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Rotating machines are critical equipment in many processes, and failures in their operation can have serious 
implications. Consequently, fault detection in rotating machines has been widely investigated. Conventional 
detection systems include two blocks: feature extraction and classification. These systems are based on manually 
engineered features (ball pass frequencies, RMS value, kurtosis, crest factor, etc.) and therefore require a high 
level of human expertise (it is a human who designs and selects the most appropriate set of features to perform the 
classification). Instead, we propose a system for condition monitoring and fault detection in rotating machines 
based on a 1-D deep convolutional neural network (1D DCNN), which merges the tasks of feature extraction and 
classification into a single learning body. The proposed system has been designed for use on a rotating machine 
with seven possible operating states and it proves to be able to determine the operating condition of the machine 
almost as accurately as conventional feature-engineered classifiers, but without the need for prior knowledge of 
the machine. The proposed system has also reported good classification on a bearing fault dataset from another 
machine, thus demonstrating its capability to monitor the condition of different machines. Finally, the analysis 
of the features learned by the deep model has revealed valuable and previously unknown machine information, 
such as the rotational speed of the machine or the number of balls in the bearings. In this way, our results 
illustrate not only the good performance of CNNs, but also their versatility and the valuable information they 
could provide about the monitored machine.
1. Introduction

Detection and diagnosis of faults are useful to optimize and guaran-

tee the safety in the operation of machines, leading to higher productiv-

ity and process efficiency, with benefits such as reduced operating costs, 
longer machine life or improved operating uptime [1]. Bearings are es-

sential components in rotating machines and their failure is one of the 
most common causes of machinery breakdown [1, 2]. The presence of 
these elements induces inherent system vibrations, which are generated 
not only under normal operating conditions but also under fault condi-

tions (external raceway faults, internal raceway faults, rolling element 
faults, cage faults, imbalances, misalignments, etc.). Vibration analysis 
is therefore often used to monitor the operation of rotating machines 
and thus to detect system faults [3, 4].

Frequency domain analysis is a widely adopted technique [5, 6, 7]

for the study of system vibrations. It requires knowledge about the 
fundamental frequencies of the system and proposes to monitor the 
amplitude of vibrations at such frequencies in order to detect anoma-
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lies. Although this technique provides good results, it has significant 
disadvantages. For example, manually designed frequencies may differ 
slightly from the real frequencies of the machine, as the bearings oper-

ate under a combination of rolling and sliding [8]. Another source of 
error is the simultaneous presence of different types of faults as well 
as the interference from additional sources of vibration, both of which 
can obscure important frequencies in the spectrum [6]. Finally, some 
defects, such as lubrication ones, do not manifest themselves as a new 
frequency, making them very difficult to detect across the frequency 
spectrum [9].

These drawbacks reveal the weaknesses of methods based on manu-

ally engineered features, whose performance depends to a large extent 
on the quality of the selected features. This situation has led to numer-

ous studies on the optimal choice of features and it has been demon-

strated that, in certain contexts [10, 11, 12, 13], fault features can be 
successfully extracted by using traditional methods of analysis. How-

ever, efficient fault detection remains a challenge when systems are 
very complex. In such cases, choosing the right features is still a diffi-
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cult task, as it requires expertise, prior knowledge of the machine and 
a strong mathematical basis.

Faced with this situation, there is a growing interest in feature learn-

ing [14]. It is an alternative approach to feature engineering, which 
proposes to learn the representation of discriminative features from raw 
input data, rather than designing them manually. Principal Components 
Analysis (PCA) [15], sparse coding [16], sigmoid belief networks [17]

or auto-encoders [18] have been widely used for this purpose. But these 
traditional techniques are now being replaced by deep learning models, 
whose ability to find the best representations of data, known as repre-

sentation learning [19], makes them powerful feature extractors. In fact, 
some deep models have already proven to be able to simplify feature 
engineering and successfully detect machine faults [20, 21, 22, 23, 24, 
25]. The real challenge, however, is to completely eliminate feature 
engineering and it is in this field that Convolutional Neural Networks 
(CNNs) [26] stand out.

CNNs have recently become the default standard for deep learning 
tasks and have demonstrated an outstanding ability to detect patterns 
in images and signals. They have already been successful in other fields, 
such as image or voice recognition, and have achieved the best results 
with a significant performance gap with respect to state-of-the-art tech-

niques [27, 28, 29]. Their ability to detect faults in rotating machines 
has also been the subject of several studies, but few papers further in-

vestigate the features learned by CNN models or the information they 
might provide about the nature of the machines [30, 31].

Under such circumstances, this article presents a system for con-

dition monitoring and fault detection in rotating machines based on 
vibration and current analysis using a 1D DCNN. This system recog-

nizes the condition of the machine, from raw operating data, with a 
98% accuracy. Furthermore, we present the convolutional filter learned 
by the deep model, the study of which reveals key parameters of the 
machine, such as its rotational speed or the number of balls in the bear-

ings. In addition, to assess this proposal we compare its performance 
with that of classic methods of fault detection based on manually en-

gineered features (Multi-Layer Perceptron -MLP- [21], Random Forest 
Classifier -RFC- [32], and Support Vector Classifier -SVC- [33]) and our 
system proves to be able to determine the state of the machine almost 
as successfully as traditional classifiers, but without the need for prior 
knowledge of the machine. Finally, we test the behavior of the pro-

posed system on another rotating machine, where it also reports a good 
classification (92% accuracy).

