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Large epigenome-wide association study of
childhood ADHD identifies peripheral DNA
methylation associated with disease and
polygenic risk burden
Michael A. Mooney 1,2, Peter Ryabinin3, Beth Wilmot 1,3, Priya Bhatt4, Jonathan Mill 5 and Joel T. Nigg4,6

Abstract
Epigenetic variation in peripheral tissues is being widely studied as a molecular biomarker of complex disease and
disease-related exposures. To date, few studies have examined differences in DNA methylation associated with
attention-deficit hyperactivity disorder (ADHD). In this study, we profiled genetic and methylomic variation across the
genome in saliva samples from children (age 7–12 years) with clinically established ADHD (N= 391) and
nonpsychiatric controls (N= 213). We tested for differentially methylated positions (DMPs) associated with both ADHD
diagnosis and ADHD polygenic risk score, by using linear regression models including smoking, medication effects,
and other potential confounders in our statistical models. Our results support previously reported associations
between ADHD and DNA methylation levels at sites annotated to VIPR2, and identify several novel disease-associated
DMPs (p < 1e–5), although none of them were genome-wide significant. The two top-ranked, ADHD-associated DMPs
(cg17478313 annotated to SLC7A8 and cg21609804 annotated to MARK2) are also significantly associated with nearby
SNPs (p= 1.2e–46 and p= 2.07e–59), providing evidence that disease-associated DMPs are under genetic control. We
also report a genome-wide significant association between ADHD polygenic risk and variable DNA methylation at a
site annotated to the promoter of GART and SON (p= 6.71E–8). Finally, we show that ADHD-associated SNPs colocalize
with SNPs associated with methylation levels in saliva. This is the first large-scale study of DNA methylation in children
with ADHD. Our results represent novel epigenetic biomarkers for ADHD that may be useful for patient stratification,
reinforce the importance of genetic effects on DNA methylation, and provide plausible molecular mechanisms for
ADHD risk variants.

Introduction
Attention-deficit hyperactivity disorder (ADHD) has

a substantial heritable component, with genetic factors
interacting with early-life environmental exposures to
mediate risk1,2. A recent large genome-wide association

study (GWAS) meta-analysis of ADHD identified the
first genome-wide significant association with common
DNA variants3. These data allow for a more precise
estimate of the burden of ADHD genetic risk, which is
associated with ADHD diagnosis and some of its
mechanisms, such as poor executive function4.
The specific mechanisms by which genetic risk factors

influence ADHD are not known, although recent evi-
dence supports a role for non-sequence-based (i.e.,
regulatory) genomic variation in neuropsychiatric
phenotypes5–8. Epigenetic processes, which act to
dynamically control gene expression and are known to
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regulate key neurobiological and cognitive processes in
the brain, represent both a potential clue to mechan-
isms and a possible source of novel biomarker dis-
covery9,10. Epigenetic studies of mental disorders have
focused primarily on DNA methylation, the best-
characterized and most stable epigenetic modification.
It acts to influence gene expression via physical dis-
ruption of transcription factor binding and the attrac-
tion of methyl-binding proteins that initiate chromatin
compaction and gene silencing11. Epigenetic variation
can be influenced by environmental exposures. In fact,
many of the environmental risk factors associated with
ADHD have been associated with changes in DNA
methylation in peripheral tissues12–16. Epigenetic
changes may also be induced by exposures related to
the disease (e.g., medication) or the pathological pro-
cess itself. Although patterns of DNA methylation are
cell-type specific, and generalization from peripheral
tissue to brain mechanisms is not appropriate, disease-
associated changes in peripheral DNA methylation
might serve as useful biomarkers. For instance, DNA
methylation changes in peripheral tissues may be
indicative of early exposures (caused by, rather than
causal of, disease process) or clinical subtypes, or may
be predictors of outcome or treatment response17.
Importantly, both genetic and environmental etiologies
can operate through epigenetic effects, and there is
evidence that genetic effects on DNA methylation are
relatively conserved across tissues18,19. Thus, an inte-
grated genetic/epigenetic approach is strongly recom-
mended for “second generation” studies of methylation
biomarkers18,20. Combining genetic and epigenetic data
might also nominate novel mechanistic pathways
associated with disease as hypotheses for future study21.
DNA methylation studies relevant to ADHD or

ADHD symptoms to date are limited. They include five
candidate gene studies on relatively small samples22–26,
and four studies targeting specific environmental
exposures, such as malnutrition, in relation to ADHD
symptoms, by using candidate and epigenome-wide
association study (EWAS) approaches27–30. Three prior
EWAS studies are relevant. The first and only study to
examine ADHD cases directly, was a small study by our
group31. That study of 105 children was able to repli-
cate suggestive findings in MYT1L and VIPR2, also a
top hit in an EWAS of environmental exposure28 and a
recent twin study32. An EWAS of ADHD symptoms in
adult population cohorts reported additional novel
candidate sites for exploration, as well as noting that
most top-ranked loci were driven by DNA methylation
quantitative trait loci (mQTL)33. A third population-
based EWAS study7 identified prenatal DNA methyla-
tion sites related to later ADHD symptom trajectories,
though they did not replicate at the age of 7.

