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Abstract. To compensate for the intraoperative brain tissue deformation, computer-assisted
intervention methods have been used to register preoperative magnetic resonance images with
intraoperative images. In order to model the deformation due to tissue resection, the resection
cavity needs to be segmented in intraoperative images. We present an automatic method to
segment the resection cavity in intraoperative ultrasound (iUS) images. We trained and evaluated
two-dimensional (2-D) and three-dimensional (3-D) U-Net networks on two datasets of 37 and
13 cases that contain images acquired from different ultrasound systems. The best overall
performing method was the 3-D network, which resulted in a 0.72 mean and 0.88 median Dice
score over the whole dataset. The 2-D network also had good results with less computation time,
with a median Dice score over 0.8. We also evaluated the sensitivity of network performance to
training and testing with images from different ultrasound systems and image field of view.
In this application, we found specialized networks to be more accurate for processing similar
images than a general network trained with all the data. Overall, promising results were obtained
for both datasets using specialized networks. This motivates further studies with additional clini-
cal data, to enable training and validation of a clinically viable deep-learning model for auto-
mated delineation of the tumor resection cavity in iUS images. © 2020 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.7.3.031503]
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1 Introduction

1.1 Background

In brain tumor surgery, preoperative magnetic resonance (MR) images provide essential infor-
mation, such as the location of the tumor. Because of the tissue deformation in the operating
room, nonrigid registration of the preoperative MR (pMR) with intraoperative data has been
widely studied.1,2 In particular, several works used intraoperative ultrasound (iUS) to register
the pMR.3–8 A MICCAI 2018 Challenge was also organized on this topic.9 However, few
methods10,11 addressed the intraoperative deformation due to tissue resection. In order to model
tissue removal accurately, the location of the removed tissue needs to be determined. One
approach is to acquire intraoperative images of the resection cavity and segment the removed
tissue.

We recently proposed a biomechanical model-based registration framework using iUS
acquisitions.4 One of the requirements for the method was its usability in a clinical setting.
In particular, integration with the clinical workflow, minimal user interaction, and execution
time in the operating room were taken into consideration. Currently, our method does not model
the resection cavity. To integrate tissue resection in the model, the removed tissue needs to be
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localized. This information can be obtained from the iUS B-mode images, through manual seg-
mentation. However, manual segmentation is time consuming and error-prone, especially in
ultrasound images. Also, user input needs to be minimal in the operating room. Thus, an auto-
matic segmentation method for the resection cavity in iUS images would be highly beneficial.
This is a difficult task because of the high variability in the location of the cavity as well as image
quality and features.

Automatic segmentation of the resection cavity has several uses in image-guided brain tumor
resection surgery. First, the volume and precise delineation of the removed tissue can be used to
account for tissue removal in the registration process. After the resection procedure has started,
tissue removal is an additional source of deformation that should be taken into account. Also, the
resection cavity in the registered pMR can be updated with a realistic signal in the visualization
system.

Moreover, the segmentation of the resection cavity can be used along with a segmentation of
the tumor to assess whether the resection is complete. The tumor can be delineated manually or
automatically in the pMR, and its segmentation can be registered along with the pMR to the
iUS volume. Or, although a challenging task, the tumor could be directly segmented in the iUS
volume. The resulting tumor segmentation can then be compared with the resection cavity seg-
mentation to evaluate the progression of the procedure.

1.2 Contributions

In this work, we present an evaluation of deep learning-based methods to automatically segment
the resection cavity in iUS images. To do this, we created ground truth (GT) segmentations and
validated them with a clinical expert. We trained several two- (2-D) and three-dimensional (3-D)
segmentation neural networks and compared the corresponding results. Preliminary results have
been presented recently at the 2019 SPIE conference.12 Unlike that study where only 2-D net-
works were evaluated, herein we also implement a 3-D network and compare it with the 2-D
networks. Further, we evaluate the robustness of the networks to different datasets by evaluating
our networks on two datasets with different acquisition parameters and using cross-validation on
multiple folds.