In summary, the contributions of this research are as follows: (1) we 
propose a system for condition monitoring in rotating machines that 
merges the tasks of feature learning and fault detection; (2) feature 
learning makes it possible to detect faults without human experience 
or prior knowledge of the machine and allows the system to be used 
in the monitoring of another rotating machine; (3) we analyze the fea-

tures learned by the model and thus provide a priori unknown machine 
information (as far as we know, this is the pioneering work applied to 
this purpose).

The rest of this document is organized as follows. In Section 2, we 
introduce the concepts of feature engineering and feature learning, as 
well as the basic theory of deep convolutional neural networks. Sec-

tion 3 presents the working dataset and describes the architecture of 
the proposed CNN model. The results of the model are shown in Sec-

tion 4. Finally, the conclusions are set out in Section 5.

2. Related literature

2.1. Feature engineering

Bearing faults are the most frequent in rotating machines and also 
the most difficult to detect but, when detected early, they are the least 
expensive to repair [34]. In this context, machine learning algorithms 
are commonly used, as they can detect faults efficiently and automati-

cally, based on a set of representative features of the machine. Features 
2

Fig. 1. Bearing geometry.

are extracted from raw machine operating data (typically, currents and 
vibrations, which are variables with a great deal of information about 
machine condition) and it is an expert, with expertise and prior knowl-

edge about the machine, who decides which is the most appropriate set 
of features to extract [6]. They are therefore called manually engineered 
features.

Windowing is a widely used technique [35] in the feature extraction 
phase. According to it, data is split into windows, with or without over-

lap, and features are calculated for each window. In this context, RMS 
value [36], kurtosis [37] and crest factor [37] have proved to be use-

ful in the detection of bearing faults. They are calculated according to 
equations (1)-(3), where x is a vector of 𝑁 samples in a window, and 𝜇
and 𝜎 respectively denote the mean and standard deviation of x.

𝑅𝑀𝑆 =

√√√√ 1
𝑁

𝑁∑
𝑖

𝑥𝑖
2 (1)
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∑𝑁

𝑖
(𝑥𝑖 − 𝜇)4

𝑁𝜎4
(2)

𝐶𝑟𝑒𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑚𝑎𝑥(|𝑥𝑖|)
𝑅𝑀𝑆

(3)

The monitoring of frequency features, like vibration amplitude at 
fault frequencies, also provides good results. When both bearing geom-

etry and shaft speed are available (Fig. 1), these frequencies can be 
calculated according to the equations below (4)-(7) [38].

In (4) and (5) we observe the Inner (BPFI) and Outer (BPFO) Ball 
Pass Frequencies, which are related to defects in the inner and outer 
track of the bearing, respectively. These equations require some knowl-

edge of the machine: 𝑁 (shaft speed), 𝐷 (pitch diameter), 𝑑 (ball di-

ameter) and 𝑛 (number of balls in the bearing). Alternatively, if 𝐷 and 
𝑑 are unknown, (4), (5) can be replaced by the experimental equations 
(6), (7) [2].

𝐵𝑃𝐹𝐼 = 𝑛

2
⋅𝑁 ⋅

[
1 + 𝑑

𝐷

]
(4)

𝐵𝑃𝐹𝑂 = 𝑛

2
⋅𝑁 ⋅

[
1 − 𝑑

𝐷

]
(5)

𝐵𝑃𝐹𝐼 = 0.6 ⋅𝑁 ⋅ 𝑛 (6)

𝐵𝑃𝐹𝑂 = 0.4 ⋅𝑁 ⋅ 𝑛 (7)

The above mentioned features are the most commonly used in the 
literature, but many more can be extracted from operating data (fun-

damental train frequency, ball pass frequency, skewness, shape factor, 
clearance factor, impulse indicator, etc.). It still requires a human expert 
to decide which are the most suitable for each problem. Machine learn-

ing algorithms are then fed with these features and, based on them, they 
monitor the condition of rotating machines in order to detect faults. Al-

gorithms such as Support Vector Machines (SVMs), Decision Trees (DTs) 
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Fig. 2. Feature engineering approach.

Fig. 3. Feature learning approach.

or Multi-Layer Perceptrons (MLPs) have already proven their success in 
this field [21, 39, 40].

In short, the combination of feature engineering and machine learn-

ing algorithms results in useful condition monitoring tools that ac-

curately detect different types of faults. However, these tools cannot 
be easily reused (they are highly problem-dependent) and their per-

formances worsen when systems are complex or several faults occur 
simultaneously (detection becomes difficult [41]). Therefore, there is a 
need for more advanced analysis techniques, such as feature learning.

2.2. Feature learning

While in feature engineering features are designed and selected by 
experts, feature learning is about learning the transformation of raw 
data that leads to an optimal representation for the task to be per-

formed. Fig. 2 and Fig. 3 illustrate these two approaches.

As shown in Fig. 2, in the feature engineering approach it is an 
expert who extracts the features of interest 𝜙 from the raw input data 𝑋. 
These are then used to train a classification algorithm 𝑓𝜃(𝜙) that returns 
the condition 𝑌 of the input data. The role of the Machine Learning 
(ML) algorithm is to learn the optimal parameters 𝜃 for the classification 
task.

The feature learning approach (Fig. 3) proposes to learn as well the 
transformation 𝑡𝜃(𝑋) of the raw input data 𝑋 that produces a suitable 
representation 𝜙 for the classification task 𝑓𝜃(𝜙). Therefore, in this case, 
the ML algorithm covers both classification and feature extraction tasks.