We report here the first large-scale EWAS of children
with ADHD and extend our previous study to incorporate
analyses of genetic effects in the context of variable DNA
methylation, exploring both mQTL and polygenic risk
burden derived from GWAS. Given our focus on identi-
fying biomarkers relevant to ADHD, we use DNA derived
from saliva in an effort to minimize potential selection
bias resulting from clinical differences in rates of child
refusal of blood draws.

Methods
Participants and case identification
In a case-finding procedure, families were recruited

by soliciting community volunteers with public adver-
tisements and mass mailings. The local Institutional
Review Board approved the studies. Parents provided
written informed consent; children provided written
informed assent. All families completed a multi-infor-
mant, multi-method screening process to establish
eligibility and diagnostic group assignment for ADHD,
non-ADHD, as well as comorbid disorders (Supple-
mentary Materials).

Medication
Current and lifetime prescription of any psychoactive

medication, including any stimulant or non-stimulant
preparation, was recorded and statistically controlled. A
full frequency list of medications in the sample is given in
Table S1.

DNA methylation profiling
An overview of our data quality control (QC) and

analysis workflow is provided in Fig. S1. Genomic DNA
was isolated from saliva, bisulfite converted, and
assessed for DNA methylation on the MethylationEPIC
BeadChip (Illumina, Inc.) using a standard protocol.
Raw data were imported into Genome Studio v2011.1
(Illumina, Inc.) to investigate sample hybridization
quality and to extract signal intensities for each probe
(Fig. S2). Data QC measures included manual inspec-
tion of beta distributions, curation of control probes
using the Illumina BeadArray Controls Reporter,
manual inspection of total CpG intensity distributions,
sex prediction, outlier sample detection, and compar-
ison of SNP probes on the MethylationEPIC with gen-
otypes, using the lumi34 and minfi35 packages. Data
were normalized with lumi34 using smooth quantile
normalization. Cell-type profiles and proportions were
calculated using reference-free cell-type prediction with
the RefFreeEWAS36 package, and beta values were
adjusted to account for cell-type proportions in each
sample. Methylation values were set as missing if they
deviated >4 times the interquartile range from the mean
of each probe. Participant samples were further curated
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to restrict to unrelated children who met full criteria for
non-ADHD or ADHD. We excluded a small number of
children who only met criteria for the ADHD hyper-
active profile, those with subthreshold ADHD (e.g., five
symptoms), and those missing information about
medication usage, resulting in a final sample of 604
unrelated children. For analyses examining the effects
of the ADHD polygenic risk score, only children with
European ancestry4 were included (N= 472). We
removed probes for the following reasons (Table S2):
detection call rate p-value is <0.01 in at least one
sample, mapping to multiple genomic locations37,
missing from the MethylationEPIC manifest, SNPs
underlying the probe37, or non-autosomal probes. Our
final dataset included 568,281 probes for analysis.

Genotyping and polygenic score
Salivary DNA samples were genotyped, and the

ADHD polygenic risk score (PRS) for each individual
calculated as described previously4. Briefly, DNA was
hybridized to the PsychCHIP_v1-1 (N= 603,132 SNPs),
developed by Illumina, Inc. in collaboration with the
Psychiatric Genetics Consortium (PGC). Genotypes
were used to determine relatedness38 among samples
and population stratification as previously described4.
The PRS was constructed using the PGC+ iPSYCH
meta-analysis3 as the discovery dataset (details in
Supplementary Materials).

Analytic models and covariates
Differential global methylation (average methylation

across all probes), as well as differentially methylated
positions (DMPs) were evaluated using custom R
scripts (R 3.5.0, https://github.com/pryabinin/ohsu_
adhd_ewas). Briefly, linear models (Eqs. (1)–(5),
below) were used to examine associations between
DNA methylation and both ADHD status and ADHD
PRS. All models used cell-type adjusted beta values36 as
the outcome variable, and included covariates for sex,
age (in years), the first three genomic principal com-
ponents (PCs), medication usage (binary variable sig-
nifying the history of psychoactive or stimulant
medication), and a maternal smoking score12, which are
referred to below as the “standard covariates”. The first
three genomic PCs were selected based on their asso-
ciation with self-reported ethnicity in our sample. The
relationship between ethnicity and genomic PCs in our
sample was verified using HapMap samples as a refer-
ence. In addition, for the PRS analysis, a covariate was
included to account for the number of missing SNPs in
the PRS calculation for each patient. Finally, due to sex
differences in ADHD prevalence, salient clinical fea-
tures39, and familial burden not explained by autosomal
differences40, a sex interaction term was included for

both ADHD status and ADHD PRS (Eqs. (4) and (5) to
investigate sex-specific effects:

