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Abstract

Background: While clinical factors such as age, grade, stage, and histological subtype provide physicians with
information about patient prognosis, genomic data can further improve these predictions. Previous studies have
shown that germline variants in known cancer driver genes are predictive of patient outcome, but no study has
systematically analyzed multiple cancers in an unbiased way to identify genetic loci that can improve patient
outcome predictions made using clinical factors.

Methods: We analyzed sequencing data from the over 10,000 cancer patients available through The Cancer
Genome Atlas to identify germline variants associated with patient outcome using multivariate Cox regression
models.

Results: We identified 79 prognostic germline variants in individual cancers and 112 prognostic germline variants in
groups of cancers. The germline variants identified in individual cancers provide additional predictive power about
patient outcomes beyond clinical information currently in use and may therefore augment clinical decisions based
on expected tumor aggressiveness. Molecularly, at least 12 of the germline variants are likely associated with
patient outcome through perturbation of protein structure and at least five through association with gene
expression differences. Almost half of these germline variants are in previously reported tumor suppressors,
oncogenes or cancer driver genes with the other half pointing to genomic loci that should be further investigated
for their roles in cancers.

Conclusions: Germline variants are predictive of outcome in cancer patients and specific germline variants can
improve patient outcome predictions beyond predictions made using clinical factors alone. The germline variants
also implicate new means by which known oncogenes, tumor suppressor genes, and driver genes are perturbed in
cancer and suggest roles in cancer for other genes that have not been extensively studied in oncology. Further
studies in other cancer cohorts are necessary to confirm that germline variation is associated with outcome in
cancer patients as this is a proof-of-principle study.
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Background

Large-scale sequencing projects increased our molecular
understanding of cancers to the point where using se-
quencing data to augment clinical decisions seems
promising [1, 2]. Somatic mutations in cancers have re-
ceived substantial attention in oncology as they can be
used to individualize drug selection [2, 3]. While much
effort has been directed towards characterizing somatic
mutations in cancer, recent studies suggest that germline
variants also have significant clinical utility.

In line with the heritability of some cancers, several
germline variants predict a patient’s risk for developing
cancer and are useful for individualizing cancer screen-
ing guidelines [4—13]. Germline variation can affect drug
sensitivity, predict drug toxicity, and could help select
therapy to minimize side-effects [14—26]. Some germline
variants increase patient risk for specific somatic aberra-
tions, suggesting that germline variation may impact dis-
ease course [27].

We hypothesized that the effects of germline variants
on cancer progression may be strong enough to identify
associations with patient outcome. Previous studies
tested for an association between patient outcome and a
small number of germline variants in genes well-
characterized in a given cancer [28, 29]. We published
an unbiased method of testing for an association be-
tween a large number of germline variants and patient
outcome in patients with lower-grade gliomas [30]. In
this study, we identify prognostic germline variants using
sequencing data from 10,582 patients from The Cancer
Genome Atlas (TCGA). These germline variants signifi-
cantly improve predictions of patient outcome compared
to clinical variables alone, identify biological mechanisms
by which germline variants affect patient outcomes, and
identify genes and pathways that impact cancer biology
and therapy.

Methods

Data sources, variant calling, and quality control

The results in this manuscript are based upon data gen-
erated by The Cancer Genome Atlas (TCGA) Research
Network: https://www.cancer.gov/tcga. We determined
the germline variant statuses of 10,582 cancer patients
by variant calling the patients’ whole-exome sequenced
normal samples (WXS normal), whole-exome sequenced
tumor samples (WXS tumor), and RNA sequenced
tumor samples (RNA tumor) available on Cancer Gen-
omics Cloud using VarDict (mapping quality > 30, base
quality > 25, variant reads > 2, minimum allele frequency
> 5%, no duplicate reads) and determined the sequencing
depth at each position using samtools (mapping quality
>30) [31-33]. We set variant calls to unknown if the
position at which the variant was called was covered by
fewer than 10 reads. We then merged these three variant
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call sets, giving preference to WXS normal then WXS
tumor then RNA tumor. We only included variants with
an allele frequency of greater than 5% in the non-
Finnish European population of gnomAD, variants found
in more than 14 patients in a given cancer, and variants
whose calls were greater than 90% concordant with each
other in a given cancer in our final analysis [34]. These
thresholds had been selected in our previous study in
order to better tune the allele frequencies of the Euro-
pean patients in our study to previously reported popu-
lation frequencies [30]. Our quality control tests for
setting these thresholds yielded similar results across the
other cancers outside of the lower-grade gliomas. We la-
beled variant calls as concordant for a given variant if
they gave the exact same variant call (homozygous for
the reference allele, heterozygous, or homozygous for
the alternate allele) in the WXS normal, WXS tumor,
and RNA tumor samples. Variant calls were therefore
discordant if the variant call differed in any of the three
samples. The percentage concordance was calculated for
each germline variant by dividing the total number of
concordant variant calls by the total number of patients
and multiplying the result by 100%.