Several feature learning techniques have been proposed in the liter-

ature, such as Principal Components Analysis (PCA) [15], sparse coding 
[16], sigmoid belief networks [17] or auto-encoders [18]. But these 
techniques still need to be supplemented with additional algorithms in 
order to perform the classification. Instead, the nature of Convolutional 
Neural Networks gives them the ability to bring both feature learning 

Fig. 4. Example of CNN architecture for image recognition (each plane is a feature map).

and classification tasks together (Fig. 3). Therefore, we propose in this 
article a CNN-based model to detect faults in rotating machines.

2.3. CNNs for feature learning

CNNs have become one of the leading exponents of deep learning 
techniques, demonstrating great skill in feature learning. Fig. 4 shows 
the typical structure of a CNN model, consisting of three types of layers: 
convolutional, pooling, and fully connected layers. In the first place, 
there are the convolutional layers, whose role is to detect local con-

junctions of features from the previous layers. So it is in these layers 
where feature learning resides. Then, they are followed by the pooling 
layers, which aim to merge semantically similar features together, thus 
reducing the dimensionality of the data and therefore the computational 
complexity of the model, as well as providing invariance to small shifts 
and distortions. Finally, there are the fully connected layers, which con-

nect all the neurons in the previous layer to each of the neurons in the 
current layer in order to generate global semantic information.

By stacking several convolutional, pooling and fully connected lay-

ers, we obtain a compositional hierarchy, in which the higher level fea-

tures are the composition of the lower level ones [14]. Accordingly, in 
images, local combinations of borders form motifs, motifs are assembled 
into parts, and parts form objects. In this way, CNNs perform high-level 
reasoning that allows them to successfully carry out the required task 
(image classification in Fig. 4). But CNNs are not only capable of detect-

ing patterns in images. They have also proven successful in processing 
one-dimensional signals where, in a similar fashion as in 2D images, 
local combinations of components are hierarchically composed across 
layers to produce complex signal patterns, standing out in fields such 
as voice recognition [27]. It can therefore be assumed that this success 
could be transferred to other areas with similar signals and goals, as 
can be the detection of fault patterns in currents and vibrations coming 
from rotating machines.

Fig. 4 also shows how the layers are made up of simpler units, com-

monly known as neurons. Each of these units has a weight and a bias, 
which are the parameters to be learned by the model according to the 
process detailed below.

2.3.1. Learning process

During the learning process (or training of the model), a set of input 
samples and their corresponding expected outputs is presented to the 
model. The error between the expected outputs and the actual outputs 
of the model is quantified in terms of an error measure, such as the cate-

gorical cross-entropy error, which is the most suitable for classification 
problems [42], where it helps learning algorithms to converge faster. 
Gradient descent is then used to fit the learnable parameters of the 
model (weights and bias) so that the error is minimized [43], comput-

ing the gradient by means of backpropagation [44]. The way in which 
the model transforms inputs into outputs depends on the nature of its 
layers, whose peculiarities are described below.

In fully connected layers, each unit computes a linear combination 
of the input to the unit followed by a non-linear activation function, 
which gives the model the flexibility to estimate complex relationships 
3
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Fig. 5. Testing machine.
in the data. Accordingly, the output vector of the 𝑙th layer (x𝑙) is shown 
in (8), where: 𝜎 is the activation function, x𝑙−1 is the input vector to the 
𝑙th layer, W𝑙 is the matrix containing all the weights of the connections 
between 𝑙 − 1th and 𝑙th layers, and b𝑙 is the bias vector.

𝐱𝑙 = 𝜎(𝐖𝑙𝐱𝑙−1 + 𝐛𝑙) (8)

The difference with convolutional and pooling layers is that they are 
not fully connected (it can be seen in Fig. 4), which means that each unit 
in a layer does not receive incoming connections from all the units in 
the previous layer, but only from some of them. This allows each unit to 
specialize in only one region of the former layer. In this way, convolu-

tional and pooling layers divide and model data into smaller parts [45], 
preserving the spatial coherence of the data [19] and drastically reduc-

ing the number of operations to be performed, as well as the number of 
parameters to be learned. In convolutional layers, learnable parameters 
are organized as a set of filters that convolve over a multichannel input 
(for example, the combination of several vibration signals), resulting in 
a set of vectors called feature maps (9). In this equation we see that the 
convolution (∗) of the channel 𝑐 of the input x

(𝑐)
𝑙−1 and the 𝑚th filter of 

such channel W
(𝑐,𝑚)
𝑙

results in the 𝑚th output feature map x
(𝑚)
𝑙

, being

b
(𝑚)
𝑙

the bias vector.

𝐱(𝑚)
𝑙

= 𝜎

(
𝐶∑
𝑐=1

𝐖(𝑐,𝑚)
𝑙

∗ 𝐱(𝑐)
𝑙−1 + 𝐛(𝑚)

𝑙

)
(9)

The subsampling operation is then performed on the pooling layer 
by means of a subsampling mask, which divides the input vector into 
patches and returns an aggregated value for each patch. The max pool-

ing function [46], which returns the maximum value of incoming data 
on each patch, is the most commonly used in CNNs.

Finally, it is worth mentioning the presence of the activation func-

tion (𝜎) in the transformations between all layers in the model. In the 
output layer, functions such as sigmoidal (two-class classifiers) and soft-

max (multi-class classifiers) are mainly used. In the other layers, the 
ReLU function [47] has become the default choice. This function allows 
networks to easily obtain sparse representations of the data, helps to al-

leviate the vanishing gradient problem and accelerates the convergence 
of learning [48].

3. Proposed method

In this section we present the CNN architecture with which we ap-

proach the detection and diagnosis of faults in rotating machines. We 
also describe the working dataset on which this architecture has been 
tested.