2 Related Work

2.1 Deep Learning in Ultrasound

Deep learning has become one of the most commonly used methods for image processing tasks,
such as classification or segmentation. The use of deep learning for medical image analysis has
recently been reviewed by Litjens et al.13 Deep learning techniques have been successfully
applied to ultrasound images in several applications, such as the diagnosis of medical condi-
tions,14–19 segmentation,19,20 image registration,21,22 and reconstruction.23

Many applications need to segment ultrasound images.19,20,24,25 In particular, several works
segmented structures in brain iUS images: midbrain,26 falx and sulci,8,27 and tumor.28 A recent
work proposed an automated segmentation method for the resection cavity in postoperative
MR.29 However, to the best of our knowledge, no method has been proposed to segment the
resection cavity in iUS images. Most deep learning segmentation methods use a network based
on U-Net with an encoder and a decoder path.30

For 3-D datasets, there are several options to process the volumes. The volumes can be proc-
essed slice by slice by a 2-D network or directly using a 3-D network. The advantages of 2-D
networks are that they use less memory and are faster. In particular, entire slices can usually be
processed with no or little resizing. Whereas with a 3-D network, smaller input sizes are used due
to memory constraints and a sliding window (SW) is used. On the other hand, the advantage of
3-D networks is the use of spatial context in all planes. Spatial 3-D context is important for
segmentation tasks and can significantly improve results.31

A compromise can be found using several slices with a 2-D network (2.5D). Each group of
slices is composed of either adjacent slices32,33 or slices from different planes.26,34 Some
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methods include another network to combine the outputs of two 2-D networks in different
planes.34,35

Some studies circumvented the 3-D network limitations with various workarounds.
Pedemonte et al.36 suggested that using wider input sizes (e.g., 256 × 256 × 32) was more per-
formant than cubic patches with the same size in memory (e.g., 128 × 128 × 128). This allowed
a larger context in two directions while retaining some context in the third plane. Roth et al.37

trained 3-D networks at different scale levels. Segmentations were estimated for each scale level,
starting at the lowest resolution. At each level, the input consisted of both the volume to segment
and the segmentation estimated at the previous level. With this method, the final segmentations
were estimated at the original scale without using an SW. Liu et al.38 transferred weights from
a 2-D network to a 3-D network. A 2-D segmentation network is first trained with 2-D slices.
Then, the weights in the encoding path of the 2-D network are transferred to the 3-D network.
The decoding path of the 3-D network is then trained. This method allowed a better training of
the 3-D network.

2.2 Registration of Brain pMR and iUS

In brain surgery, tissue deformation occurs in the operating room due to several causes including
the surgeon’s actions and tissue resection. As such, methods to compensate the deformation
and register the pMR with intraoperative data have been studied.1,2 Some methods that estab-
lish correspondences between the pMR and iUS are established using similarity metrics3,5 or
feature descriptors.6 Other methods use a biomechanical model of the brain,10,11,39,40 where the
deformation is estimated by solving correspondence constraints with the finite element
method.

The deformation due to tissue resection is significant. In both intensity-based methods and
model-based methods, the location of the resection cavity can be used to improve the results.
To localize the resection cavity, some methods used manual or semiautomatic segmentation
methods that required user input.39,40 Bucki et al.10 used an automatic ellipsoid estimation of
the cavity, and Fan et al.11 proposed an automatic estimation method based on stereo cameras.
However, the shape of the resection cavity can be complex and may not be estimated correctly
with only surface data. On the other hand, iUS provides subsurface information and iUS volumes
can be acquired so that the volume contains the whole cavity. An automatic segmentation of
the resection cavity in iUS images would enable accurate identification of the resection cavity
nodes in registration models.

3 Methods

3.1 Dataset

In this work, we used the volumes from two publicly available databases, RESECT41 and
BITE.42 The RESECT dataset contains 23 cases, for which pMR and iUS volumes are available.
For each case, one iUS volume was acquired before, during, and after resection. In this study,
we used the volumes acquired during and after resection. The iUS volumes were acquired using
two types of linear probes (12FLA-L and 12FLA, with a frequency range of 6 to 12 MHz and
a footprint of 48 × 13 mm and 32 × 11 mm, respectively). The volume sizes range from 221 to
492 voxels (with a mean of 347). The volumes are isotropic and the mean voxel size is 0.21 mm
(range 0.14 to 0.36). Each iUS volume was acquired such as the complete resection cavity is
contained in the volume. In the following, we refer to individual cases by their number in the
database followed by “a” or “d” for after or during.

