Skip to main content
. 2020 Feb 14;6(2):e03395. doi: 10.1016/j.heliyon.2020.e03395

Table 3.

Performance results for different CNN model configurations, using random cross validation executed 5 times (we report the mean and standard deviation of all executions). Configuration parameters: K1, size of the convolutional filter; K2, size of the subsampling mask; K3, number of fully connected layers; K4, number of neurons in fully connected layers; K5, number of epochs; K6, size of the minibatch.

Configuration ID K1 K2 K3 K4 K5 K6 Test accuracy (%) Number of parameters Training time (s)
(1) 600 4 1 20 100 40 98.43 (σ = 0.88) 2968 16.38 (σ = 1.08)
(2) 400 4 1 20 100 40 98.43 (σ = 1.47) 3368 21.48 (σ = 0.54)
(3) 750 4 1 20 100 40 98.04 (σ = 1.75) 2658 7.65 (σ = 0.17)
(4) 600 2 1 20 100 40 98.04 (σ = 2.15) 3968 15.61 (σ = 0.46)
(5) 600 11 1 20 100 40 97.25 (σ = 2.00) 2328 17.67 (σ = 0.45)
(6) 600 4 2 22 100 40 98.43 (σ = 1.92) 3590 16.43 (σ = 0.45)
(7) 600 4 3 10 100 40 96.86 (σ = 2.66) 2608 15.60 (σ = 0.40)
(8) 600 4 1 10 100 40 96.08 (σ = 5.95) 2388 15.31 (σ = 0.70)
(9) 600 4 1 32 100 40 97.65 (σ = 2.88) 3664 15.93 (σ = 0.35)
(10) 600 4 1 20 80 40 98.04 (σ = 1.24) 2968 12.97 (σ = 0.81)
(11) 600 4 1 20 120 40 98.43 (σ = 0.78) 2968 18.28 (σ = 0.40)
(12) 600 4 1 20 100 35 98.04 (σ = 1.24) 2968 17.19 (σ = 0.47)
(13) 600 4 1 20 100 60 96.86 (σ = 2.00) 2968 14.83 (σ = 0.53)