3.1. Dataset

Our testing machine is shown in Fig. 5. It is a 4kW induction motor 
with 6306-2Z/C3 bearings that rotates at 1500 rpm (25 Hz) with a 
supply frequency of 50 Hz. This machine has been subjected to seven 
different tests (Table 1), for each of which three operating variables 
4

Table 1

Tests performed.

Test ID Machine condition

T1 Mechanical fault (eccentric mass on pulley)

T2 Combined electrical and mechanical fault

T3 Normal operation

T4 Electrical fault (5 ohm resistor in phase R)

T5 Electrical fault (10 ohm resistor in phase R)

T6 Electrical fault (15 ohm resistor in phase R)

T7 Electrical fault (20 ohm resistor in phase R)

Table 2

Variables measured in the tests.

Variable Description

𝑎𝑥 Horizontal vibration acceleration

𝑎𝑦 Vertical vibration acceleration

𝑖𝑟 Phase R current

Fig. 6. Working context of the CNN model.

(Table 2) have been measured during 4 seconds at a sampling frequency 
of 5000 Hz (4 s ⋅ 5000 Hz = 20000 samples per test). In order for the 
three variables to have the same range and also in order to make the 
training faster and reduce the chances of the learning algorithm to get 
stuck in local optima, we pre-process the resulting dataset according to 
standard practice: we normalize the raw data, by means of min-max 
scaling [49] with range [0, 1]; and then apply the windowing technique, 
with mean detrended windows [50] of 800 samples and no overlap.

3.2. CNN model

As described in Fig. 6, the proposed CNN model determines the con-

dition of the machine, at any instant 𝑘, on the basis of an input vector 
containing machine operating data (current and vibration values). The 
input data vector (𝑐𝑛𝑛𝑖𝑛𝑝𝑢𝑡) has size (𝑁, 𝑐), where 𝑁 is the number of 
samples in a window (𝑁 = 800) and 𝑐 is the number of channels in the 
data (𝑐 = 3, since we have information on three variables: 𝑎𝑥, 𝑎𝑦, 𝑖𝑟) 
(Table 2). The model output (𝑐𝑛𝑛𝑜𝑢𝑡𝑝𝑢𝑡) is a vector of 𝑛 elements, which 
reports the probability 𝑃𝑘 of the input vector to match each of the 𝑛
possible machine states (𝑛 = 7, according to the seven tests performed) 
(Table 1).

To establish the correspondence between machine operating data 
and machine condition, we use the convolutional architecture shown 
in Fig. 7, which performs both feature learning and classification. This 
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Fig. 7. Proposed CNN model. The batch dimension (number of samples in the dataset) is denoted as None, as it is not fixed.

Table 3

Performance results for different CNN model configurations, using random cross validation executed 5 times (we report the mean and standard deviation of all 
executions). Configuration parameters: 𝐾1 , size of the convolutional filter; 𝐾2 , size of the subsampling mask; 𝐾3 , number of fully connected layers; 𝐾4 , number of 
neurons in fully connected layers; 𝐾5 , number of epochs; 𝐾6 , size of the minibatch.

Configuration ID 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6 Test accuracy (%) Number of parameters Training time (s)

(1) 600 4 1 20 100 40 98.43 (𝜎 = 0.88) 2968 16.38 (𝜎 = 1.08)

(2) 400 4 1 20 100 40 98.43 (𝜎 = 1.47) 3368 21.48 (𝜎 = 0.54)

(3) 750 4 1 20 100 40 98.04 (𝜎 = 1.75) 2658 7.65 (𝜎 = 0.17)

(4) 600 2 1 20 100 40 98.04 (𝜎 = 2.15) 3968 15.61 (𝜎 = 0.46)

(5) 600 11 1 20 100 40 97.25 (𝜎 = 2.00) 2328 17.67 (𝜎 = 0.45)

(6) 600 4 2 22 100 40 98.43 (𝜎 = 1.92) 3590 16.43 (𝜎 = 0.45)

(7) 600 4 3 10 100 40 96.86 (𝜎 = 2.66) 2608 15.60 (𝜎 = 0.40)

(8) 600 4 1 10 100 40 96.08 (𝜎 = 5.95) 2388 15.31 (𝜎 = 0.70)

(9) 600 4 1 32 100 40 97.65 (𝜎 = 2.88) 3664 15.93 (𝜎 = 0.35)

(10) 600 4 1 20 80 40 98.04 (𝜎 = 1.24) 2968 12.97 (𝜎 = 0.81)

(11) 600 4 1 20 120 40 98.43 (𝜎 = 0.78) 2968 18.28 (𝜎 = 0.40)

(12) 600 4 1 20 100 35 98.04 (𝜎 = 1.24) 2968 17.19 (𝜎 = 0.47)

(13) 600 4 1 20 100 60 96.86 (𝜎 = 2.00) 2968 14.83 (𝜎 = 0.53)
model consists of a 3-channel input layer and an output layer with 7 
units. Feature learning is performed by means of a convolutional layer 
with a 600-element 1D filter and a max-pooling layer with a 4-element 
subsampling mask. The learned features are then classified using a fully 
connected layer of 20 units. The softmax activation function is used in 
the output layer and the ReLU function in the other layers.

Regarding the learning process, the model was trained for 100 
epochs with minibatch gradient descent (40 examples per minibatch) 
[43], using the categorical cross-entropy error and Adam optimizer 
[51], which is widely used for deep learning tasks and highly rec-

ommended in the literature [43, 52, 53]. The working dataset was 
randomly divided into a training set (70%) and a test set (30%). The 
training set was used in this learning process and the test set was used 
to assess the performance of the model.

