome variable Non-adopters
(n = 151)

Adopters
(n = 145)

All farmers
(n = 296)

t-test

Dairy gross margin per cow
(€ / cow)

1,004.62
(278.38)

1,132.78
(264.52)

1,067.40
(278.71)

−4.06***

Milk yield per cow
(l / cow)

5,155.42
(956.45)

5,803.22
(894.36)

5,472.76
(980.22)

−6.01***

Agricultural GHG emissions per kg of output
(kg of CO2e / kg of FPCM)

1.20
(0.24)

1.12
(0.19)

1.16
(0.22)

3.37***

BTSCC
(‘000 cells / ml)

192.16
(72.60)

156.30
(56.37)

174.59
(67.48)

4.73***

Notes: Means and standard deviations in parentheses.
***, **, and * significant at the 1%, 5%, and 10% level, respectively.

Table 2
Characteristics of Irish dairy farms, by technology adoption status.

Variable Description Non-adopters
(n = 151)

Adopters
(n = 145)

All farmers
(n = 296)

Differences

Farm characteristics
Herd size Number of dairy cows 65.21

(39.41)
92.83
(40.61)

78.74
(42.26)

−5.94***

Specialisation Ratio of dairy cows to total livestock units 0.63
(0.14)

0.66
(0.11)

0.65
(0.13)

−2.38**

Soil = 1 if good soil quality, 0 otherwise 0.58
(0.50)

0.63
(0.49)

0.60
(0.49)

0.82
(χ2)

Stocking Dairy stocking rate
(number of dairy cows per hectare)

2.02
(0.55)

2.04
(0.48)

2.03
(0.52)

−0.31

Concentrates Kg of concentrates fed per cow 916.04
(396.37)

959.25
(472.59)

937.21
(435.17)

−0.85

Fertiliser Kg of nitrogen fertiliser applied per hectare 97.90
(50.30)

116.38
(52.57)

106.95
(52.17)

−3.09***

Farmers’ characteristics
Education = 1 if the farm holder has completed some level of agricultural education, 0 otherwise 0.69

(0.46)
0.86
(0.35)

0.77
(0.42)

12.69***
(χ2)

Age Age of the farm holder 49.80
(11.32)

47.94
(10.28)

48.89
(10.84)

1.48

Household Number of household members 3.30
(1.57)

3.72
(1.43)

3.51
(1.51)

−2.40**

Extension Extension expenditure per cow in euro 31.64
(21.28)

27.91
(15.82)

29.82
(18.86)

1.71*

Notes: Means and standard deviations in parentheses.
Statistical tests based on t-tests for continuous variables and chi-square tests for binary variables (distinguished by a χ2).
***, **, and * significant at the 1%, 5%, and 10% level, respectively.

8 Some variables from Table 2 are not included in the propensity score model
specification as their inclusion does not lead to improved covariate balance.
Nevertheless, we estimate another adoption decision model including all vari-
ables to assess whether hidden bias is of concern in section 5.2. It is reported as
Model 2 in Appendix A.
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n.d., 2020a), the estimated net benefit is €42 per cow, which translates
to a 4% net increase in dairy gross margin for adopters.

However, the findings reveal that milk recording does not have a sig-
nificant effect on farm environmental sustainability. Although we would
have expected improved productivity to concurrently lead to enhanced
GHG emission efficiency (Crosson et al., 2011; Guerci et al., 2013), the
technology does not change GHG emitted per unit of milk produced. This
suggests that the observed difference in adopters’ and non-adopters’ en-
vironmental performance (see Table 1) is not attributable to the technol-
ogy’s impact, but is likely to be driven by the higher production intensity of
adopters. Thus, the results show that, given current levels of data utilisation,
milk recording does not directly help attenuate an environmental issue that
is of increasing concern in agricultural production.

Finally, the findings in Table 3 show that milk recording is beneficial for
farm social sustainability. More specifically, it has the largest effect on
BTSCC, with a decrease by 38,860 cells per millilitre of milk on average at
the 1% significance level. When expressing this finding as a percentage of
potential outcome mean, milk recording results in a 25% reduction in
BTSCC, hence improving herd health. This outcome is consistent with Dillon
et al. (2016b). It is not surprising that the technology has the largest effect
on herd health since its uptake is mostly promoted for the monitoring of
elevated SCC (Animal Health Ireland, 2012). Indeed, farmers might be more
aware and inclined to use milk recording information for herd health than
for informed breeding decisions.

6.2. Results of the sensitivity analysis

As a robustness check, we estimate ATTs with alternative treatment-
effects estimation methods and calculate the CV for each indicator. The
findings are reported in Table 4. They reveal that ATT estimates do not
substantially vary across IPW, RA, IPWRA and PSM estimators and that
the variation around the mean remains under 16% for all indicators. It
is also worth mentioning that dairy gross margin becomes significant at
the 5% level with IPW and IPWRA.

As PSM results may suffer from hidden bias, we estimate Rosenbaum
bounds to investigate critical values for dairy gross margin, milk yield and
BTSCC. The findings are reported in Table 5 and show that robustness to
hidden bias varies across indicators, with milk yield being the most robust,
BTSCC somewhat less robust and dairy gross margin the least robust. The
results suggest that our ATT estimates become sensitive to hidden bias if an
unobserved characteristic causes the odds ratio of the adoption decision to
differ between adopters and non-adopters by a factor of at least 2.35 for
milk yield, 2.00 for BTSCC and 1.55 for dairy gross margin.

We can assess whether hidden bias is a serious concern by equating the
estimated critical values with equivalent effects of observed characteristics
from the propensity score estimation model (Model 1 in Appendix A)
(DiPrete and Gangl, 2004). The three significant predictors of milk re-
cording adoption in Model 1 are herd size, herd size squared and speciali-
sation, with odds ratios of 1.05, 1.00 and 10.51, respectively. Concerns arise
if this model specification omits important predictors that affect the adop-
tion decision by a magnitude of at least 1.55. Given that Model 1 was not
meant to perfectly predict technology adoption status and is constrained by
the need to balance covariates (Caliendo and Kopeinig, 2008), it is likely to
suffer from omitted variable bias if the goal is to predict the adoption de-
cision. For this reason, we estimate a model with a wider selection of control
variables9 and compare it to the critical values. The model (reported as
Model 2 in Appendix A) includes stocking rate, concentrate feed use, fer-
tiliser usage and extension expenditure per cow in addition to the covariates
from Model 1 (see Table 2 for variable description). The results show that
the odds ratios of the additional significant variables (stocking rate and
fertiliser use) remain under 1.01, thus revealing that their exclusion from
the propensity score estimation does not challenge our PSM results.

Concerns can also arise from the exclusion of unobservables such as
farmers’ motivation and ability, but we control for these characteristics
through education level, extension expenditure and degree of dairy spe-
cialisation. This is based on the idea that better-informed, more-commer-
cially oriented farmers are likely to be more motivated and inclined to adopt
new technologies (Feder et al., 1985; Sauer and Zilberman, 2012). Effec-
tively, it is unlikely that an unobserved confounder would be a stronger
predictor of the adoption decision than the variables included in Model 2.
Therefore, while it cannot be ruled out that selection occurs also on un-
observables, the study provides evidence of an impact of milk recording on
economic and social farm sustainability.