We retrieved clinical outcome data for each patient
using the TCGA Pan-Cancer clinical data resource
[35]. We used TCGAbiolinks to obtain patient clinical
information, and we downloaded patient race com-
position from The Cancer Genome Ancestry Atlas
(TCGAA) [36, 37]. Additional clinical information for
the lower-grade glioma and glioblastoma patients was
downloaded from a previous analysis [38]. We used
Lasso regularization to determine which clinical co-
variates should be controlled for in our models, while
using patient race composition from TCGAA in place
of patient-reported race [39, 40]. The patient race
composition reported in the TCGAA more accurately
captured the genetic ancestry of the TCGA patients
compared to patient-reported race as patient race
composition is quantitative and multidimensional.
Where we did not control for patient race compos-
ition in cancers where patient race composition was
not identified as a significant predictor of patient out-
come by Lasso-regularized Cox regression, we later
retested the set of prognostic germline variants by
adding back patient race composition as a covariate
into our Cox regression models. As expected, because
patient race composition was not a significant pre-
dictor of patient outcome in these cancers, we still
found all of our originally identified prognostic germ-
line variants to be statistically significant predictors of
patient outcome. We also found that the hazard ratios
estimated in the original models (without race) with
the retested models (with race) were highly correlated
(Spearman rho = 0.983, p = 7.63E-47).
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We were not able to control for treatment. As dis-
cussed in greater detail by Liu et al,, it is very difficult to
control for treatment in the TCGA dataset [35]. Detailed
treatment information was not submitted in a consistent
manner for many of the patients in TCGA and absence
of submitted treatment information does not necessarily
mean that the patient did not receive treatment. Further-
more, treatment regimens are quite complex and depend
on chemotherapy drug selection and dosage, extent of
surgical excision, and radiation therapy, among other
factors. The broad spectrum of treatment options makes
treatment challenging to control for. As discussed by Liu
et al, the TCGA treatment information will likely need
to be evaluated by panels of cancer specialists before it
can be used for modeling in pan-cancer studies [35].
Nevertheless, it is unlikely that differences in treatment
accounted for the bulk of the associations observed in
this study. The most natural way for treatment differ-
ences to account for the observation that germline vari-
ation is associated with patient outcome is due to
socioeconomic differences associated with patient race
or unconscious or conscious biases in treatment selec-
tion based on patient race. However, we accounted for
calculated genetic ancestry as part of our pipeline, mak-
ing these possibilities unlikely.

We determined the number of somatic mutations in
the cancer samples and evaluated the overlap between
germline variants and somatic mutations and RNA edit-
ing sites as previously described [30]. To ensure that our
variant calls from the four variant call sets (WXS nor-
mal, WXS tumor, RNA tumor, and Combined) were
concordant with each other, we calculated the allele fre-
quency of each variant as in our previous analysis and
calculated the Spearman correlation coefficient of these
allele frequencies with each other.

Power analysis

We performed a power analysis in individual cancers to
evaluate our ability to detect associations between germ-
line variants and patient outcome using Cox regression.
The power to detect an association between a germline
variant and patient outcome is dependent on the sample
size, effect size, correlation with other covariates in the
model, the number of individuals with the germline vari-
ants, and the number of individuals without a germline
variant, among other factors. As a result, the power to
detect an association differs between germline variants,
even assuming the same hazard ratio. To estimate our
power, we therefore randomly sampled 10,000 germline
for each cancer from the pool of germline variants to be
tested in that cancer. We calculated statistical power
using the powerSurvEpi R package (https://cran.r-pro-
ject.org/web/packages/powerSurvEpi/index.html).  We
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calculated our power to detect a significant association
at a significance level (a) of:

0.10

Total number of germline variants tested in that cancer

This threshold would be as stringent or slightly more
stringent than false discovery correction using the
Benjamini-Hochberg procedure which we ultimately
used in our analysis. We then calculated the percentage
of germline variants for which we had greater than 80%
statistical power to detect a significant association at
hazard ratios of 2, 3, 4, 5, 10, 15, and 20.