In RESECT, the volumes acquired during and after resection are different because they are
acquired at different timepoints. Unlike the images after resection, the images during resection
contain tumor tissue, and the resection cavity is smaller. A Wilcoxon signed-rank test on the
paired during and after volumes showed statistical difference of the volumes of the GT resection
cavity (p-value of 9.155e-05). Because of this difference, we ensured an equal repartition of the
timesteps when splitting the dataset, to keep the folds representative of the whole dataset.
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The BITE dataset contains pre- and postresection MR and US volumes for 14 patients.
Multiple iUS volumes were acquired for each patient, and each was assigned a letter from
u to z, appended to the patient number. Postresection iUS was available for 13 of the patients.
The ultrasound probe was a P7-4 MHz phased array transducer. The volumes sizes range from
159 to 516 voxels (with a mean of 316). The volumes are isotropic and the voxel size is 0.3 mm
for all volumes. Each iUS volume does not cover the complete resection cavity, but several
volumes were acquired with different angles to cover as much anatomy as possible.

The acquisition protocols in the two dataset are different, not only in the imaging devices but
also in the operative strategy.

3.2 Ground Truth Creation

We manually created GT segmentations for the RESECT and BITE datasets. The two first
authors of this paper created the segmentations. Since they are not experts in radiology, all seg-
mentations were reviewed and revised by a clinical expert (third author). We segmented 37
RESECT volumes and 13 BITE volumes. Figures 1 and 2 show examples of GT segmentations
for both datasets.

5d 8a 18d

Fig. 1 Example of GT segmentations (RESECT).

3u 6u 8u

Fig. 2 Example of GT segmentations (BITE).
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For RESECT volumes, observer 1 segmented 37 volumes (21 after resection, 16 during).
These are the volumes in which the resection cavity is visible and possible to segment, which
was the case in most of the available volumes. We then evaluated the intrarater and interrater
variability on 10 cases, where observer 1 created a second segmentation and observer 2 created
one. The overall intra- and interrater variability results are shown in boxplots in Fig. 3. In each
boxplot in this and in the remaining figures in this paper, the line inside boxes indicates the
median. The box hinges represent the first and third quartiles. The whiskers extend from the
hinges to the value no further than 1.5 times the interquartile range from the hinge. Overall,
there was a high agreement between the segmentations, with a mean Dice score (DSC) of
0.89 for both interrater and intrarater comparisons. However, several areas in the iUS volumes
were difficult to interpret, leading to interrater differences. The segmentations were then
reviewed by the two observers as well as a clinical expert (third author). For each case, the
original segmentation was edited if needed, according to the expert’s directions. For cases seg-
mented by the two observers, the best segmentation was selected using the expert’s comments.
These final segmentations were used for the GT to compare with the segmentations estimated by
the trained models.

For the BITE dataset, observer 1 segmented seven cases and observer 2 segmented six cases.
The segmentations were reviewed by the two observers and edited if needed to create GT
segmentations.

3.3 Network Architecture

We implement 2-D and 3-D versions of the U-Net network proposed by Ronneberger et al.30

We compare three different architectures (Fig. 4):

• a 2-D network with one input slice (2D-1),

• a 2-D network with seven input slices (2D-7),

• a 3-D network (3D).

First, we test a 2-D version with an input size of 256 × 256. The layer architecture is shown in
Fig. 5. The differences from the original U-Net are the layer sizes, the use of padded convo-
lutions, and a sigmoid function instead of a soft-max in the last layer.

To train the network, the training volumes are cropped to the network’s input size. For
testing, we compare three sampling methods:

• downsampling (DS),

• using an SW,

• using the estimated segmentation from the DS method to compute a region of interest
(ROI) and crop the volumes to that region.

Inter

Intra

0.75 0.80 0.85 0.90 0.95
Dice

Fig. 3 Interrater and intrarater Dice scores.

2D
U-Net

2D-1

2D
U-Net

2D-7

3D
U-Net

3D

Fig. 4 Schematic of the three U-Net models.
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Down-

sampling Network

Inter-

polation

Sliding

window Network Average

Down-

sampling Network

Inter-

polation

Compute region of interest

Cropping Network

Padding

with 0

Fig. 6 Schematic of the three sampling methods.