Mean Beta values adjð Þð Þ � 1þ
ADHDstatusþ StandardCovariates

ð1Þ

Beta value adjð Þ � 1þ
ADHDstatusþ StandardCovariates

ð2Þ

Beta value adjð Þ � 1þ PRSþ
StandardCovariatesþMissing PRS SNPs

ð3Þ

Beta value adjð Þ � 1þ sex � ADHD statusþ
ADHDstatusþ StandardCovariate

ð4Þ

Beta value adjð Þ � 1þ sex � PRSþ PRSþ
StandardCovariatesþMissing PRS SNPs

ð5Þ

Differentially methylated region analysis
Testing for differentially methylated regions (DMRs)

was performed using the Comb-p software tool41, using
the results of each regression model separately. The fol-
lowing Comb-p parameters were used: seed p-value=
0.001, maximum distance between probes= 500 bp, and a
minimum of three probes allowed in a DMR. This set of
parameters is consistent with previous work42 in the field
and recommendations from simulation experiments43.

DNA methylation quantitative trait loci analysis
DNA methylation quantitative trait loci (mQTLs) were

calculated using a linear, additive model implemented in
the GEM package in R44, where the methylation level at
each DMP was regressed on the minor allele count of
each SNP. Covariates for sex, age, and the first three
genomic PCs were included in the model. For all DMPs
with p < 1e–5 (34 total), all 6,374,797 autosomal SNPs
were assessed (i.e., both cis- and trans-QTLs were tested;
216,743,098 tests).

Colocalization analysis of mQTLs and ADHD-associated
variants
DNA methylation QTLs discovered in our cohort were

examined for evidence of colocalization with ADHD-
associated variants. All pairs of methylation probes and
SNPs within each of 12 ADHD-associated regions (Table
S3), determined from the results of the recent PGC+
iPSYCH ADHD GWAS meta-analysis3, were evaluated.
Statistical analyses were performed using summary data-
based Mendelian randomization45 (SMR), as well as the
Bayesian colocalization method in the coloc
package46 in R.
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Functional interpretation and gene set enrichment
analyses
Downstream interpretation of the associated DMPs was

performed using Genetica (Table S9), a custom R script
developed in our lab (https://github.com/bhattp09/
genetica) that collates information from publicly avail-
able databases (Supplementary Materials) and through the
Weizmann Institute of Science (http://www.genecards.
org/). Investigations into miRNA profiles were performed
using the miRWalk tools47, and seed regions overlapping
the hybridized probe sequence was confirmed using the
UCSC Genome Browser48.
The methylGSA package49 was used to investigate

whether DMPs were enriched among genes involved in a
particular biological function or process. methylGSA
implements an unbiased test of enrichment, accounting
for the number of methylation probes within each gene.
The default significance threshold suggested by
methylGSA (p ≤ 0.001) was used to select DMPs for the
enrichment analyses. We first tested for enrichment
among brain-expressed genes, using two gene sets defined
by the Human Protein Atlas50 (https://www.proteinatlas.
org/humanproteome/tissue/brain): genes with brain-
enriched expression (408 genes; five-fold higher expres-
sion in the brain compared with all other tissues), and
genes with brain-elevated expression (1379 genes; five-
fold higher expression in the brain compared with the
average expression in all other tissues). We next tested for
enrichment among all Gene Ontology (GO) categories.
GO categories enriched with a false discovery rate-
adjusted p ≤ 0.05 were considered significant.

Multiple testing, significance thresholds, and statistical
power
Within each EWAS analysis, DNA methylation sites

were considered significantly differentially methylated if
they met a Bonferroni-corrected p-value threshold of
8.8e–8, which is consistent with a recent recommendation
for the genome-wide significance threshold for analyses of
EPIC array data51. Following other studies, a p-value
threshold of 1e–5 was used to identify suggestive DMPs
for preliminary interpretation to guide future hypoth-
eses52. A more inclusive p-value threshold of 0.001 was
used to select DMPs for gene set enrichment analyses as
suggested by the MethylGSA R package49. In the DMR
analysis, a Šidák-corrected p-value < 0.05 was used to
determine significance. Finally, a Bonferroni-corrected
p-value threshold of 1.8e–10 was used to identify
significant mQTLs.
The statistical power to detect an effect size of 1% dif-

ference in DNA methylation between cases and controls
at a p-value < 8.8e–8 was calculated for all probes inclu-
ded in our analysis, following a previously described
method51. Power calculations were done using each

probe’s variance across all subjects, and the number for
cases and controls in the experiment. The proportion of
probes with a particular power threshold (ranging
between 0 and 1) is shown in Fig. S3. Our study was well-
powered (80%) to detect a 1% difference at ~68% of all
sites interrogated.