7. Conclusions and policy implications

In recent years, the sustainability of agricultural production has
moved to the forefront of public concerns and the political agenda.
While this is a topical issue for many agricultural sectors worldwide,
lessons can be learned from the Irish dairy sector, which is currently
undergoing rapid growth initiated by EU milk quota abolition. This
article evaluates the ‘win-win-win’ potential of an agricultural tech-
nology, i.e., milk recording, to simultaneously enhance all dimensions
of farm sustainability and thereby foster sustainable intensification on
Irish dairy farms. We apply matching methods to a representative
sample of 296 farms to control for observed farm and farmers’ char-
acteristics that affect the adoption decision and estimate treatment ef-
fects on a wide set of sustainability indicators.

Our empirical findings show that milk recording enhances farm
economic and social sustainability through a 4% net increase in dairy
gross margin, a 7% improvement in milk yield and a 25% reduction in
BTSCC. The technology’s impact on BTSCC suggests a decrease in the
risk of mastitis incidence due to the relationship between elevated SCC
and mastitis (Geary et al., 2012; Huijps et al., 2010b; Sharma et al.,
2011). Therefore, this study supports the idea that technology adoption
can reconcile productivity and animal welfare objectives at the farm
level (Dawkins, 2017).

Conversely, we did not find a significant impact of milk recording
on farm environmental sustainability, as measured by GHG emission
efficiency of milk production. This result suggests that productivity
gains reached through milk recording may not be sufficient to dilute the
GHG costs of animal maintenance (Crosson et al., 2011; Guerci et al.,
2013). Alternatively, these productivity gains might have been
achieved through enhanced reliance on external inputs (Foote et al.,

Table 3
Estimation of Average Treatment Effects of the Treated.

Outcome variable ATT St. error POM1 ATT as % of
POM1

Dairy gross margin per cow
(€ / cow)a

54.22* 32.43 1,118.13 +4.85

Milk yield per cow
(l / cow)

405.57*** 121.67 5,741.08 +7.06

Agricultural GHG emissions
per kg of output
(kg of CO2e / kg of
FPCM)

−0.029 0.031 1.14 −2.54

Dairy nitrogen balance per ha
(kg of N surplus / ha)

3.12 8.62 159.72 +1.95

BTSCC
(‘000 cells / ml)

−38.86*** 11.02 155.21 −25.04

Notes: Estimation based on propensity score matching, with two nearest
neighbours.
ATT = Average Treatment Effect for the Treated; St. error = standard error;
POM1 = potential outcome mean if all farmers were milk recording, adjusted
for observables.
***, **, and * significant at the 1%, 5%, and 10% level, respectively.

a Results from the PSM procedure, prior to subtracting implementation costs.

9 The model specification is based on previous literature focusing on tech-
nology adoption (Feder et al., 1985; Läpple et al., 2017; Sauer and Zilberman,
2012).
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2015), which can counteract GHG benefits of improved efficiency
(Basset-Mens et al., 2009). Increases in productivity per additional unit
of external inputs need to be larger so that GHG emission efficiency is
overall improved (Crosson et al., 2011). Consequently, considering the
current application of milk recording, this study does not confirm the
technology’s ‘win-win-win’ potential to foster a sustainable in-
tensification of Irish milk production.

Important policy implications arise from this study. The results
suggest that increasing milk recording’s adoption rates would be valu-
able to increase output and enhance animal health for farmers who are
not currently milk recording. The technology implies an out-of-pocket
expenditure, whose return on investment can be difficult to assess for
farmers. While milk recording adoption does not imply a direct cash
return, our findings confirm clear economic benefits. In that sense, the
study offers interesting insights in terms of methodological approach by
extending the application of farm sustainability indicators for the
measuring of technology impact. The estimation of treatment effects on
sustainability indicators is a means of isolating the impact of farm
strategies and provides evidence-based, self-explanatory figures (e.g.,
25% decrease in BTSCC) that can subsequently inform farmers’ adop-
tion decisions. The diffusion of our research findings to farmers through
veterinarians and extension agents would be useful to encourage milk
recording’s uptake. These actors are important sources of knowledge for
farmers (Genius et al., 2014; Sligo and Massey, 2007; Vrain and Lovett,
2016) and are already actively involved in the promotion of ‘best’
practices in Ireland (see for instance Animal Health Ireland, n.d.,

2020a, b; Department of Agriculture Food and the Marine, n.d, 2020).
While milk recording is a support technology, farmers remain the

central piece in the system as they are the ones making decisions and
acting upon the delivered information (Berckmans, 2014; Hostiou et al.,
2017). Our data does not allow us to assess the extent or manner in
which milk recording information is utilised to inform farm manage-
ment decisions and further research is needed investigate this topic.
Even though milk recording organisations provide training and support
to implement the technology and interpret results, concerns may arise
from the large amount of information returned to farmers (Progressive
Genetics, n.d., 2020) since it might difficult to select which of it is key
for decision making (Hostiou et al., 2017; Schewe and Stuart, 2015).

Previous research (e.g., Dillon et al., 2018) has indicated that
farmers adopt a short-term reactionary (versus precautionary) approach
towards mastitis management and as such milk recording technology
might not be widely used for breeding decisions. Using the information
for this purpose might potentially require a much deeper understanding
of the figures and expected impacts on cow offspring. If it were im-
proved, herd productivity could be further enhanced10. Increases in
GHG emission efficiency could also be expected with significant im-
provements in herd genetic merit (Lanigan et al., 2018), if excessively
high levels of external inputs are avoided (Crosson et al., 2011). This
accentuates the role of individual decision making based on milk re-
cording information and need of further training, notably through ex-
tension. More emphasis on all potential applications of milk recording
information (including breeding) may improve current depth of use by
milk recorders as there seems to be scope for improvement. ‘Informa-
tion intensive technologies’ (i.e., which provide information to support
decision making) (Barnes et al., 2019) tend to require further invest-
ments in training and learning so that farmers use them at full potential
(Barnes et al., 2019; Eastwood et al., 2012).

In absence of proven GHG benefits, it might be difficult to justify
public intervention to support the promotion of milk recording for
environmental purposes alone (Barnes et al., 2019). Nevertheless, it is
still likely to gain policy interest in the short-term future in the frame of
the new EU regulation addressing the public risk of antimicrobial re-
sistance (European Parliament Council of the European Union, 2019;
Irish Co-operative Organisation Society, 2019). This regulation will
come into force in January 2022. One of its goals is to reduce pre-
ventative antibiotic use in livestock production. As a result, strict re-
strictions on the use of ‘blanket dry cow therapies’ will be implemented
at dry-off so that only dairy cows for which it is an absolute necessity to
use dry cow antibiotics will receive the treatment (Irish Co-operative
Organisation Society, 2019). Farmers will have to move towards

Table 4
Sensitivity analysis to alternative treatment-effects estimation methods.