Fig. 5 Schema of the 2-D U-Net architecture.
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Figure 6 shows a schematic of the three methods. With the DS method, the original volumes
are downsampled using a linear interpolation, and the estimated segmentations are upsampled
using the nearest neighbors algorithm. The SW approach consists of evaluating the network on
several 256 × 256 patches extracted from the original volumes, with a stride (distance between
patches) of 64 pixels. The resulting segmentation patches are then combined using a per-pixel
average over the patches. The ROI method uses the segmentation estimated with the DS method
to compute a region of interest (bounding box of the segmentation). The network is then evalu-
ated on the original volume cropped to the bounding box.

The volumes are processed slice by slice in one direction. To assess the impact of context on
the segmentation, we train two networks 2D-1 and 2D-7 with one and seven input slices, respec-
tively. The slices are grouped along the feature axis of the input layer.

We also implement a 3-D version in which the input consists of 128 × 128 × 128 3-D
patches. For both training and testing, a 3-D SW is used to extract patches. For training, the
patches are only extracted with a stride of 32 voxels, from a 256 × 256 × 256 bounding box
containing the resection cavity, to decrease the number of background-only patches. For testing,
the SW covers the whole volumes, with a stride of 64 voxels.

3.4 Pre- and Postprocessing

In a preprocessing step, the volumes are normalized by subtracting the mean volume intensity
value and then dividing by the standard deviation. This step is run just before volume sampling
(and after data augmentation in the training phase).

All cases were postprocessed by converting the output of the networks to binary masks with
a threshold of 0.5 and then selecting the largest connected component.

3.5 Training

The models were trained using the Adam optimizer43 with β1 ¼ 0.9, β2 ¼ 0.999, and a learning
rate of 10−5. The 2-D models were trained for 100 epochs and the 3-D models for 20 epochs.
We selected the weights of the best epoch for testing, minimizing the loss over the training
and validation sets. With the Dice loss, the training process was very stable, with the loss
generally decreasing (not increasing substantially) over time. Thus, the epoch selection
process was straightforward. Among the training cases, four (RESECT) or one (BITE) were
selected randomly as validation cases for monitoring and epoch selection purposes.

We tried three loss functions and eventually used the Dice loss function as suggested in
Ref. 44. The other two had issues due to class imbalance, as around 95% of the voxels were
background. With the binary cross-entropy loss function [Eq. (1)], training the models was dif-
ficult and often resulted in empty (all background) estimations. Of nine training processes with
this loss function, three did not converge and produced all background outputs. We then tried to
weight the two classes using a lower weight wb for the background voxels than for the fore-
ground voxels wf ¼ 1 − wb [Eq. (2)]. This solved the convergence issue, however, the lower
weight for background voxels tended to increase false positives (FPs). The FP ratio (number
of FP voxels over the total number of voxels) mean was 0.6% with equal weights and 1.1%
with a lower weight wb ¼ 0.25 for the background. This increase of FP voxels was observed
with wb ¼ 0.25 and wb ¼ 0.05. The Dice loss function [Eq. (3)] did not have these issues: the
training always converged and the models achieved better results. In particular, the number of
FP was lower: the mean FP ratio was 0.06%. Thus, we chose the Dice loss function to train
the models presented in this work:

EQ-TARGET;temp:intralink-;e001;116;164lðyt; ypÞ ¼ −
X

i

yt½i� log yp½i� þ ð1 − yt½i�Þ logð1 − yp½i�Þ; (1)

EQ-TARGET;temp:intralink-;e002;116;112lðyt; ypÞ ¼ −
X

i

wfyt½i� log yp½i� þ wbð1 − yt½i�Þ logð1 − yp½i�Þ; (2)

EQ-TARGET;temp:intralink-;e003;116;82lðyt; ypÞ ¼ 1 −
2
P

iyt½i�yp½i� þ ϵP
i
yt½i� þ

P
i
yp½i� þ ϵ

: (3)
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We augmented the data during the training process using random transformations. At the
beginning of each epoch, each original volume was transformed with the following transforma-
tions with a probability of 0.5 for each transformation:

• affine transformation, with a translation in a random direction and a distance up to
16 voxels (around 3.2 mm), and a rotation around a random axis and angle between
−10 deg and 10 deg;

• grid deformation, where a 32 × 32 × 32 grid is randomly deformed using a normal
distribution, and the original volume is interpolated using the nearest neighbors;

• scale, using a random scale factor between 0.75 and 1.25.

The data augmentation prevented overfitting to the training data: without using data augmen-
tation, the validation loss would start increasing after a few iterations indicating that the model
overfitted. With the augmentation process, this was prevented, and the validation loss would not
increase substantially over time.