Results
Sample overview and genome-wide DNA methylation
variation
Table 1 provides a demographic and clinical description

of the cohort. As intended, the ADHD group had sig-
nificantly higher clinical symptoms, and as expected, had
higher rates of psychiatric comorbidity, and more lifetime
exposure to psychiatric medications. In the full sample,
the ADHD group had slightly lower family income than
controls (p= 0.03), but the difference was not significant
in the European-ancestry subsample used for the PRS
analyses. As is common in studies of ADHD, the ADHD
group had a slightly lower IQ (WISC-IV FSIQ mean dif-
ference= 7.1; p= 5.6e–10), but both groups had mean IQ
in the average range. The groups were of similar age,
although age was included as a covariate as a precaution.
Boys were overrepresented in the ADHD group and we
adjusted all results for sex.
We calculated a predicted age for each child, based on

age-associated DNA methylation sites10. As expected,
reported ages and predicted ages were highly correlated
(r= 0.58, p= 1.3e–54), providing reassurance as to the
validity of the DNA methylation data obtained from sal-
iva. There was no evidence for differential epigenetic age
acceleration in the ADHD group (p= 0.98) (Fig. S4). We
also tested for a “global” difference in DNA methylation
levels between ADHD cases and controls, determined by
averaging cell-type-corrected beta values across all
568,281 probes (see the “Methods” section, Eq. (1)), and
found no significant difference (p= 0.74). This result
indicates that, as expected, ADHD is not associated with
any systemic methylomic differences across probes
included on the Illumina EPIC array.

DNA methylation associated with ADHD
Differential DNA methylation between ADHD cases

and controls at individual sites was investigated by
regressing methylation levels at each probe on ADHD
status (Eq. (2)) with our standard covariates. EWAS
results were well-controlled with an inflation factor λ=
1.02 (calculated as the ratio of the median observed
log10(p-value) to the median expected log10(p-value))

53. A
Q–Q plot and Manhattan plot are presented in Fig. S5.
No DMPs passed EWAS significance (p= 8.8e–8),

which corrects for all 568,281 probes tested. Table 2
shows the 7 DMPs associated with ADHD at our a priori
suggestive significance level of p < 1e–5. Methylation
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differences between ADHD cases and controls ranged
between 0.3% and 1.4%. The top 100 probes associated
with ADHD are provided in Table S5 for descriptive
purposes. The top-ranked probe, cg17478313 (p=
1.54e–6), shows higher DNA methylation in ADHD cases
compared with controls (Δβ= 0.93%) and is located in the
promotor region of SLC7A8 (Figs. 1a and 2a). Probe
cg21609804 (p= 2.82e–6), also with higher methylation
(Δβ= 1.38%) in ADHD cases, is located in the 3′-UTR of
MARK2 (Fig. 1b). Additional suggestive DMPs were
annotated to PDLIM5, VPS28, ZNF706, and FAM59A.

DNA methylation associated with ADHD polygenic risk
We have previously shown that the ADHD PRS is

associated with ADHD status (explaining ~4.5% of the
variance) in this sample4. Here we use the ADHD PRS to
investigate the relationship between overall ADHD
genetic burden and DNA methylation (Eq. (3)). Again,
EWAS results for the PRS are well-controlled (λ= 1.08).
A Q–Q plot and Manhattan plot are presented in Fig. S6.
One probe met our genome-wide significance threshold,
cg15472673 (p= 6.71E–8), characterized by reduced
DNA methylation with higher PRS (Fig. 2b). The asso-
ciation remains (p= 9.76e–8), when including ADHD
status in the regression model, indicating that the effect is
not driven by elevated polygenic burden in ADHD cases.

This probe is located in a CpG island of a bivariate pro-
moter between the GART and SON genes. None of the
SNPs included in the PRS are direct mQTLs (see below)
for cg15472673 (all mQTL p-values > 1e–5), indicating
that the association with the PRS is not driven by a simple
genetic effect on DNA methylation. DNA methylation
levels at 12 other probes were associated with the PRS at
p < 1.0e–5, 10 of which showed increased methylation
with higher PRS (Table 2b). A summary of all findings
for ADHD diagnosis and the ADHD PRS is presented in
Fig. S7.

Sex-specific variation in DNA methylation
Because we previously reported an association between

ADHD and DNA methylation at sites annotated to VIPR2
and MYT1L specifically in boys31, we first examined sex-
by-diagnosis interaction effects among all probes anno-
tated to these two genes (239 probes) at an adjusted sig-
nificance threshold of p < 0.0002 (0.05/239). The two
strongest sex-by-diagnosis interactions annotated to
VIPR2 were for cg26975193 and cg20998127 (sex-by-
diagnosis interaction p= 7.51e–6 and p= 0.000459).
Supporting the finding from our previous study, males
with ADHD had lower methylation compared with male
controls at both sites (Δβ=−0.22%, p= 0.0185; Δβ=
−0.51%, p= 3.99e–5). However, among females, ADHD

Table 1 Clinical and demographic description of sample.