The tuning of all the model parameters mentioned above (convo-

lutional filter size, subsampling mask size, number of fully connected 
layers, number of neurons in fully connected layers, number of epochs 
and minibatch size) is based on the testing of different configurations. 
As shown in Table 3 (3.2.1 Model tuning), the chosen configuration is 
the one that yielded the best results.

It should also be noted that this architecture has been implemented 
using Keras (with Tensorflow backend), which is an open source neural 
network library, widely used by the research community [54]. Hence, 
the proposed CNN model is described in Fig. 7 according to Keras/Ten-

sorflow conventions.
5

3.2.1. Model tuning

The architecture of the proposed CNN model is defined by the size of 
the convolutional filter (𝐾1), the size of the subsampling mask (𝐾2), the 
number of fully connected layers (𝐾3), the number of neurons in fully 
connected layers (𝐾4), the number of epochs (𝐾5) and the size of the 
minibatch (𝐾6). As shown in Table 3, we tested several configurations 
and chose the one that achieved the highest accuracy: (1). Although 
(2,6,11) configurations also yielded good results, they were discarded, 
as they led to more complex models, which required a greater number 
of parameters to be tuned and more time to complete the training.

4. Results

The purpose of the proposed system is to determine the operating 
condition of the machine on the basis of raw machine operating data. 
To this end, the CNN model extracts the relevant features from the data 
and performs the classification on them. The results of the classification 
and the features learned by the model are presented below.

4.1. Classification results

Fig. 8 shows the results of the classification in terms of the confusion 
matrix. Here we can see that the model determines the operating condi-

tion of the machine with a 100% accuracy for all classes in the training 
set, as well as in the test set, except for T4 class, where the rate drops to 
90%. Therefore, the model achieves an accuracy of 100% in the train-

ing set and of 98% in the test set. Using different training and test sets, 
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Fig. 8. Confusion matrix of the machine condition classification using the proposed CNN model. (a) Results on the training set. (b) Results on the test set.

Table 4

Performance results of the CNN model compared to other conventional classifiers, using random cross validation executed 5 times (we report the mean and standard 
deviation of all executions).

Accuracy (%)1 Precision (%)1 Recall (%)1 f1-score (%)1 Number of 
parameters2

Computational performance

Train (s) Test (ms)

Proposed CNN model 98.43
(𝜎 = 0.88)

98.40
(𝜎 = 0.89)

98.40
(𝜎 = 0.89)

98.40
(𝜎 = 0.89)

2968.00
(𝜎 = 0.00)

16.38
(𝜎 = 1.08)

4.32
(𝜎 = 0.38)

Multi-Layer Perceptron 100.00
(𝜎 = 0.00)

100.00
(𝜎 = 0.00)

100.00
(𝜎 = 0.00)

100.00
(𝜎 = 0.00)

1527.00
(𝜎 = 0.00)

4.08
(𝜎 = 0.31)

2.77
(𝜎 = 2.19)

SVC (linear) 100.00
(𝜎 = 0.00)

100.00
(𝜎 = 0.00)

100.00
(𝜎 = 0.00)

100.00
(𝜎 = 0.00)

𝑦114.00
(𝜎 = 3.74)

2.84𝑥10−3

(𝜎 = 1.70𝑥10−3)
0.36
(𝜎 = 0.16)

SVC (polynomial) 100.00
(𝜎 = 0.00)

𝑦100.00
(𝜎 = 0.00)

100.00
(𝜎 = 0.00)

100.00
(𝜎 = 0.00)

320.00
(𝜎 = 19.75)

2.09𝑥10−3

(𝜎 = 6.38𝑥10−4)
0.40
(𝜎 = 0.33)

SVC (RBF) 99.22
(𝜎 = 1.57)

99.40
(𝜎 = 1.20)

99.20
(𝜎 = 1.60)

99.20
(𝜎 = 1.60)

332.00
(𝜎 = 23.37)

1.95𝑥10−3

(𝜎 = 3.47𝑥10−4)
0.28
(𝜎 = 7.56𝑥10−2)

RFC 100.00
(𝜎 = 0.00)

100.00
(𝜎 = 0.00)

100.00
(𝜎 = 0.00)

100.00
(𝜎 = 0.00)

10.00
(𝜎 = 0.00)

1.50𝑥10−2

(𝜎 = 1.31𝑥10−3)
1.92
(𝜎 = 0.63)

1 Classification metrics in the test set. In the training set, the classifiers have achieved a score of 100.00% (𝜎 = 0.00) in all metrics.
2 For the CNN model and the MLP it is the number of learnable parameters. For SVC’s it is the number of coefficients. For the RFC it is the number of trees in the forest.
the average performance of the model is of 100.00% (𝜎 = 0.00) accu-

racy in the training set and of 98.43% (𝜎 = 0.88) in the test set, as we 
see in Table 4. In view of these results, we can assert that the proposed 
model solves the classification with a great performance.

4.1.1. Comparison with feature engineering classifiers

The performance of the model is compared with that of other clas-

sifiers based on manually engineered features. For this purpose, five 
representative features of the system have been extracted from data: 
rms value of 𝑎𝑥 and 𝑎𝑦 in the 20-30 Hz frequency band (1× machine ro-

tational frequency, accounting for mechanical imbalances); rms value 
of 𝑎𝑥 and 𝑎𝑦 in the 95-105 Hz frequency band (2× machine supply fre-

quency, regarding electrical imbalances); and rms value of 𝑖𝑟 in the 
45-55 Hz frequency band (1× machine supply frequency, noting power 
supply imbalances). The classifiers proposed for comparison receive as 
input a vector with these five features and return as output the condi-

tion of the machine (Fig. 9).