3.6 Training Strategies

The networks were first trained and evaluated on a single dataset. Then, to evaluate robustness of
networks trained using one dataset when applied to another, we evaluated on BITE cases the
networks trained on the RESECT database without retraining them. We also tested fine tuning
strategies by training three additional networks:

1. Fine tuning the network trained on RESECT with BITE cases;
2. Training a network only with BITE cases (from scratch);
3. Fine tuning the network trained on BITE (2) with RESECT cases.

The models were evaluated on four folds with 10 test cases each for RESECT and two folds
with four test cases each for BITE. The folds were chosen by randomly assigning test volumes
for each fold, at a volume level so that all slices and/or patches from the same volume are in
one set. In each fold, the ratio of cases after resection versus during resection was kept.

Finally, we trained a network with cases from both RESECT and BITE. Because there are
more RESECT cases than BITE cases, we generated several augmentations for each BITE case
in the training set to ensure an equal number of cases from each dataset. This was to prevent
the training to favor features from the dataset with more cases. This model was evaluated on one
fold with 14 test volumes (10 RESECT volumes and 4 BITE volumes).

3.7 Validation Studies

First, we compare the three sampling methods for the 2-D networks (DS, SW, ROI). The study is
based on the results of the 2D-1 and 2D-7 networks on the RESECT volumes (four folds). Then,
we evaluate the three network architectures (2D-1, 2D-7, 3D) based on the results on the
RESECT volumes. Finally, we analyze the results on RESECT and BITE, with the networks
trained from scratch, fine tuned, and trained on both datasets.

The evaluation metrics reported such as Dice scores are computed on the whole volumes.
In the following, we define a failed case as a case with a Dice score lower than 0.5, as opposed to
a case successfully segmented. To the best of our knowledge, no other method has been proposed
for the segmentation of the cavity in iUS images. As such, no comparison with other results is
possible.

4 Results and Discussion

4.1 Comparison of Sampling Methods

We compared three sampling methods for the 2-D networks. Figure 7 gives an overview of
the scores for each sampling methods.
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The DS method performed worse than the SW and the ROI methods. There were cases for
which the cavity was only partially or overly segmented [Figs. 8(a) and 8(b)]. With the DS
method, there were 11 out of 37 cases with no overlap with the GT [Fig. 8(c)]. The SW and
ROI method only had four such cases. These cases had resection cavity volumes among the
smallest in the dataset: all but two of these volumes were smaller than the median volume
(Fig. 9). The errors were likely due to the DS, which reduced the size of the cavity.

In a few cases, the ROI method performed better than the SW and did not have patch errors
[Figs. 8(d) and 8(e)]. The ROI approach also had more successful cases than the SW. However,
the SW method had fewer segmentations with no overlap with the GT [Fig. 8(f)]. The SW
method may be more reliable than the ROI method since it does not depend on the downsampled
ROI estimation and the SW covers the whole volume. Estimating the segmentation for one case
took longer with the SW (around 1 min on a NVIDIA® GeForce GTX TITAN X) than the DS
and ROI methods (around 15 s) due to the evaluation of several patches. Depending on accuracy
and time constraints, the SW or the ROI may be favored over the other.

0.00

0.25

0.50

0.75

1.00

2D DS 2D ROI 2D SW 3D SW
Sampling method

D
ic

e

2D DS 2D ROI 2D SW 3D SW

Mean DSC 0.54 0.74 0.73 0.72
Median DSC 0.66 0.85 0.81 0.88
Sensitivity 0.46 0.71 0.69 0.68
Specificity 0.999 0.999 0.999 0.999
Precision 0.72 0.79 0.82 0.81
Mean Δ V 35.9% 16.6% 21.6% 20.4%
Median Δ V 29.2% 12.5% 14.8% 11.3%

Volume difference percentage, excluding volumes with no
overlap with the GT

Fig. 7 Comparison of the sampling methods (RESECT); the results are computed with the test
sets of each fold.

DS SW ROI DS SW ROI

(a) (d)

(b) (e)

(c) (f)

Fig. 8 Example of differences between sampling methods (green: GT; blue: estimation).

All cases

Failed cases (2D DS)

Failed cases (2D ROI)

Failed cases (2D SW)

Failed cases (3D SW)

0 250000 500000 750000 1000000
Ground truth volume (voxels)

Fig. 9 Comparison of the GT volumes in all and failed cases.