ADHD vs. control ADHD polygenic risk score

(European-ancestry only)

ADHD non-ADHD ADHD non-ADHD

N 391 213 302 170

Age (years) 9.8 (1.4) 9.8 (1.4) 9.9 (1.4) 9.8 (1.4)

% male 71.6%* 51.60% 72.5%* 54.10%

% European ancestry 77.20% 79.80% 100.00% 100.00%

Family income ($K) 76.2 (40.7)* 84.1 (39.0) 80.2 (40.2) 85.7 (39.4)

Estimated full scale IQ 108.1 (13.7)* 115.2 (12.5) 109.2 (13.2)* 115.3 (12.7)

Inattention(T) 72.7 (12.1)* 44.5 (7.0) 73.0 (12.2)* 44.3 (7.0)

Hyperactivity-Imp(T) 67.8 (14.6)* 45.4 (7.5) 68.1 (14.7)* 45.0 (7.5)

Lifetime mood disorder 7.2%* 2.8% 7.6%* 3.0%

Lifetime anxiety disorder 19.9%* 8.5% 19.9%* 8.3%

Lifetime conduct disorder 1.3% 0.0% 1.3% 0.0%

Lifetime ODD 17.6%* 0.5% 19.5%* 0.0%

Ever psychiatric med 45.0%* 0.9% 48.3%* 0.0%

Medication history was defined as any lifetime use of psychiatric medication
Inattention is the inattention T score by parent-rated ADHD Rating Scale
Differences between ADHD/control groups were determined by Mann–Whitney U tests for continuous measures and Fisher’s exact tests for categorical measures
ODD oppositional defiance disorder, Hyperactivity-Imp Hyperactivity-impulsivity T score
Significant differences (p < 0.05) are indicated with an *
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Table 2 Differentially methylated positions associated with ADHD and the ADHD PRS.