Method ATT estimates CV (%)

IPW RA IPWRA PSM (2NN)

Dairy gross margin per cow
(€ / cow)

64.61**
(32.26)

64.93*
(33.20)

63.74**
(31.74)

54.22*
(32.43)

8.29

Milk yield per cow
(l / cow)

513.23***
(121.14)

493.71***
(115.47)

507.72***
(112.72)

405.57***
(121.67)

10.48

Agricultural GHG emissions per kg of output
(kg of CO2e / kg of FPCM)

−0.020
(0.022)

−0.024
(0.023)

−0.028
(0.021)

−0.029
(0.031)

16.29

BTSCC
(‘000 cells / ml)

−32.61**
(9.44)

−27.77***
(8.52)

−32.99**
(8.89)

−38.86***
(11.02)

13.73

Notes: ATTs and standard errors in parentheses. Coefficients of Variation (CV) calculated as a ratio of the standard deviation to the mean for the results of each
indicator. IPW = Inverse-Probability Weighting; RA = Regression Adjustment; IPWRA = Inverse-Probability-Weighted Regression Adjustment; PSM = Propensity
Score Matching; NN = Nearest-Neighbour. ***, **, and * significant at the 1%, 5%, and 10% level, respectively.

Table 5
Sensitivity analysis to hidden bias (Rosenbaum Bounds estimation).

Dairy gross margin
per cow

Milk yield per cow BTSCC

(+) (+) (−)

1.20 0.008 1.85 0.009 1.55 0.007
1.25 0.013 1.90 0.012 1.60 0.10
1.30 0.022 1.95 0.017 1.65 0.015
1.35 0.034 2.00 0.022 1.70 0.022
1.40 0.050 2.05 0.029 1.75 0.030
1.45 0.071 2.10 0.37 1.80 0.040
1.50 0.097 2.15 0.047 1.85 0.053
1.55 0.13 2.20 0.058 1.90 0.068

2.25 0.071 1.95 0.085
2.30 0.085 2.00 0.11
2.35 0.10

Notes: p-values reported in the table. (+) refers to the upper bound sig-
nificance levels for the overestimation of treatment effects (for indicators im-
pacted positively by milk recording) and (-) to the lower bound significance
levels for the underestimation of treatment effects (for the indicator impacted
negatively by milk recording). The opposite bound significance levels were not
reported as they were always above the 1% level.

10 Age at first calving is between 24 and 36 months in Ireland (Berry and
Cromie, 2009), thus pointing out the time lag between current breeding deci-
sions and resulting herd performance improvements.
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‘selective dry cow therapies’ and distinguish cows that qualify for dry
cow strategies free from antibiotics (i.e., internal teat sealants) (AHI,
n.d. b). Milk recording is one tool that can help farmers identify cows
with low risks of infection at dry-off (through individual SCC readings)
and thus comply with the new regulation (Animal Health Ireland, n.d.,
2020a, b; Irish Co-operative Organisation Society, 2019). Thus, the
technology might contribute even more to the social sustainability of
Irish milk production by helping to prevent antimicrobial resistance. Up
until January 2022, adoption rates must increase (Irish Co-operative
Organisation Society, 2019), thus justifying public intervention, for
instance, through subsidised trials. If farmers are to fully bear the costs
of this new regulation, more research is needed to understand barriers
to the adoption of milk recording. In the meantime, the figures esti-
mated in this study can be used to encourage voluntary uptake.

Finally, sustainable intensification is likely to rely on more con-
trolled agricultural systems, with minimal waste along the supply
chain. As dairy farmers upgrade their milking equipment, there will be
opportunities to encourage a move away from traditional types of
support technologies like milk recording, on to more sophisticated
precision livestock farming technologies like automated milking facil-
ities (Eastwood et al., 2012). These can provide daily information for
herd monitoring and thus real-time decision aid, with expectations of
economic, environmental and social sustainability benefits (Barnes
et al., 2019; Berckmans, 2014; Eastwood et al., 2012). Just as for milk

recording, the realisation of their ‘win-win-win’ potential to achieve
sustainable intensification will depend on the actual use of the in-
formation they provide to inform daily decision making (Berckmans,
2014; Eastwood et al., 2012; Hostiou et al., 2017). Therefore, more
research is needed to improve the link between technology adoption
and farm management decisions.
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Appendix A. Adoption decision models

See Table A1

Table A1
Estimation of adoption decision models (logit regressions).

Covariate Odds ratio

Model 1 Model 2

Herd size 1.05***
(0.011)

1.06***
(0.012)

Herd size squared 1.00***
(0.000047)

1.00***
(0.000047)

Specialisation 10.51**
(11.06)

7.42*
(8.12)

Soil 1.02
(0.27)

1.08
(0.30)

Education 1.16
(1.86)

1.07
(1.78)

Age 1.00
(0.025)

1.00
(0.026)

Education * Age 1.01
(0.030)

1.01
(0.031)

Household 1.10
(0.098)

1.11
(0.10)

Stocking 0.48**
(0.15)

Concentrates 1.00
(0.00032)

Fertiliser 1.01**
(0.0030)

Extension 1.00
(0.0083)

Constant 0.0059***
(0.010)

0.0092**
(0.018)

Pseudo R2 0.15 0.17
Log-likelihood −174.83 −170.41
Observations 296 296
Overlap region [0.064; 0.85] N.A.

Notes: Results reported as odds ratios and standard errors in parentheses. Model 1 is the
propensity score estimation model and Model 2 is used for comparison purposes in section 5.2.
N.A. = Non-Applicable. ***, **, and * significant at the 1%, 5%, and 10% level, respectively.
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Appendix B. Overlap assumption

See Fig. B1

Appendix C. Balancing property

See Table C1

Appendix D. Matching quality

Fig. D1

Fig. B1. Kernel density distribution of propensity score, by treatment status.

Table C1
Standardised differences between both groups before and after propensity score matching (in
%).

Original Matched

Herd size 69.00 −0.94
Herd size squared 48.71 −2.07
Specialisation 27.74 −2.55
Soil 10.48 −6.46
Education 42.32 −6.18
Age −17.24 10.01
Education * Age 35.44 0.44
Household 27.96 −2.75
Total reduction in bias 34.86 3.93
Number of observations 296 290
Treated observations 145 145
Control observations 151 145

Fig. D1. Propensity scores for treated and matched comparison units after matching, lowest to highest.

L. Balaine, et al. Land Use Policy 92 (2020) 104437

10



References

Algers, B., Blokhuis, H.J., Botner, A., Broom, D.M., Costa, P., Greiner, M., Hartung, J.,
Koenen, F., Müller-graf, C., Raj, M., Morton, D.B., Osterhaus, A., Pfeiffer, D.U.,
Roberts, R., Sanaa, M., Salman, M., Sharp, M., Vannier, P., Wierup, M., 2009.
Scientific opinion on welfare of dairy cows in relation to leg and locomotion problems
based on a risk assessment with special reference to the impact of housing, Scientific
Opinion of the Panel on Animal Health and Animal Welfare Adopted on 05 June
2009. EFSA J 1–57. https://doi.org/10.2903/j.efsa.2009.1141.