Identification of prognostic germline variants

We utilized six total approaches for identifying prognos-
tic germline variants. In all analyses, we tested variants
for an association with outcome using a Cox regression
model, controlling for the covariates that we identified
previously for each cancer using Lasso regularization.
We used the R packages survminer (https://cran.r-pro-
ject.org/web/packages/survminer/index.html) and sur-
vival  (https://cran.r-project.org/web/packages/survival/
index.html) to perform Cox regression and generate
Kaplan-Meier plots. p values were corrected for multiple
hypothesis testing using the Benjamini-Hochberg pro-
cedure. The circos plots were generated using the R
package circlize [41].

In analysis 1, we tested variants for an association with
patient outcome in individual cancers, setting an ad-
justed p value threshold (FDR) less than 0.10. We re-
ported all statistically significant results and did not
filter our results based on a hazard ratio threshold, as it
is difficult to know what hazard ratio threshold would
be clinically and biologically relevant. In the second ana-
lysis, we filtered our results from analysis 1 to identify
germline variants that were recurrently associated (p <
0.05) with favorable (hazard ratio (HR) < 1) or poor (HR
> 1) outcome relative to the reference allele in seven or
more cancers, such that the most recurrent prognostic
variants would be reported. Given that molecular simi-
larities between some of the TCGA cancers may have
made it more likely that certain germline variants would
be picked up in this second analysis than others, we did
not think that it would be statistically valid to estimate
the probability of variants being pulled out by this ana-
lysis by chance. In the third analysis, we grouped the
cancers based on clinical understanding about the can-
cers and clustering patterns observed previously by the
TCGA research network [42]. We tested germline vari-
ants for associations with patient outcome (FDR < 0.10)
in these larger groups to detect germline variants with
smaller effect sizes. In pooling cancers, we implicitly as-
sumed that the germline variant had similar effects in
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the grouped cancers. If this assumption was not true for
a particular germline variant, then that germline variant
would actually be less likely to be associated with patient
outcome. Only variants found in 15 or more patients
across all grouped cancers were tested, resulting in fewer
variants being tested in this analysis.

Analyses 4—6 were quite similar to analyses 1 through
3, except that we restricted our analysis to only germline
variants that caused significant amino acid changes with
a Combined Annotation Dependent Depletion (CADD)
score greater than 25 [43]. This enabled us to identify
associations that we did not capture in analyses 1
through 3 due to the relatively higher stringency in that
analysis resulting from multiple hypothesis correction.
In analysis 4, we tested variants with CADD score > 25
in individual cancers for an association with patient out-
come (FDR <0.10). In analysis 5, we filtered the results
from analysis 4 to identify germline variants with CADD
score >25 that were recurrently associated (p < 0.05)
with favorable (HR <1) or poor (HR>1) prognosis in
five or more patients. In analysis 6, we tested germline
variants with CADD > 25 for a significant association
(FDR < 0.10) with patient outcome in the previously de-
scribed patient groups.

The Cox regression models that we fit for individual
cancers controlled for the covariates that we found to be
prognostic in those cancers (Additional file 1: Table S1).
The Cox regression models that we fit for patient groups
controlled for the covariates that we found to be prog-
nostic in individual cancers with each term containing
an interaction term associating that variable with the
cancer that it was associated with patient outcome in.
We also controlled for cancer type in these combined
groups. As an example, suppose that variable A is associ-
ated with patient outcome in cancer X and variable B is
associated with patient outcome in cancer Y. Then we
would fit two Cox regression models to identify prog-
nostic germline variants in individual cancers and a third
Cox regression model to identify germline variants prog-
nostic in the pooled cohort, as illustrated below.

(1) Identifying germline variants associated with patient
outcome in cancer X

Patient outcome ~ f3, + 3, (variable A) + S, (germline variant status)

(2) Identifying germline variants associated with patient
outcome in cancer Y

Patient outcome ~ 3, + f3, (variable B)
+ B, (germline variant status)

(3) Identifying germline variants associated with patient
outcome when the patients with cancer X and the
patients with cancer Y are pooled together
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Patient outcome ~ S, + f3; (cancer X status)
+ B, (cancer X status)(variable A)
+ B;(cancer Y status)(variable B)
+ B,(germline variant status)

In model (3) above, cancer X status is a dummy vari-
able that can be 0 or 1. The value of this variable is 0 for
patients with cancer Y and 1 for patients with cancer X.
The opposite is true for the cancer Y status variable.
This allowed us to group patients to test for an associ-
ation with patient outcome, while controlling for differ-
ences between different cancers and relevant clinical
differences between patients with the same cancer.

Concordance and correlation of hazard ratios for the
prognostic germline variants

We tested whether germline variants associated with pa-
tient outcome (p <0.05) in three of more cancers were
typically recurrently associated with increased risk of
poor outcome or recurrently associated with decreased
risk of poor outcome more often than would be ex-
pected by random chance and if the hazard ratios esti-
mated for these prognostic germline variants in different
cancers were correlated with each other.