For an exhaustive comparison, several classifiers were used:

(1) Multi-Layer Perceptron with 4 hidden layers of 20 neurons each; 
(2) SVC with linear kernel and penalty of the error term C = 1000; 
(3) SVC with polynomial kernel, degree = 3, C = 10 and kernel coeffi-

cient gamma = 10; (4) SVC with RBF kernel, C = 10 and gamma = 10; 
(5) RFC with max depth = 6. The performance of the CNN model and 
all of these classifiers is shown in Table 4, in terms of the following 
metrics:

• Accuracy (ratio of correctly predicted observations to the total ob-

servations), precision (ratio of correctly predicted positive observa-
6

Fig. 9. Working context of the classifiers proposed for comparison.

tions to the total predicted positive observations), recall (ratio of 
correctly predicted positive observations to all observations in ac-

tual class) and f1-score (weighted average of precision and recall). 
These error measures can be calculated from the confusion matrix 
using the expressions (10)-(13), where: 𝑇𝑃 is the amount of true 
positive classifications, 𝑇𝑁 is the amount of true negative classifi-

cations, 𝐹𝑃 is the amount of false positive classifications and 𝐹𝑁

is the amount of false negative classifications.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(10)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛= 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(11)
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𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(12)

𝑓1-𝑠𝑐𝑜𝑟𝑒 = 2 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙

(13)

• Number of parameters in the model, as an indicator of the compu-

tational complexity of the model.

• And finally, the model is also evaluated in terms of online and 
offline performance. For this purpose, two times are measured: the 
time the model takes to complete the training and the time it takes 
to classify an incoming sample.

As we see in Table 4, the CNN model achieves excellent results in all 
metrics derived from the confusion matrix: 98.43% accuracy, 98.40% 
precision, 98.40% recall and 98.40% f1-score. The table also shows that 
these results are comparable to those obtained using traditional clas-

sifiers. On the other hand, our model is the most complex, requiring 
a greater number of parameters to be tuned, and it is also the most 
computationally demanding, requiring more time both to complete the 
training and to classify an input sample.

However, the proposed CNN model proves to be able to classify the 
operating condition of the machine almost as successfully as conven-

tional classifiers, even though it works in a less favourable context, 
without any machine information and learning by itself the relevant 
features to perform the classification. The consumption of resources, 
although the highest, is admissible and allows the machine to be moni-

tored in real time.

4.1.2. Classification on a bearing fault dataset

As mentioned in Section 2.1, feature-engineered classifiers are 
highly problem-dependent and cannot be easily reused in new contexts. 
In order to assess the capability of the proposed system (feature-learning 
based) to monitor the condition of new machines, we evaluate its per-

formance on another dataset [55]. It is a bearing fault dataset contain-

ing the radial vibration acceleration of a rotating machine, measured 
over three operating states along several conditions: 3 normal operation 
conditions at the same load, 10 outer race fault conditions at various 
loads and 7 inner race fault conditions at various loads (Table 5). We 
randomly take this data to build our training and test sets, following the 
assumption of considering 1 normal operation, 3 outer race fault and 2 
inner race fault conditions for the test set and the remaining conditions 
for the training set.

To test the system on this new data, we proceeded as described in 
Section 3: first, we normalized the dataset and used the windowing 
technique to pre-process the raw data; then, we trained the CNN model. 
This model has identical parameters (convolutional filter size, subsam-

Fig. 10. CNN model adapted to the new dataset. The batch dimension (number of samples in the dataset) is denoted as None, as it is not fixed.

Table 5

Bearing fault dataset.

Machine condition Scenario (load in lbs, number of samples)

Normal operation (N) N1(270,292968), N2(270,292968), N3(270,292968)

Outer race fault (O) O1(25,146484), O2(50,146484), O3(100,146484), 
O4(150,146484), O5(200,146484), O6(250,146484), 
O7(270,292968), O8(270,292968), O9(270,292968), 
10(300,146484)

Inner race fault (I) I1(0,146484), I2(50,146484), I3(100,146484), 
I4(150,146484), I5(200,146484), I6(250,146484), 
I7(300,146484)

Table 6

Performance results of the CNN model for the two datasets, using random cross 
validation executed 5 times (we report the mean and standard deviation of all 
executions).

Accuracy (%)1 Precision (%)1 Recall (%)1 f1-score (%)1

A) Original dataset 98.43
(𝜎 = 0.88)

98.40
(𝜎 = 0.89)

98.40
(𝜎 = 0.89)

98.40
(𝜎 = 0.89)

(B) Bearing fault 
dataset [55]

91.81
(𝜎 = 5.88)

93.60
(𝜎 = 4.22)

91.60
(𝜎 = 5.77)

91.20
(𝜎 = 6.69)

1 Classification metrics in the test set. In the training set, the CNN model has achieved 
a score of 100.00% (𝜎 = 0.00) in all metrics.

pling mask size, number of fully connected layers, number of neurons 
in fully connected layers, number of epochs and minibatch size) and 
similar architecture to that proposed in Section 3.2. The differences lie 
in the number of channels of the input layer (𝑐 = 1 instead of 𝑐 = 3) and 
the number of units of the output layer (𝑛 = 3 instead of 𝑛 = 7) (Fig. 10). 
The results of the classification are shown in Table 6 (B).