Carton et al.: Automatic segmentation of brain tumor resections in intraoperative ultrasound images. . .

Journal of Medical Imaging 031503-9 May∕Jun 2020 • Vol. 7(3)



4.2 Comparison of Network Architectures

The 2-D network with seven input slices (2D-7) performed slightly better than the one with only
one input slice (2D-1) when using the DS method. The segmentations were improved in areas
where the cavity was not detected: at the boundaries and where other components such as blood
altered the iUS signal. With the SWand ROI approaches, the differences were minimal. Overall,
the 3-D network performed better, as the segmentations produced by the 3-D network had greater
overlap with the GT. However, the runtime was longer due to a large number of patches to
process: the average runtime for one case was 5 min (1.5 s per patch). 2-D networks might
be preferred in clinical application because of their shorter runtime. Figure 10 presents the
Dice scores for all architectures.

4.3 Evaluation on a Single Dataset

We first discuss the results obtained by training and evaluating on the RESECT dataset only.
Figure 11 shows examples of results for one fold with the 3-D network. In the successful cases,
the estimated segmentations were very similar to the GT. With the best performing method
(3-D network), the mean Dice score was 0.72 over the whole dataset, and the median was 0.88.
Very noisy areas (such as case 8d in Fig. 11) were successfully segmented. In cases with other
cavities (such as the ventricle in case 26a), the resection cavity was selected.

There were four cases with no overlap with the GT (5d, 14d, 15a, and 18d). In cases 14d and
15a, the resection cavity was very small and thus difficult to locate. The DS method was the

0.00

0.25

0.50

0.75

1.00

2D1 2D7 3D
Network

D
ic

e

2D1 2D7 3D

Mean DSC 0.67 0.67 0.72
Median DSC 0.80 0.79 0.88
Sensitivity 0.62 0.62 0.68
Specificity 0.999 0.999 0.999
Precision 0.78 0.78 0.81
Mean Δ V 24.5% 23.9% 20.4%
Median Δ V 17.2% 17.1% 11.3%

Volume difference percentage, excluding volumes
with no overlap with the GT

Fig. 10 Comparison of the network architectures (RESECT); the results are computed with the
test sets of each fold.

12a 12d 13d 16d 26a

27a 5a 5d 6a 8d

Fig. 11 Example of RESECT segmentations for one fold with the 3-D network (green: GT; blue:
estimation).
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most sensitive to small volumes. Case 5d has a large area with a high-intensity signal (Fig. 1).
In case 18d, the signal in the bottom resection cavity is different from the other cases. We expect
that larger training dataset would improve the training and such errors would be avoided.

The results were similar for the BITE dataset. The mean Dice score was 0.75 and the median
0.81. The Dice scores are shown in the bottom left plot in Fig. 12. There was no failed case with
the SW and ROI methods, and only one with the DS method.

4.4 Evaluation on Both Datasets Without Fine-Tuning

We evaluated the networks, trained with only RESECT cases and without retraining, on the
BITE dataset. The networks did not have as good results on BITE cases. Some cases were suc-
cessfully segmented; however, there were more failed cases than with RESECT. Figure 13 shows
the estimated segmentations with the 2D-7 network. Overall, the DS method performed better
than the other sampling methods and had fewer incorrect segmentations. Some of the estimated
segmentations included out-of-field voxels and could be refined using a mask during postpro-
cessing. Figure 14 presents the Dice scores obtained with all the networks in a boxplot along
with estimated densities.

The obtained results are promising given that the training process did not include any volume
from the BITE dataset. The failed cases were cases for which the probe was inserted into the
resection cavity and only part of the cavity is visible in the volumes (cases 5v, 7x, and 14v). This
is different from the RESECT database, in which all volumes contain the complete resection
cavity. This is due to different acquisition protocols. In RESECT, linear probes were used to
acquire the entire resection cavity from the cortical surface. In BITE, smaller probes with a lower
frequency were used within the cavity. As such, only part of the cavity was visible in the acquired
volumes. With this difference in the cavity between the two datasets, it is not surprising that
networks trained with one dataset do not generalize well to another dataset, and dataset-specific
training leads to better results. For datasets with similar probe types and acquisition protocols,
we expect that training on one dataset could generalize well on another.

