Skip to main content
. 2020 Feb 14;6(2):e03395. doi: 10.1016/j.heliyon.2020.e03395

Table 4.

Performance results of the CNN model compared to other conventional classifiers, using random cross validation executed 5 times (we report the mean and standard deviation of all executions).

Accuracy (%)1 Precision (%)1 Recall (%)1 f1-score (%)1 Number of parameters2 Computational performance
Train (s) Test (ms)
Proposed CNN model 98.43(σ=0.88) 98.40(σ=0.89) 98.40(σ=0.89) 98.40(σ=0.89) 2968.00(σ=0.00) 16.38(σ=1.08) 4.32(σ=0.38)
Multi-Layer Perceptron 100.00(σ=0.00) 100.00(σ=0.00) 100.00(σ=0.00) 100.00(σ=0.00) 1527.00(σ=0.00) 4.08(σ=0.31) 2.77(σ=2.19)
SVC (linear) 100.00(σ=0.00) 100.00(σ=0.00) 100.00(σ=0.00) 100.00(σ=0.00) y114.00(σ=3.74) 2.84x103(σ=1.70x103) 0.36(σ=0.16)
SVC (polynomial) 100.00(σ=0.00) y100.00(σ=0.00) 100.00(σ=0.00) 100.00(σ=0.00) 320.00(σ=19.75) 2.09x103(σ=6.38x104) 0.40(σ=0.33)
SVC (RBF) 99.22(σ=1.57) 99.40(σ=1.20) 99.20(σ=1.60) 99.20(σ=1.60) 332.00(σ=23.37) 1.95x103(σ=3.47x104) 0.28(σ=7.56x102)
RFC 100.00(σ=0.00) 100.00(σ=0.00) 100.00(σ=0.00) 100.00(σ=0.00) 10.00(σ=0.00) 1.50x102(σ=1.31x103) 1.92(σ=0.63)
1

Classification metrics in the test set. In the training set, the classifiers have achieved a score of 100.00% (σ=0.00) in all metrics.

2

For the CNN model and the MLP it is the number of learnable parameters. For SVC's it is the number of coefficients. For the RFC it is the number of trees in the forest.