Ali, A., Hussain, I., Rahut, D.B., Erenstein, O., 2018. Laser-land leveling adoption and its
impact on water use, crop yields and household income: empirical evidence from the
rice-wheat system of Pakistan Punjab. Food Policy 77, 19–32. https://doi.org/10.
1016/j.foodpol.2018.03.018.

Animal Health Ireland, 2012. Cellcheck Farm Guidelines for Mastitis Control: Review and
Planning.

Animal Health Ireland, n.d. Stakeholders [WWW Document]. http://animalhealthireland.
ie/?page_id=503# (accessed 8.29.18a).

Animal Health Ireland, n.d. TASAH dry cow consult [WWW Document] http://
animalhealthireland.ie/?page_id=10584 (accessed 9.15.19b).

Austin, P.C., 2009. Balance diagnostics for comparing the distribution of baseline cov-
ariates between treatment groups in propensity-score matched samples. Stat. Med.
28, 3083–3107. https://doi.org/10.1002/sim.

Balafoutis, A., Beck, B., Fountas, S., Vangeyte, J., Van Der Wal, T., Soto, I., Gómez-
Barbero, M., Barnes, A., Eory, V., 2017. Precision agriculture technologies positively
contributing to ghg emissions mitigation, farm productivity and economics. Sustain.
9, 1–28. https://doi.org/10.3390/su9081339.

Barham, B.L., Foltz, J.D., Jackson-Smith, D., Moon, S., 2004. The dynamics of agricultural
biotechnology adoption: Lessons from rBST use in Wisconsin, 1994-2001. Am. J.
Agric. Econ. 86, 61–72. https://doi.org/10.1111/j.0092-5853.2004.00562.x.

Barnes, A.P., Soto, I., Eory, V., Beck, B., Balafoutis, A., Sánchez, B., Vangeyte, J., Fountas,
S., van der Wal, T., Gómez-Barbero, M., 2019. Exploring the adoption of precision
agricultural technologies: a cross regional study of EU farmers. Land Use Policy 80,
163–174. https://doi.org/10.1016/j.landusepol.2018.10.004.

Basset-Mens, C., Ledgard, S., Boyes, M., 2009. Eco-efficiency of intensification scenarios
for milk production in New Zealand. Ecol. Econ. 68, 1615–1625. https://doi.org/10.
1016/j.ecolecon.2007.11.017.

Becker, S.O., Caliendo, M., 2007. Sensitivity analysis for average treatment effects. Stata
J. 7, 71–83 https://doi.org/The Stata Journal.

Bélanger, V., Vanasse, A., Parent, D., Allard, G., Pellerin, D., 2012. Development of agri-
environmental indicators to assess dairy farm sustainability in Quebec, Eastern
Canada. Ecol. Indic. 23, 421–430. https://doi.org/10.1016/j.ecolind.2012.04.027.

Berckmans, D., 2014. Precision livestock farming technologies for welfare management in
intensive livestock systems. Rev. sci. tech. Off. int. Epiz 33, 189–196. https://doi.org/
10.20506/rst.33.1.2273.

Berry, D.P., Cromie, A.R., 2009. Associations between age at first calving and subsequent
performance in Irish spring calving Holstein-Friesian dairy cows. Livest. Sci. 123,
44–54. https://doi.org/10.1016/j.livsci.2008.10.005.

Blackman, A., Naranjo, M.A., 2012. Does eco-certification have environmental benefits?
Organic coffee in Costa rica. Ecol. Econ. 83, 58–66. https://doi.org/10.1016/j.
ecolecon.2012.08.001.

Bos, J.F.F.P., Smit, A.L., Schröder, J.J., 2013. Is agricultural intensification in the
Netherlands running up to its limits? NJAS - Wageningen J. Life Sci. 66, 65–73.
https://doi.org/10.1016/j.njas.2013.06.001.

British Standards Institute, 2011. PAS 2050:2011 - Specification for the Assessment of the
Life Cycle Greenhouse Gas Emissions of Goods and Services. London.

Buckley, C., Donnellan, T., Dillon, E.J., Hanrahan, K., Moran, B., Ryan, M., 2019. Teagasc
National Farm Survey 2017 Sustainability Report. Athenry, Co., Galway, Ireland.

Buckley, C., Wall, D.P., Moran, B., Murphy, P.N.C., 2015. Developing the EU Farm
Accountancy Data Network to derive indicators around the sustainable use of ni-
trogen and phosphorus at farm level. Nutr. Cycl. Agroecosystems 102, 319–333.
https://doi.org/10.1007/s10705-015-9702-9.

Buckley, C., Wall, D.P., Moran, B., O’Neill, S., Murphy, P.N.C., 2016. Farm gate level
nitrogen balance and use efficiency changes post implementation of the EU Nitrates
Directive. Nutr. Cycl. Agroecosystems 104, 1–13. https://doi.org/10.1007/s10705-
015-9753-y.

Caliendo, M., Kopeinig, S., 2008. Some practical guidance for the implementation of
propensity score matching. J. Econ. Surv. 22, 31–72. https://doi.org/10.1111/j.
1467-6419.2007.00527.x.

Carbon Trust, 2010. Guidelines for the Carbon Footprinting of Dairy Products in the
UK.Guidelines for the Carbon Footprinting of Dairy Products in the UK.

Charlton, G.L., Rutter, S.M., East, M., Sinclair, L.A., 2011. Preference of dairy cows: in-
door cubicle housing with access to a total mixed ration vs. Access to pasture. Appl.
Anim. Behav. Sci. 130, 1–9. https://doi.org/10.1016/j.applanim.2010.11.018.

Crosson, P., Shalloo, L., O’Brien, D., Lanigan, G.J., Foley, P.A., Boland, T.M., Kenny, D.A.,
2011. A review of whole farm systems models of greenhouse gas emissions from beef
and dairy cattle production systems. Anim. Feed Sci. Technol. 166–167, 29–45.
https://doi.org/10.1016/j.anifeedsci.2011.04.001.

Dawkins, M.S., 2017. Animal welfare and efficient farming: is conflict inevitable? Anim.
Prod. Sci. 57, 201–208. https://doi.org/10.1071/AN15383.

Dehejia, R.H., Wahba, S., 2002. Propensity score-matching methods for nonexperimental
causal studies. Rev. Econ. Stat. 84, 151–161. https://doi.org/10.1162/
003465302317331982.

Department of Agriculture Food and the Marine, 2015. Food Wise 2025: a 10-year Vision
for the Irish Agri-food Industry.Food Wise 2025: a 10-year Vision for the Irish Agri-
food Industry.