Probe Coefficient P-value Chrom Position Strand Gene

(A) ADHD vs. control

cg17478313 0.009285 1.54E–06 14 23653041 − SLC7A8

cg21609804 0.013772 2.82E–06 11 63678193 + MARK2

cg03416665 −0.00682 4.64E–06 4 95373403 − PDLIM5

cg27034450 0.007208 4.82E–06 8 145649435 − VPS28

cg02466711 −0.00264 6.03E–06 8 102218365 + ZNF706

cg00964221 −0.00459 8.40E–06 8 30240029 − Intergenic

cg06972911 −0.00646 9.50E–06 18 30051803 + FAM59A

(B) ADHD polygenic risk score

cg15472673 −0.01258 6.71E–08 21 34915098 − GART, SON

cg05348870 0.022926 1.85E–06 19 6671045 + TNFSF14

cg03391479 0.015117 1.88E–06 4 114901073 + ARSJ

cg03838680 0.012572 2.22E–06 3 46887195 − Intergenic

cg00428296 0.015183 2.96E–06 1 230513970 − PGBD5

cg17233422 0.02449 3.89E–06 3 66467994 + LRIG1

cg13011002 0.009106 4.48E–06 2 28837591 − PLB1

cg04453792 0.025432 4.68E–06 16 23158863 − USP31

cg12237140 0.012843 4.93E–06 19 47988486 − KPTN

cg16536664 −0.01169 5.61E–06 3 186288091 + DNAJB11, TBCCD1

cg11425280 −0.01202 5.98E–06 12 104851172 + CHST11

cg26223996 0.011179 7.34E–06 15 74906395 − CLK3

cg25332391 0.012247 9.92E–06 5 31505476 + DROSHA

(C) ADHD-by-sex interactions

cg25779690 −0.01095 1.10E–06 12 56385212 − RAB5B

cg08698885 −0.00938 1.87E–06 2 96767035 + Intergenic

cg26975193 −0.00619 2.62E–06 7 158824399 − VIPR2

cg11411509 −0.01062 3.02E–06 6 33157746 + COL11A2

cg03537872 −0.02137 3.72E–06 12 109459024 + SVOP

cg05457620 −0.01166 4.21E–06 5 168310308 + SLIT3

cg15718572 −0.03317 5.34E–06 1 207818003 + CR1L

cg23824987 0.00986 8.91E–06 16 69497556 − CYB5B

cg18031661 0.01126 9.87E–06 5 163133751 + Intergenic

(D) ADHD PRS-by-sex interactions

cg20954180 0.03722 2.09E–06 3 54606265 + CACNA2D3

cg06174989 0.07740 2.40E–06 16 90114523 − LOC100130015

cg08911728 −0.03989 2.89E–06 5 109189484 + MAN2A1

cg22225943 0.07494 4.55E–06 11 2162536 − IGF2; INS-IGF2; IGF2AS

cg05407555 −0.01942 9.23E–06 14 106320510 − Intergenic

All differentially methylated probes with p-value ≤ 1e–5 for all models: (A) DMPs associated with ADHD diagnosis, (B) DMPs associated with ADHD polygenic risk (PRS),
(C) DMPs showing a sex-by-ADHD interaction, and (D) DMPs showing a sex-by-PRS interaction
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cases had higher methylation levels than controls at
cg26975193 (Δβ= 0.35%, p= 0.00597) and were not sig-
nificantly different from controls at cg20998127 (Δβ=
0.14%, p= 0.384). To ensure replication of the hypo-
methylation effect in boys with ADHD reported by Wilmot
et al.31, we removed the samples included in that previous
report (n= 73 that survived QC for the current probe set).
Effects among males were consistent at both sites (for
cg26975193: Δβ=−0.19%, p= 0.0819; for cg20998127:
Δβ=−0.51%, p= 4.14e–4).
For MYT1L, our previously reported finding did not

survive multiple-testing correction (minimum sex-by-
diagnosis interaction p-value= 0.0039 for cg02870147;
males Δβ=−0.49%), although the direction of effect at
this site (lower methylation among males with ADHD)
was consistent with our previous data, even with prior
samples (n= 73) removed (males Δβ=−0.42%). Like-
wise, no probes annotated to MYT1L showed main effects
that passed the Bonferroni threshold (minimum p-value
of 0.00395 for cg22140907; Δβ=−0.31%). All results
from the analysis of these genes are reported in Table S6.
We next performed an EWAS of sex-specific DMPs

associated with both ADHD and the ADHD PRS. No sex
interactions were significant at the EWAS-wide thresh-
old, although nine probes show sex-by-diagnosis inter-
actions (Table 2c) and five probes show sex-by-PRS
interactions (Table 2d) at our suggestive significance
threshold (p < 1e–5).

Differentially methylated regions
The results from all DMP analyses were used to inves-

tigate differentially methylated regions (DMRs) using the
Comb-p software tool41. A single significant DMR on
chromosome 6 was identified (Šidák-corrected p=
3.4e–5), which contained eight probes associated with the

ADHD PRS in a sex-specific manner (Fig. S8). Specifically,
among females a higher PRS was associated with higher
methylation levels, and an opposite (though much
weaker) relationship was seen among males. This DMR
(chr6: 31148383–31148553) lies within the major histo-
compatibility complex, ~3 kb upstream of PSORS1C3.

DNA methylation quantitative trait loci
We identified methylation quantitative trait loci

(mQTL) associated with all DMPs suggestively associated

Fig. 1 ADHD-associated DMPs in SLC7A8 and MARK2. Genomic diagrams of a SLC7A8 and b MARK2, showing locations of top DM probes and
the corresponding mQTL SNP. The MARK2 probe cg21609804 contains a miRNA seed region at the interrogated loci.

Fig. 2 Top-ranked ADHD- and ADHD PRS-associated DMPs. DNA
methylation values (beta values) for the top-ranked ADHD- and ADHD
PRS-associated probes.
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with (a) ADHD or (b) the ADHD PRS (Table 2). DNA
methylation at the two top-ranked ADHD-associated
DMPs (cg17478313 annotated to SLC7A8 and
cg21609804 annotated to MARK2, Table 2a) was sig-
nificantly associated with genotypes at nearby SNPs (Fig.
3). The SLC7A8 probe (cg17478313) was associated with
SNP rs7141505 (p= 1.2e–46), located in the gene’s pro-
moter region. The MARK2 probe (cg21609804) was
associated with an intronic SNP rs928948 (38 kb
upstream of the CpG) at p= 2.07e–59 (Fig. 1b). Fur-
thermore, for both mQTLs, the relationship between
genotype and DNA methylation level is similar in both
ADHD cases and controls (Fig. 3b, d). Also, for both
cg17478313 and cg21609804, both ADHD status (p=
2.2e–4 and p= 1.85e–4) and genotype (p= 4.4e–45 and
p= 8.9e–58) are associated with methylation levels when
included together in the regression models. These results
indicate that the mQTL effects are not simply due to allele
frequency differences between ADHD cases and controls.
An additional 279 SNPs are associated with methylation
levels at these two DMPs (31 for cg17478313 and 248 for

cg21609804), and pass our experiment-wide mQTL sig-
nificance threshold (p < 1.8e–10).
For the ADHD PRS, of all the associated DMPs (at p <