4.5 Evaluation on Both Datasets With Fine-Tuning

Figure 12 shows the results obtained with the four networks, trained on BITE or RESECT and
with or without fine-tuning. On each plot, the rows represent a different network: on the bottom
row, the network was trained from scratch, whereas on the top row, the training was initialized
using the weights of the network trained with the other datasets. Each network was tested on the
two datasets, using the test split for the dataset the network was trained with, and all cases for the
other dataset. The test results are presented in different columns for each dataset. The results
were always better for the dataset the networks were last trained with. The networks performed
poorly on the other dataset, with the fine-tuned networks having slightly better results. The fact
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Fig. 12 Comparison of Dice scores with different training initialisations; the results are computed
with the test sets for each fold (when testing on the same dataset the network was trained with)
or all cases (otherwise).
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that the models only had good results on one dataset is probably due to the difference between
the two datasets of the resection cavity being complete or not. Because of that, training a network
to perform well for the two datasets appears to be very difficult.

4.6 Evaluation on Both Datasets With Training on Both Datasets

Figure 15 shows the results for one network trained with cases from RESECTand BITE. Despite
having an equal number of cases from each dataset in the training set, the network had better
results on RESECT cases. This confirms that training a specific model for each dataset is better.
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Fig. 14 Dice scores for the BITE datasets (network only trained with RESECT cases); the results
are computed with all BITE cases.
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Fig. 13 Example of BITE segmentations with the 2D-7 network trained with only RESECT cases
(green: GT; blue: estimation).
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5 Impact on Interventional and Surgical Data Science

With the advent of deep learning in medical image analysis, opportunities have arisen in many
applications to use data collected from populations of patients to create neural networks that
assist with difficult interventional tasks. Image-guided brain tumor resection surgery is an exam-
ple of such an application. Ultrasound imaging is widely used to locate subsurface anatomical
structures as they deform during the surgery. However, these images are very noisy and difficult
to interpret, and effective automated analysis methods have remained elusive. One approach for
assisting the surgeons in interpreting the ultrasound is by registering the pMR to it using bio-
mechanical models. Such models need the region of resection, which can be obtainable from
the ultrasound, as input. Our goal in this work is to leverage large datasets and deep learning
techniques to segment the resection cavity to create such data-driven models. Our approach is
applicable to any surgical intervention where resection is being performed and registration of
preoperative imaging to intraoperative imaging is beneficial. For example, thorascopic or cardio-
vascular interventions could benefit from automated analysis provided by data-driven models.

6 Conclusions

This is the first work in which an automatic method has been proposed for segmenting the resec-
tion cavity in ultrasound images for brain tumor resection surgery. To validate our technique,
we created GT segmentations of the resection cavity for the volumes in the RESECT and BITE
databases. Using these data, we trained 2-D and 3-D neural networks to segment the resection
cavity in iUS volumes of the brain. We found that 3-D networks performed better than 2-D
networks; however, 2-D networks had good results with smaller execution times. Depending
on the time and accuracy constraints in the operating room, 2-D or 3-D may be preferred.
We compared several sampling methods and also evaluated the generalizability of the networks
using two datasets. There was a high variance between the two datasets, in particular, the cavity
was only partially visible in many BITE volumes. In this case, we showed that training specific
networks is better.

In future work, the use of the pMR as an additional network input can be investigated. While
the pMR and iUS do not fully match because of the brain-shift, the network could still benefit
from this additional information.

The datasets available are relatively small for deep learning applications, and we expect that
larger datasets would improve the training of the networks. While larger datasets would provide
a better validation of the discussion, promising results were obtained despite the small dataset
size and the low quality of iUS images. The resulting segmentations are accurate enough to be
used in pMR-iUS registration to take the resection cavity and the associated discontinuity into
account. These promising results motivate further research with a larger dataset.

Further, this work demonstrates that deep learning can be successfully applied to ultrasound
segmentation even with relatively small datasets. It completes previous evaluations of deep
learning methods on the RESECT and BITE datasets.7,8 Ultrasound images are difficult to
segment because of the high variability and the low quality of the images. And thus, deep
learning methods could provide a major impact on the field of data-driven computer-assisted
surgery.
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Fig. 15 Comparison of Dice scores (network trained with both RESECT and BITE cases); the
results are computed with the test set, which includes RESECT and BITE cases.
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