Table 6 compares the classification of the two datasets used in this 
paper: (A) the original dataset, presented in Section 3.1 and based on 
which we designed the proposed system; (B) the new dataset, presented 
in this section. As we can see from the table, the system proves to be a 
good classifier in (B), although it is better in (A), which was expected, 
as the model parameters have been tuned to be used in (A). But it is re-

markable the system’s ability to classify the condition of a new rotating 
machine and to do so with high accuracy: 91.81% in the test set. In com-

parison, [56] proposes three classifiers (robust one-class SVM classifiers, 
feature engineering based) that achieve similar performance: 96%, 86% 
and 84% accuracy, considering as positive class the normal operation, 
the inner race fault and the outer race fault, respectively.

These results are evidence of the potential of feature learning, which 
in this case allows us to deal, using the same system, with two different 
machines and without the need for prior knowledge about them.
7
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Fig. 11. Output of the convolutional layer for each sample in the dataset.

Fig. 12. Frequency response of the convolutional filter learned by the proposed CNN model: (a) 𝑖𝑟 channel, (b) 𝑎𝑥 channel, (c) 𝑎𝑦 channel.

Fig. 13. Analysis of the 𝑖𝑟 channel of the convolutional filter.
4.2. Feature learning results

The convolutional layer of the model is tuned during the training 
phase in order to extract the relevant features from the input data. 
Fig. 11 shows the output vector of this layer for all samples in the 
dataset, where we can appreciate that vectors of each test present sim-

ilar features. Therefore, the convolutional layer learns a representation 
of the input data that seems to help in discriminating the state of the 
rotating machine (it should be noted that the most confusing states ap-

pear to be T4/T5/T6, which is consistent with the confusion matrices in 
Fig. 8, where we see that the model confuses samples from tests T4/T5). 
This layer consists of a single 3-channel convolutional filter which is re-

sponsible for transforming input data into feature vectors. To that end, 
the filter learns to enhance the harmonics with more information to the 
classification task, and hence its frequency response contains valuable 
information about the machine.

Once the training is finished, the convolutional filter is defined by 
three weight vectors, whose frequency representation reveals the fea-

tures learned by the model. To transfer these weight vectors to the 
frequency domain, we use the FFT (Fast Fourier Transform) (14), where 
𝑥𝑛 represents the vector of weights and 𝑁𝑓 is the size of the filter 
(𝑁𝑓 = 600). According to this approach, we plot in Fig. 12 the frequency 
response of the filter learned by the CNN model, where each weight vec-

tor is related to a different input channel: 𝑎𝑥 (horizontal acceleration), 
𝑎𝑦 (vertical acceleration) and 𝑖𝑟 (phase R current).

𝑋𝑘 =
𝑁𝑓−1∑
𝑛=0

𝑥𝑛𝑒
−𝑖2𝜋𝑘𝑛∕𝑁𝑓 𝑘 = 0,… ,𝑁𝑓 − 1. (14)
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This convolutional filter extracts the frequencies that are relevant 
to the classification task. Therefore, the weight vectors contain a great 
deal of information about the monitored machine and their analysis 
makes it possible to deduce constructional and operative parameters of 
the machine, as detailed below:

• In the 𝑖𝑟 channel (Fig. 13) we can identify the power supply fre-

quency (𝑓𝑃𝑆 ) of the machine, which is the fundamental frequency 
of the filter. This shows that the CNN coherently identified the 
fundamental frequency as a relevant feature in discriminating the 
condition of the machine. We also observe harmonics of this fre-

quency at 3𝑓𝑃𝑆 and 5𝑓𝑃𝑆 .

• In the 𝑎𝑥 channel (Fig. 14) the power supply frequency is present 
again (2𝑓𝑃𝑆 ), as well as other frequencies, such as the ball pass fre-

quency of the outer race (𝐵𝑃𝐹𝑂) or the rotational speed of the ma-

chine (𝑓𝑅). They appear together in the shaded area in the figure, 
where there is a high-frequency modulation with 𝑓𝑅 sidebands, be-

ing 𝐵𝑃𝐹𝑂 the distance between the two carrier frequencies.

• In the 𝑎𝑦 channel (Fig. 15) we can see the frequencies already men-

tioned (4𝑓𝑃𝑆 , 𝑓𝑅) and the ball pass frequency of the inner race 
(𝐵𝑃𝐹𝐼), which is present at both low and high frequency.

In short, the analysis of the convolutional filter concludes that: 
𝑓𝑃𝑆 = 50 Hz, 𝑓𝑅 = 25 Hz, 𝐵𝑃𝐹𝐼 = 125 Hz and 𝐵𝑃𝐹𝑂 = 75 Hz. There-

fore, the study of the features learned by the model provides a priori 
unknown information of the machine. Furthermore, on the basis of 
these operational parameters, it would be possible to deduce construc-

tional parameters of the machine, such as the number of balls in the 
bearings (𝑛) or the ratio between ball and pitch diameters (𝑑∕𝐷). Using 
the expressions (4)-(7) we obtain a number of eight balls in the bear-
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Fig. 14. Analysis of the 𝑎𝑥 channel of the convolutional filter.

Fig. 15. Analysis of the 𝑎𝑦 channel of the convolutional filter.
Fig. 16. Bearing geometry of the testing machine.

ings (𝑛 = 8) and a diameter ratio of 0.25 (𝑑∕𝐷 = 0.25), both of which 
match reality, as shown in Fig. 16.

5. Conclusion

In this paper, we propose a CNN model for detection and diagnosis 
of faults in rotating machines, which classifies the state of the machine 
on the basis of raw machine operating data. This approach integrates 
the two blocks of traditional fault detection into a single learning body: 
feature extraction and classification. The model has the ability to learn 
the best representation of the input data (it learns to extract the opti-

mal features) to perform the classification. This means a high level of 
generalization and eliminates the need for feature engineering, so no 
experience or prior knowledge of the machine is required.