Department of Agriculture Food and the Marine, n.d. Department of Agriculture Food and
the Marine Knowledge Transfer (KT) Programme, [WWW Document]. https://www.
agriculture.gov.ie/farmerschemespayments/knowledgetransferktprogramme/ (ac-
cessed 2.21.19).

Dillon, E.J., Hennessy, T., Buckley, C., Donnellan, T., Hanrahan, K., Moran, B., Ryan, M.,
2016a. Measuring progress in agricultural sustainability to support policy-making.
Int. J. Agric. Sustain. 14, 31–44. https://doi.org/10.1080/14735903.2015.1012413.

Dillon, E.J., Hennessy, T., Cullinan, J., 2016b. The role of agricultural education and
extension in influencing best practice for managing mastitis in dairy cattle. J. Agric.
Educ. Ext. 22, 255–270. https://doi.org/10.1080/1389224X.2015.1063518.

Dillon, E.J., Hennessy, T., Cullinan, J., 2015. Measuring the economic impact of improved
control of sub-clinical mastitis in Irish dairy herds. J. Agric. Sci. 153, 666–675.
https://doi.org/10.1017/S0021859614001178.

Dillon, E.J., Hennessy, T., Howley, P., Cullinan, J., Heanue, K., Cawley, A., 2018. Routine
inertia and reactionary response in animal health best practice. Agric. Human Values
35, 207–221. https://doi.org/10.1007/s10460-017-9817-5.

DiPrete, T.A., Gangl, M., 2004. Assessing bias in the estimation of causal effects: ro-
senbaum bounds on matching estimators and instrumental variables estimation with
imperfect instruments. Sociol. Methodol. 34, 271–310. https://doi.org/10.1111/j.
0081-1750.2004.00154.x.

Dong, H., Mangino, J., McAllister, T.A., 2006. Chapter 10: Emissions From Livestock and
Manure Management, 2006 IPCC Guidelines for National Greenhouse Gas
Inventories.

Donnellan, T., Hennessy, T., Thorne, F., 2015. The End of the Quota Era: a History of the
Dairy Sector and Its Future Prospects. Oakpark, Co., Carlow, Ireland.

Doss, C.R., 2006. Analyzing technology adoption using microstudies: limitations, chal-
lenges, and opportunities for improvement. Agric. Econ. 34, 207–219. https://doi.
org/10.1111/j.1574-0864.2006.00119.x.

Duffy, P., Black, K., O’Brien, P., Hyde, B., Ryan, A.M., Ponzi, J., Alam, S., 2017. Ireland’s
National Inventory Report 2017: Greenshouse Gas Emissions 1990 - 2015.

Eastwood, C.R., Chapman, D.F., Paine, M.S., 2012. Networks of practice for co-con-
struction of agricultural decision support systems: case studies of precision dairy
farms in Australia. Agric. Syst. 108, 10–18. https://doi.org/10.1016/j.agsy.2011.12.
005.

Environmental Protection Agency, 2018. Ireland’s Greenhouse Gas Emissions Projections,
2017-2035.

European Parliament Council of the European Union, 2019. Regulation (EU) 2019/6 on
Veterinary Medicinal Products and Repealing Directive 2001/82/EC (Text With EEA
Relevance).

Eurostat, n.d. Number of dairy cows [WWW Document]. http://ec.europa.eu/eurostat/
tgm/table.do?tab=table&init=1&language=en&pcode=tag00014&plugin=1 (ac-
cessed 11.3.17a).

Eurostat, n.d. Collection of cow’s milk [WWW Document]. http://ec.europa.eu/eurostat/
tgm/table.do?tab=table&init=1&language=en&pcode=tag00037&plugin=1 (ac-
cessed 11.1.17b).

Feder, G., Just, R.E., Zilberman, D., 1985. Adoption of agricultural innovations in de-
veloping countries: a survey. Econ. Dev. Cult. Change 33, 255–298.

Fentie, A., Beyene, A.D., 2019. Climate-smart agricultural practices and welfare of rural
smallholders in Ethiopia: Does planting method matter? Land Use Policy 85,
387–396. https://doi.org/10.1016/j.landusepol.2019.04.020.

Firbank, L.G., Attwood, S., Eory, V., Gadanakis, Y., Lynch, J.M., Sonnino, R., Takahashi,
T., 2018. Grand challenges in sustainable intensification and ecosystem Services.
Front. Sustain. Food Syst. 2, 1–3. https://doi.org/10.3389/fsufs.2018.00007.

Food and Agricultural Organization of the United Nations, 2013. Policy support guide-
lines for the promotion of sustainable production intensification and ecosystem ser-
vices. Integr. Crop Manag. 19.

Foote, K.J., Joy, M.K., Death, R.G., 2015. New Zealand dairy farming: milking our en-
vironment for all its worth. Environ. Manage. 56, 709–720. https://doi.org/10.1007/
s00267-015-0517-x.

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J.,
Lean, J., Lowe, D.C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., Van,
Dorland R., 2007. Changes in atmospheric constituents and radiative forcing. In:
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M.,
Miller, H.L. (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of
Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on
Climate Change. Cambridge, United Kingdom and New York, NY, USA, pp. 129–234.
https://doi.org/10.1017/CBO9781107415324.022.

Franks, J.R., 2014. Sustainable intensification: a UK perspective. Food Policy 47, 71–80.
https://doi.org/10.1016/j.foodpol.2014.04.007.

Fumagalli, M., Acutis, M., Mazzetto, F., Vidotto, F., Sali, G., Bechini, L., 2012. A meth-
odology for designing and evaluating alternative cropping systems: application on
dairy and arable farms. Ecol. Indic. 23, 189–201. https://doi.org/10.1016/j.ecolind.
2012.03.028.

Garnett, T., Appleby, M.C., Balmford, A., Bateman, I.J., Benton, T.G., Bloomer, P.,
Burlingame, B., Dawkins, M., Dolan, L., Fraser, D., Herrero, M., Hoffmann, I., Smith,
P., Thornton, P.K., Toulmin, C., Vermeulen, S.J., Godfray, H.C.J., 2013. Sustainable
intensification in agriculture: premises and policies. Science 341, 33–34. https://doi.
org/10.1126/science.1234485.

Geary, U., Lopez-Villalobos, N., Begley, N., McCoy, F., O’Brien, B., O’Grady, L., Shalloo,
L., 2012. Estimating the effect of mastitis on the profitability of Irish dairy farms. J.
Dairy Sci. 95, 3662–3673. https://doi.org/10.3168/jds.2011-4863.

Genius, M., Koundouri, P., Nauges, C., Tzouvelekas, V., 2014. Information transmission in
irrigation technology adoption and diffusion: social learning, extension services, and
spatial effects. Am. J. Agric. Econ. 96, 328–344. https://doi.org/10.1093/ajae/
aat054.