1e–5), significant mQTLs were found only for
cg04453792 annotated to USP31 (p < 1.8e–10). All mQTL
analysis results are provided in Table S7.
To determine whether mQTL variants associated with

the top-ranked DMPs (for both ADHD and the ADHD
PRS) were also implicated in GWAS for ADHD (i.e.,
pleiotropic for methylation and ADHD), we examined the
results from the PGC ADHD GWAS meta-analysis3 in the
regions of SLC7A8, MARK2, GART, SON, USP31, and
LOC100130015 (Table 2 and Table S7). We assessed all
GWAS SNPs included in our mQTL analysis that were in
linkage disequilibrium with these six genes or their
putative regulatory regions (20 kb upstream or down-
stream of each gene, see Supplementary Materials). No
genome-wide significant (or suggestive) ADHD-
associated SNPs assigned to MARK2 (minimum p=
0.02), SLC7A8 (minimum p= 0.3), GART/SON (mini-
mum p= 0.029), USP31 (minimum p= 0.069), or

Fig. 3 DNA Methylation QTLs within SLC7A8 and MARK2. The genomic region around SLC7A8 (a), showing locations of cg17478313 and the
most significant mQTL rs7141505. Similarly, the genomic region around MARK2 (c) with locations of cg21609804 and the most significant mQTL
rs928948. For clarity, only mQTLs with p < 1e–20 in each region are shown. The methylation values (beta values) for both cg17478313 and
cg21609804, stratified by mQTL genotype, are also shown (b, d).

Mooney et al. Translational Psychiatry            (2020) 10:8 Page 8 of 12



LOC100130015 (minimum p= 0.011) were seen in the
GWAS meta-analysis, indicating there is no evidence of
pleiotropy for these mQTLs.
To expand the investigation of pleiotropy, all mQTLs

observed in our cohort (not just those associated with
DMPs) were tested for colocalization with variants asso-
ciated with ADHD in the recent ADHD GWAS meta-
analysis conducted by the PGC3. Of the 12 ADHD-
associated regions identified in the GWAS meta-analysis,
11 contained genome-wide significant cis-mQTLs in our
cohort (Table S3). Evidence for colocalization/pleiotropy
was found for variants in 5 of the 12 ADHD-associated
regions (Table S4). For two of the regions, 12q21.33 and
15q21.1 (Figs. S9 and S10), both the SMR and coloc
methods identify the same causal SNPs (rs2279574, SMR
p= 2.3e–8, coloc posterior probability= 0.98, and
rs1656622, SMR p= 3.6e–5, coloc posterior probability=
0.82). SNP rs2279574 is a missense variant within DUSP6,
and rs1656622 lies within an intron of SEMA6D. All
significant mQTLs in the 12 ADHD-associated regions
are included in Table S10.

Gene set enrichment with DM probes
For exploratory and hypothesis-generating purposes, we

report gene set findings. DMPs nominally associated with
the ADHD PRS (p < 0.001, the recommended default in
the methylGSA package)49 are annotated to 91 genes with
elevated expression (five-fold higher-than-average
expression in all other tissues, see Methods) in the brain
(unadjusted enrichment p-value= 0.0097). Several (Fig.
S11) relate to ion channels (e.g., KCNIP1, KCNK10,
CACNA1E, and CACNB4) or are involved in cell adhesion
(e.g., NCAM2, NRXN1, CNTNAP2, and CDH22), both
previously implicated in ADHD or other psychiatric
traits54–58. No GO categories were significantly enriched
with either ADHD-associated or ADHD PRS-associated
DMPs after multiple testing correction. All enrichment
analysis results are shown in Table S8.

Discussion
This is the first large EWAS to examine well-

characterized ADHD cases and controls, including more
ADHD cases than any prior study of DNA methylation in
ADHD. It is distinguished by the inclusion of polygenic
risk effects—not previously studied in ADHD in an EWAS
context—and the examination of sex effects. Furthermore,
the inclusion of genetic effects, crucial for interpretation,
has rarely been done in ADHD methylation studies. The
findings make contributions pertaining to potential per-
ipheral biomarkers for ADHD and ADHD genetic risk,
provide additional evidence for the genetic regulation of
many disease-associated methylation differences in
ADHD, and suggest regulation of DNA methylation as a
plausible mechanism for ADHD risk variants identified in

GWAS. The study identifies suggestive new candidates to
pursue (e.g., VIPR2, MARK2, SLC7A8, SON, and
PSORS1C3), and provides new data for considering
replications, or lack thereof, with previous epidemiologi-
cal studies.
The study’s primary limitations are that even with our

respectable sample size compared with the literature in
this area, the sample is, like prior studies of DNA
methylation in ADHD, probably underpowered to identify
small effects. Our sample was well powered (80%) to
detect methylation differences of 1% between cases and
controls at ~68% of sites (Fig. S8); however, many sites
show even smaller effects in our dataset and in others33,52.
Thus, these findings should be viewed in a discovery
context awaiting replication and as a guide for planning
future studies. Furthermore, given the cross-sectional
nature of this study, it is not possible to examine causality.
As mentioned in the introduction, it is possible that the
observed methylation differences are not causal of, but are
caused by, ADHD disease processes.
With these strengths and limitations in mind, five main