The proposed system has been tested on vibration and current oper-

ating data of a rotating machine with seven possible states, comparing 
its performance with that of other classifiers based on manually en-

gineered features (Multi-Layer Perceptron, Support Vector Classifier, 
Random Forest Classifier). The results indicate that our CNN model is 
capable of determining the condition of the machine with an accuracy 
of 98%, almost as accurately as conventional classifiers. Furthermore, 
the analysis of the features learned by the model reveals operative and 
constructional parameters of the machine, such as its rotational speed 
9

or the number of balls in the bearings. It can therefore be concluded 
that the proposed CNN model not only successfully classifies the oper-

ating condition without the need for prior knowledge of the machine, 
but also provides us with unknown information about it. Finally, the 
proposed system has also reported good classification performance on a 
bearing fault dataset from another machine, thus demonstrating it can 
be successfully used in the monitoring of other rotating machines.

In view of these good results, we will keep exploring the potential 
of deep convolutional neural networks, with particular emphasis on the 
analysis of the features learned by the convolutional layers. On that 
topic, we have experimentally shown in this paper that the optimal so-

lutions to the classification problem result in convolutional filters whose 
frequency responses reflect the relevance of the harmonics that contain 
more information for the classification task. Here we have proposed a 
model with one convolutional layer containing one convolutional filter, 
which extracts high level features, of easy interpretation. In deeper and 
more complex CNN models, with a greater number of convolutional lay-

ers and filters per layer, the learned features conform a compositional 
hierarchy and their interpretation may become harder. The impact of 
the deep model architecture on the interpretability of the learned fea-

tures is not an obvious question. It is an open problem, which will be 
the topic of our future work.
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bearings in electrical motors by means of vibration analysis, Tribol. Int. 43 (9) 
(2010) 1683–1692.

[10] R. Yan, R.X. Gao, X. Chen, Wavelets for fault diagnosis of rotary machines: a review 
with applications, Signal Process. 96 (2014) 1–15.

[11] P. Konar, P. Chattopadhyay, Bearing fault detection of induction motor using 
wavelet and support vector machines (svms), Appl. Soft Comput. 11 (6) (2011) 
4203–4211.

[12] B. Li, P.-l. Zhang, D.-s. Liu, S.-s. Mi, G.-q. Ren, H. Tian, Feature extraction for 
rolling element bearing fault diagnosis utilizing generalized s transform and two-

dimensional non-negative matrix factorization, J. Sound Vib. 330 (10) (2011) 
2388–2399.

[13] X. Liu, L. Ma, J. Mathew, Machinery fault diagnosis based on fuzzy measure and 
fuzzy integral data fusion techniques, Mech. Syst. Signal Process. 23 (3) (2009) 
690–700.

[14] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436.

[15] M.E. Tipping, C.M. Bishop, Probabilistic principal component analysis, J. R. Stat. 
Soc., Ser. B, Stat. Methodol. 61 (3) (1999) 611–622.

[16] B.A. Olshausen, D.J. Field, Emergence of simple-cell receptive field properties by 
learning a sparse code for natural images, Nature 381 (6583) (1996) 607.

[17] R.M. Neal, Connectionist learning of belief networks, Artif. Intell. 56 (1) (1992) 
71–113.

[18] G.E. Hinton, R.S. Zemel, Autoencoders, minimum description length and Helmholtz 
free energy, in: Advances in Neural Information Processing Systems, 1994, pp. 3–10.

[19] Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new per-

spectives, IEEE Trans. Pattern Anal. Mach. Intell. 35 (8) (2013) 1798–1828.

[20] B. Li, M.-Y. Chow, Y. Tipsuwan, J.C. Hung, Neural-network-based motor rolling 
bearing fault diagnosis, IEEE Trans. Ind. Electron. 47 (5) (2000) 1060–1069.

[21] C.T. Kowalski, T. Orlowska-Kowalska, Neural networks application for induction 
motor faults diagnosis, Math. Comput. Simul. 63 (3–5) (2003) 435–448.

[22] G. Bin, J. Gao, X. Li, B. Dhillon, Early fault diagnosis of rotating machinery based 
on wavelet packets—empirical mode decomposition feature extraction and neural 
network, Mech. Syst. Signal Process. 27 (2012) 696–711.

[23] F. AlThobiani, A. Ball, et al., An approach to fault diagnosis of reciprocating com-

pressor valves using Teager–Kaiser energy operator and deep belief networks, Expert 
Syst. Appl. 41 (9) (2014) 4113–4122.

[24] F. Jia, Y. Lei, J. Lin, X. Zhou, N. Lu, Deep neural networks: a promising tool for fault 
characteristic mining and intelligent diagnosis of rotating machinery with massive 
data, Mech. Syst. Signal Process. 72 (2016) 303–315.

[25] M. Gan, C. Wang, et al., Construction of hierarchical diagnosis network based on 
deep learning and its application in the fault pattern recognition of rolling element 
bearings, Mech. Syst. Signal Process. 72 (2016) 92–104.

[26] Y. LeCun, Y. Bengio, et al., Convolutional networks for images, speech, and time 
series, Handbook Brain Theory Neural Netw. 3361 (10) (1995) 1995.

[27] T.N. Sainath, A.-r. Mohamed, B. Kingsbury, B. Ramabhadran, Deep convolutional 
neural networks for lvcsr, in: Acoustics, Speech and Signal Processing (ICASSP), 
2013 IEEE International Conference on, IEEE, 2013, pp. 8614–8618.

[28] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convo-

lutional neural networks, in: Advances in Neural Information Processing Systems, 
2012, pp. 1097–1105.
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