Guerci, M., Bava, L., Zucali, M., Sandrucci, A., Penati, C., Tamburini, A., 2013. Effect of

L. Balaine, et al. Land Use Policy 92 (2020) 104437

11

https://doi.org/10.2903/j.efsa.2009.1141
https://doi.org/10.1016/j.foodpol.2018.03.018
https://doi.org/10.1016/j.foodpol.2018.03.018
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0015
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0015
http://animalhealthireland.ie/?page_id=503#
http://animalhealthireland.ie/?page_id=503#
http://animalhealthireland.ie/?page_id=10584
http://animalhealthireland.ie/?page_id=10584
https://doi.org/10.1002/sim
https://doi.org/10.3390/su9081339
https://doi.org/10.1111/j.0092-5853.2004.00562.x
https://doi.org/10.1016/j.landusepol.2018.10.004
https://doi.org/10.1016/j.ecolecon.2007.11.017
https://doi.org/10.1016/j.ecolecon.2007.11.017
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0055
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0055
https://doi.org/10.1016/j.ecolind.2012.04.027
https://doi.org/10.20506/rst.33.1.2273
https://doi.org/10.20506/rst.33.1.2273
https://doi.org/10.1016/j.livsci.2008.10.005
https://doi.org/10.1016/j.ecolecon.2012.08.001
https://doi.org/10.1016/j.ecolecon.2012.08.001
https://doi.org/10.1016/j.njas.2013.06.001
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0085
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0085
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0090
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0090
https://doi.org/10.1007/s10705-015-9702-9
https://doi.org/10.1007/s10705-015-9753-y
https://doi.org/10.1007/s10705-015-9753-y
https://doi.org/10.1111/j.1467-6419.2007.00527.x
https://doi.org/10.1111/j.1467-6419.2007.00527.x
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0110
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0110
https://doi.org/10.1016/j.applanim.2010.11.018
https://doi.org/10.1016/j.anifeedsci.2011.04.001
https://doi.org/10.1071/AN15383
https://doi.org/10.1162/003465302317331982
https://doi.org/10.1162/003465302317331982
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0135
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0135
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0135
https://www.agriculture.gov.ie/farmerschemespayments/knowledgetransferktprogramme/
https://www.agriculture.gov.ie/farmerschemespayments/knowledgetransferktprogramme/
https://doi.org/10.1080/14735903.2015.1012413
https://doi.org/10.1080/1389224X.2015.1063518
https://doi.org/10.1017/S0021859614001178
https://doi.org/10.1007/s10460-017-9817-5
https://doi.org/10.1111/j.0081-1750.2004.00154.x
https://doi.org/10.1111/j.0081-1750.2004.00154.x
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0170
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0170
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0170
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0175
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0175
https://doi.org/10.1111/j.1574-0864.2006.00119.x
https://doi.org/10.1111/j.1574-0864.2006.00119.x
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0185
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0185
https://doi.org/10.1016/j.agsy.2011.12.005
https://doi.org/10.1016/j.agsy.2011.12.005
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0195
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0195
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0200
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0200
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0200
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0215
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0215
https://doi.org/10.1016/j.landusepol.2019.04.020
https://doi.org/10.3389/fsufs.2018.00007
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0230
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0230
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0230
https://doi.org/10.1007/s00267-015-0517-x
https://doi.org/10.1007/s00267-015-0517-x
https://doi.org/10.1017/CBO9781107415324.022
https://doi.org/10.1016/j.foodpol.2014.04.007
https://doi.org/10.1016/j.ecolind.2012.03.028
https://doi.org/10.1016/j.ecolind.2012.03.028
https://doi.org/10.1126/science.1234485
https://doi.org/10.1126/science.1234485
https://doi.org/10.3168/jds.2011-4863
https://doi.org/10.1093/ajae/aat054
https://doi.org/10.1093/ajae/aat054


farming strategies on environmental impact of intensive dairy farms in Italy. J. Dairy
Res. 80, 300–308. https://doi.org/10.1017/S0022029913000277.

Hennessy, T., Buckley, C., Dillon, E.J., Donnellan, T., Hanrahan, K., Moran, B., Ryan, M.,
2013. Measuring Farm-level Sustainability With the Teagasc National Farm Survey.
Athenry, Co., Galway, Ireland.

Hennessy, T., Läpple, D., Moran, B., 2016. The digital divide in farming: a problem of
access or engagement? Appl. Econ. Perspect. Policy 38, 474–491. https://doi.org/10.
1093/aepp/ppw015.

Hocquette, J.-F., Botreau, R., Legrand, I., Polkinghorne, R., Pethick, D.W., Lherm, M.,
Picard, B., Doreau, M., Terlouw, C., 2014. Win-win strategies for high beef quality,
consumer satisfaction, and farm efficiency, low environmental impacts and improved
animal welfare. Anim. Prod. Sci. 54, 1537–1548. https://doi.org/10.1071/AN14210.

Hostiou, N., Fagon, J., Chauvat, S., Turlot, A., Kling-Eveillard, F., Boivin, X., Allain, C.,
2017. Impact of precision livestock farming on work and human-animal interactions
on dairy farms. A review. Biotechnol. Agron. Soc. Environ. 21, 268–275. https://doi.
org/10.25518/1780-4507.13706.

Huijps, K., Hogeveen, H., Antonides, G., Valeeva, N.I., Lam, Theo J.G.M., Alfons, G.J.M.,
2010a. Sub-optimal economic behaviour with respect to mastitis management. Eur.
Rev. Agric. Econ. 37, 553–568. https://doi.org/10.1093/erae/jbq036.

Huijps, K., Hogeveen, H., Lam, T.J.G.M., Lansink, Oude, Alfons, G.J.M., 2010b. Costs and
efficacy of management measures to improve udder health on Dutch dairy farms. J.
Dairy Sci. 93, 115–124. https://doi.org/10.3168/jds.2009-2412.

ICAR, n.d. Yearly survey on the situation of milk recording systems (Years 2014 and
2015) in ICAR member countries for cow, sheep and goats.

Imbens, G.W., Wooldridge, J.M., 2009. Recent developments in the econometrics of
program evaluation. J. Econ. Lit. 47, 5–86. https://doi.org/10.1257/jel.47.1.5.

International Dairy Federation, 2015. A Common Carbon Footprint Approach for the
Dairy Sector: the IDF Guide to Standard Life Cycle Assessment Methodology. Brussels,
Belgium Bulletin No 445/2015.

International Dairy Federation, 1997. Recommendations for Presentation of Mastitis-re-
lated Data. Brussels, Belgium Bulletin No 321/1997.

International Organization of Standardization, 2006a. Environmental Management - Life
Cycle Assessment - Principles and Framework (ISO 14040:2006). Brussels.

International Organization of Standardization, 2006b. Environmental Management - Life
Cycle Assessment - Requirements and Guidelines (ISO 14044:2006). Brussels.

Irish Cattle Breeding Federation, n.d. Milk recording service options [WWW Document].
https://www.icbf.com/wp/?page_id=291 (accessed 2.20.18).

Irish Co-operative Organisation Society, 2019. EU Veterinary Medicines Regulation.
updates [WWW Document]. http://icos.ie/2019/01/17/eu-veterinary-medicines-
regulation-update/ (accessed 9.15.19).. .