findings are noteworthy. First, our previous report of
lower DNA methylation in VIPR2 in never-medicated
boys31 was supported in a targeted analysis after removing
children used in our prior report, although at a smaller
effect size, suggesting that this sex-specific effect is
reproducible. Sites annotated to VIPR2 have also been
identified as differentially methylated in two other studies
of ADHD28,32, but with effects varying in direction. Given
that we observe a sex-specific effect in VIPR2 (hypo-
methylation in male cases, and hypermethylation in
female cases) and other studies did not stratify by sex, it is
possible that the inconsistencies across studies related to
the direction of effect are due to differences in the sex
ratio of the samples studied. Other differences across
study samples, such as differences in age or specific
environmental exposures, may also contribute to the
inconsistent direction of effect. The role of VIPR2, a
receptor for a small neuropeptide implicated in a wide
range of biological functions, needs more exploration.
Genetic variation in VIPR2 has been associated with
schizophrenia59,60, and in one candidate gene study, with
mood disorders61.
Second, we identified suggestive findings for a small

number of DNA methylation sites that can provide pos-
sible biomarkers for ADHD and associated phenotypes.
We note that the top two DMPs are both located in
regulatory regions of their respective genes (SLC7A8 and
MARK2). SLC7A8 is a sodium-independent solute trans-
porter of neutral amino acids62 and plays a role in metal
ion homeostasis and toxicity63 including mercury toxi-
city64. The DMP annotated to MARK2 is at the seed of
two miRNAs, hsa-miR-1199-5p, and hsa-miR6751-3P,
suggesting that differential methylation at this locus may
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indirectly affect gene expression through regulation of
miRNAs. The full list of miRNA targets for this sequence
using miRWalk47 is provided at https://github.com/
pryabinin/ohsu_adhd_ewas. MARK2 is a regulator of cell
polarity and microtubule dynamics65,66, is required for
neurite outgrowth67, and has recently been implicated in
both Alzheimer’s disease and bipolar disorder68.
Both of the top-ranked DMPs are also associated with

nearby SNPs, indicating the complexity of the association
between DNA methylation in these genes and ADHD. Of
note, a variant in MARK2 has previously been associated
with blood pressure response to methylphenidate69. This
SNP, rs12099085 (27 kb downstream of the top-ranked
mQTL), is also an mQTL suggestively associated with
methylation at sites within MARK2 (minimum mQTL p=
3.8e–8), indicating that the variant might act through the
regulation of DNA methylation.
Third, we identified one DMP significantly associated

with polygenic risk for ADHD (ADHD PRS), and another
12 DMPs suggestively associated. The strongest association
was at a site in the bivariate promoter for GART and SON,
with higher PRS associated with reduced methylation. SON
SNPs have been implicated in a GWAS for educational
attainment70, which is noteworthy given the known rela-
tionship between ADHD and academic under-
achievement71, as well as the evidence for a shared genetic
basis for ADHD and educational attainment72. De novo
mutations in SON have been linked to intellectual disability,
and gene expression studies suggest that it is a master
regulator of genes involved in neurodevelopment73.
Fourth, we found a single DMR, near PSORS1C3, sig-

nificantly associated with the ADHD PRS in a sex-specific
manner. A previous study found that a DMR in this same
region was hypomethylated in major depressive disorder
(MDD) suicide cases74, although it did not assess sex-
specific effects.
Finally, we found significant evidence of colocalization

for mQTLs observed in our cohort and ADHD-associated
SNPs, suggesting that regulation of DNA methylation may
be a mechanism by which many ADHD risk variants
operate.
The small number of DMPs and DMRs we observe, and

the small effect sizes, are consistent with a recent EWAS
meta-analysis of ADHD symptoms in adults33. That study
of three population-based cohorts found three sugges-
tively associated DMPs, none of which overlap with the
DMPs reported here. The lack of overlap is not surprising,
however, given the amount of heterogeneity across
cohorts reported in the meta-analysis. That study also
failed to see an overlap between ADHD-related DMPs
and ADHD GWAS hits from the PGC. However, con-
sistent with our findings, the study found cis-mQTLs for
their top-ranked DMP, highlighting the importance of
genetic effects.

In conclusion, our findings suggest that further study of
DNA methylation in ADHD can be productive to identify
biomarkers of illness, and potentially, disease mechan-
isms, although ultimately multi-position algorithms will
likely be necessary to create clinically useful biomarkers10.
It also appears likely to be helpful in mapping potential
causal routes for genetic influences on ADHD. Future
work will examine sex and medication effects, moderators
of change and/or stability of DNA methylation over time,
map backward to environmental correlates, and evaluate
the extent to which identified genes or systems show
methylation effects earlier or later in development.
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