Kassie, M., Marenya, P., Tessema, Y., Jaleta, M., Zeng, D., Erenstein, O., Rahut, D., 2018.
Measuring farm and market level economic impacts of improved maize production
technologies in Ethiopia: evidence from panel data. J. Agric. Econ. 69, 76–95.
https://doi.org/10.1111/1477-9552.12221.

Lanigan, G., Donnellan, T., Hanrahan, K., Paul, C., Shalloo, L., Krol, D., Forrestal, P.,
Farrelly, N., O’Brien, D., Ryan, M., Murphy, P., Caslin, J., Spink, J., Finnan, J.,
Boland, A., Upton, J., Richards, K., 2018. An Analysis of Abatement Potential of
Greenhouse Gas Emissions in Irish Agriculture 2021-2030. Oak Park, Co, Carlow.

Läpple, D., Holloway, G., Lacombe, D.J., O’Donoghue, C., 2017. Sustainable technology
adoption: a spatial analysis of the Irish dairy sector. Eur. Rev. Agric. Econ. 44,
810–835. https://doi.org/10.1093/erae/jbx015.

Läpple, D., Renwick, A., Thorne, F., 2015. Measuring and understanding the drivers of
agricultural innovation: evidence from Ireland. Food Policy 51, 1–8. https://doi.org/
10.1016/j.foodpol.2014.11.003.

Läpple, D., Thorne, F., 2018. The Role of Innovation in Farm Economic Performance:
Generalised Propensity Score Evidence from Irish Dairy Farms. J. Agric. Econ. 1–24.
https://doi.org/10.1111/1477-9552.12282.

Lean, I.J., Playford, M., 2008. Livestock disease threats associated with intensification of
pastoral dairy farming. N. Z. Vet. J. 56, 261–269. https://doi.org/10.1080/
00480169.2008.36845.

Lebacq, T., Baret, P.V., Stilmant, D., 2013. Sustainability indicators for livestock farming.
A review. Agron. Sustain. Dev. 33, 311–327. https://doi.org/10.1007/s13593-012-
0121-x.

Lee, W.S., 2013. Propensity score matching and variations on the balancing test. Empir.
Econ. 44, 47–80. https://doi.org/10.1007/s00181-011-0481-0.

Llonch, P., Haskell, M.J., Dewhurst, R.J., Turner, S.P., 2017. Current available strategies
to mitigate greenhouse gas emissions in livestock systems: An animal welfare per-
spective. Animal 11, 274–284. https://doi.org/10.1017/S1751731116001440.

Lynch, J., Hennessy, T., Buckley, C., Dillon, E., Donnellan, T., Hanrahan, K., Moran, B.,
Ryan, M., 2016. Teagasc National Farm Survey 2015 Sustainability Report. Athenry,
Co., Galway, Ireland.

Manda, J., Alene, A.D., Gardebroek, C., Kassie, M., Tembo, G., 2016. Adoption and im-
pacts of sustainable agricultural practices on maize yields and incomes: evidence
from rural Zambia. J. Agric. Econ. 67, 130–153. https://doi.org/10.1111/1477-9552.
12127.

McBride, W.D., Short, S., El-Osta, H., 2004. The adoption and impact of bovine

somatotropin on U.S. Dairy farms. Rev. Agric. Econ. 26, 472–488. https://doi.org/10.
1111/j.1467-9353.2004.00194.x.

Medrano-Galarza, C., Gibbons, J., Wagner, S., de Passillé, A.M., Rushen, J., 2012.
Behavioral changes in dairy cows with mastitis. J. Dairy Sci. 95, 6994–7002. https://
doi.org/10.3168/jds.2011-5247.

More, S.J., Clegg, T.A., O’Grady, L., 2012. Insights into udder health and intramammary
antibiotic usage on irish dairy farams during 2003-2010. Ir. Vet. J. 65, 1–13. https://
doi.org/10.1186/2046-0481-65-7.

Mutenje, M., Kankwamba, H., Mangisonib, J., Kassie, M., 2016. Agricultural innovations
and food security in Malawi: gender dynamics, institutions and market implications.
Technol. Forecast. Soc. Change 103, 240–248. https://doi.org/10.1016/j.techfore.
2015.10.004.

O’Brien, D., Brennan, P., Humphreys, J., Ruane, E., Shalloo, L., 2014a. An appraisal of
carbon footprint of milk from commercial grass-based dairy farms in Ireland ac-
cording to a certified life cycle assessment methodology. Int. J. Life Cycle Assess. 19,
1469–1481. https://doi.org/10.1007/s11367-014-0755-9.

O’Brien, D., Shalloo, L., Crosson, P., Donnellan, T., Farrelly, N., Finnan, J., Hanrahan, K.,
Lalor, S., Lanigan, G., Thorne, F., Schulte, R., 2014b. An evaluation of the effect of
greenhouse gas accounting methods on a marginal abatement cost curve for Irish
agricultural greenhouse gas emissions. Environ. Sci. Policy 39, 107–118. https://doi.
org/10.1016/j.envsci.2013.09.001.

O’Brien, D., Shalloo, L., Grainger, C., Buckley, F., Horan, B., Wallace, M., 2010. The in-
fluence of strain of Holstein-Friesian cow and feeding system on greenhouse gas
emissions from pastoral dairy farms. J. Dairy Sci. 93, 3390–3402. https://doi.org/10.
3168/jds.2009-2790.

Oltenacu, P.A., Broom, D.M., 2010. The impact of genetic selection for increased milk
yield on the welfare of dairy cows. Anim. Welf. 19, 39–49.

Özkan Gülzari, Ş., Vosough, B., Stott, A.W., 2018. Impact of subclinical mastitis on
greenhouse gas emissions intensity and profitability of dairy cows in Norway. Prev.
Vet. Med. 150, 19–29. https://doi.org/10.1016/j.prevetmed.2017.11.021.

Özkan, Ş., Ahmadi, B.V., Bonesmo, H., Østerås, O., Stott, A., Harstad, O.M., 2015. Impact
of animal health on greenhouse gas emissions. Adv. Anim. Biosci. 6, 24–25. https://
doi.org/10.1017/S2040470014000454.

Pretty, J., Sutherland, W.J., Ashby, J., Auburn, J., Baulcombe, D., Bell, M., Bentley, J.,
Bickersteth, S., Brown, K., Burke, J., Campbell, H., Chen, K., Crowley, E., Crute, I.,
Dobbelaere, D., Edwards-Jones, G., Funes-Monzote, F., Godfray, H.C.J., Griffon, M.,
Gypmantisiri, P., Haddad, L., Halavatau, S., Herren, H., Holderness, M., Izac, A.-M.,
Jones, M., Koohafkan, P., Lal, R., Lang, T., McNeely, J., Mueller, A., Nisbett, N.,
Noble, A., Pingali, P., Pinto, Y., Rabbinge, R., Ravindranath, N.H., Rola, A., Roling,
N., Sage, C., Settle, W., Sha, J.M., Shiming, L., Simons, T., Smith, P., Strzepeck, K.,
Swaine, H., Terry, E., Tomich, T.P., Toulmin, C., Trigo, E., Twomlow, S., Vis, J.K.,
Wilson, J., Pilgrim, S., 2010. The top 100 questions of importance to the future of
global agriculture. Int. J. Agric. Sustain. 8, 219–236. https://doi.org/10.3763/ijas.
2010.0534.

Progressive Genetics, n.d. Milk recording reports.
Rosenbaum, P.R., 2002. New York. Observational Studies, 2nd ed. .
Rosenbaum, P.R., Rubin, D.B., 1983. The central role of the propensity score in ob-

servational studies for causal effects. Biometrika 70, 41–55. https://doi.org/10.1093/
biomet/70.1.41.

Sauer, J., Zilberman, D., 2012. Sequential technology implementation, network ex-
ternalities, and risk: the case of automatic milking systems. Agric. Econ. 43, 233–252.
https://doi.org/10.1111/j.1574-0862.2012.00579.x.

Schewe, R.L., Stuart, D., 2015. Diversity in agricultural technology adoption: how are
automatic milking systems used and to what end? Agric. Human Values 32, 199–213.
https://doi.org/10.1007/s10460-014-9542-2.

Schilling, B.J., Attavanich, W., Sullivan, K.P., Marxen, L.J., 2014. Measuring the effect of
farmland preservation on farm profitability. Land Use Policy 41, 84–96. https://doi.
org/10.1016/j.landusepol.2014.04.019.

Schreinemachers, P., Wu, M., Uddin, M.N., Ahmad, S., Hanson, P., 2016. Farmer training
in off-season vegetables: effects on income and pesticide use in Bangladesh. Food
Policy 61, 132–140. https://doi.org/10.1016/j.foodpol.2016.03.002.

Sharma, N., Singh, N.K., Bhadwal, M.S., 2011. Relationship of somatic cell count and
mastitis : an overview. Asian-Australian J. Anim. Sci. 24, 429–438. https://doi.org/
10.5713/ajas.2011.10233.

Sligo, F.X., Massey, C., 2007. Risk, trust and knowledge networks in farmers’ learning. J.
Rural Stud. 23, 170–182. https://doi.org/10.1016/j.jrurstud.2006.06.001.

StataCorp, 2013. Stata 13 Treatment-effects Reference Manual: Potential outcomes/
counterfactual Outcomes. Stata Press, College station, TX https://doi.org/978-1-
59718-128-0.

Tullo, E., Finzi, A., Guarino, M., 2019. Review: environmental impact of livestock farming
and Precision Livestock Farming as a mitigation strategy. Sci. Total Environ. 650,
2751–2760. https://doi.org/10.1016/j.scitotenv.2018.10.018.

Vrain, E., Lovett, A., 2016. The roles of farm advisors in the uptake of measures for the
mitigation of diffuse water pollution. Land Use Policy 54, 413–422. https://doi.org/
10.1016/j.landusepol.2016.03.007.

L. Balaine, et al. Land Use Policy 92 (2020) 104437

12

https://doi.org/10.1017/S0022029913000277
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0275
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0275
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0275
https://doi.org/10.1093/aepp/ppw015
https://doi.org/10.1093/aepp/ppw015
https://doi.org/10.1071/AN14210
https://doi.org/10.25518/1780-4507.13706
https://doi.org/10.25518/1780-4507.13706
https://doi.org/10.1093/erae/jbq036
https://doi.org/10.3168/jds.2009-2412
https://doi.org/10.1257/jel.47.1.5
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0315
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0315
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0315
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0320
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0320
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0325
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0325
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0330
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0330
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0340
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0340
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0340
https://doi.org/10.1111/1477-9552.12221
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0350
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0350
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0350
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0350
https://doi.org/10.1093/erae/jbx015
https://doi.org/10.1016/j.foodpol.2014.11.003
https://doi.org/10.1016/j.foodpol.2014.11.003
https://doi.org/10.1111/1477-9552.12282
https://doi.org/10.1080/00480169.2008.36845
https://doi.org/10.1080/00480169.2008.36845
https://doi.org/10.1007/s13593-012-0121-x
https://doi.org/10.1007/s13593-012-0121-x
https://doi.org/10.1007/s00181-011-0481-0
https://doi.org/10.1017/S1751731116001440
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0390
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0390
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0390
https://doi.org/10.1111/1477-9552.12127
https://doi.org/10.1111/1477-9552.12127
https://doi.org/10.1111/j.1467-9353.2004.00194.x
https://doi.org/10.1111/j.1467-9353.2004.00194.x
https://doi.org/10.3168/jds.2011-5247
https://doi.org/10.3168/jds.2011-5247
https://doi.org/10.1186/2046-0481-65-7
https://doi.org/10.1186/2046-0481-65-7
https://doi.org/10.1016/j.techfore.2015.10.004
https://doi.org/10.1016/j.techfore.2015.10.004
https://doi.org/10.1007/s11367-014-0755-9
https://doi.org/10.1016/j.envsci.2013.09.001
https://doi.org/10.1016/j.envsci.2013.09.001
https://doi.org/10.3168/jds.2009-2790
https://doi.org/10.3168/jds.2009-2790
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0435
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0435
https://doi.org/10.1016/j.prevetmed.2017.11.021
https://doi.org/10.1017/S2040470014000454
https://doi.org/10.1017/S2040470014000454
https://doi.org/10.3763/ijas.2010.0534
https://doi.org/10.3763/ijas.2010.0534
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0460
https://doi.org/10.1093/biomet/70.1.41
https://doi.org/10.1093/biomet/70.1.41
https://doi.org/10.1111/j.1574-0862.2012.00579.x
https://doi.org/10.1007/s10460-014-9542-2
https://doi.org/10.1016/j.landusepol.2014.04.019
https://doi.org/10.1016/j.landusepol.2014.04.019
https://doi.org/10.1016/j.foodpol.2016.03.002
https://doi.org/10.5713/ajas.2011.10233
https://doi.org/10.5713/ajas.2011.10233
https://doi.org/10.1016/j.jrurstud.2006.06.001
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0500
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0500
http://refhub.elsevier.com/S0264-8377(19)31048-8/sbref0500
https://doi.org/10.1016/j.scitotenv.2018.10.018
https://doi.org/10.1016/j.landusepol.2016.03.007
https://doi.org/10.1016/j.landusepol.2016.03.007

	Can technology help achieve sustainable intensification? Evidence from milk recording on Irish dairy farms
	Introduction
	Relevant literature
	Background
	Irish dairy expansion
	Milk recording

	Methodology
	The impact evaluation problem
	Propensity score matching
	Sensitivity analysis

	Outcome variables and data description
	Choice of sustainability indicators and data
	Descriptive statistics

	Results and discussion
	Results of the treatment effect estimation
	Results of the sensitivity analysis

	Conclusions and policy implications
	mk:H1_17
	Acknowledgments
	Adoption decision models
	Overlap assumption
	Balancing property
	Matching quality
	References