To test for concordance, we first counted the number
of times that germline variant was found to be associated
(p < 0.05) with poor patient outcome (HR < 1) or favor-
able patient outcome (HR >1). We then calculated the
following value for each prognostic germline variant:

max(poor outcome, favorable outcome)

poor outcome + favorable outcome

where poor outcome is the number of times that the
germline variant was associated with poor outcome
(HR < 1) and favorable outcome is the number of times
that the germline variant was associated with favorable
outcome (HR>1). If a germline variant was perfectly
concordant, then the calculated value would be 1. While
theoretically the expected value would be 0.5 for a ran-
dom germline variant, we empirically estimated the ex-
pected value by the following calculation:

max(total number of poor outcome, total number of favorable outcome)

total number of poor outcome + total number of favorable outcome

In this set of prognostic variants, there were more var-
iants associated with poor patient outcome (HR < 1) than
favorable patient outcome (HR > 1), resulting in the ex-
pected index being 0.589. We then used a Wilcoxon
rank sum test to determine whether the concordance
values that we calculated from the set of prognostic
germline variants differed from what we would expect
by random chance.
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We next tested whether the hazard ratios estimated
for a given prognostic germline variant in different can-
cers were correlated with each other. Because we had
previously found the hazard ratios to be concordant, we
performed this analysis separately for instances in which
a germline variant was found to be associated with in-
creased risk of poor outcome and decreased risk of poor
outcome. We identified the set of variants associated
with favorable (HR < 1) outcome and poor (HR > 1) out-
come in three or more cancers. The set of variants that
were associated with favorable and poor outcome were
analyzed separately. For each analysis, we generated all
possible pairs of hazard ratios for a given germline vari-
ant. We then ran a Spearman’s correlation test to deter-
mine whether or not the hazard ratios were correlated
to each other. Because the hazard ratio is also correlated
to the allele frequency, we repeated the prior analysis
with a Spearman partial correlation test to control for
germline variant allele frequency. Partial correlation was
calculated used the ppcor R package [44].

Characteristics of prognostic germline variants

Having identified the prognostic germline variants, we
then aimed to compare the characteristics of prognostic
germline variants to the characteristics of germline vari-
ants identified in previous genome-wide association
studies [45]. We decided to use the variants from ana-
lysis 1 and analysis 3 to understand the characteristics of
prognostic germline variants because the other ap-
proaches each identified a very small number of prog-
nostic germline variants. We decided not to pool all of
the germline variants together due to possible differ-
ences in characteristics between these sets of variants.
We therefore analyzed the characteristics of the prog-
nostic germline variants from analysis 1 and from ana-
lysis 3 separately. To avoid considering the same
information multiple times, we removed variants that
were linked with each other from the analyses in this
section and only retained the first variant by genomic
position. The actual variant retained did not have a sig-
nificant effect on our results because the hazard ratios
and sample sizes for the linked variants were very
similar.

We first tested whether or not the minor allele was
typically associated with poor patient outcomes. We
sorted the variants into two categories: minor alleles that
were associated with poor outcome in the Cox regres-
sion model (HR > 1) and minor alleles that were associ-
ated with favorable outcomes (HR<1). Although the
reference allele was often the major allele, this was not
always the case. We performed a one-sided Fisher’s
exact test in R to determine whether or not the minor
allele was more likely to be associated with poor out-
come. The R package scatterpie (https://cran.r-project.
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org/web/packages/scatterpie/index.html) was used to
display the proportion of homozygous reference, hetero-
zygous, and homozygous alternate individuals. For vari-
ants in analysis 3 that were pulled out in multiple
groups, we displayed the proportion of individuals only
for the group that contained the largest number of indi-
viduals. The largest group always contained all individ-
uals because the smaller groups were made up of
smaller number of cancers and was always contained in
the larger group. For example, suppose a variant was
found to be prognostic in both group 20 (KICH, KIRP)
and group 19 (KICH, KIRC, KIRP). In this case, we
would perform all calculations using the information
from group 19.

We next tested whether or not there was an inverse
correlation between effect size and allele frequency. To
do this, we calculated the Spearman correlation coeffi-
cient between effect size, calculated as | In(HR)-0 |,
and allele frequency. Finally, we identified the genomic
regions (upstream of a gene, 5" UTR, exonic, intronic, 3’
UTR, downstream of a gene, or intergenic) in which
each variant was located in using annovar [46]. Some
variants were found in multiple different transcripts and
therefore mapped to several different genic regions. For
the purposes of creating the figures, we allowed a single
variant to count once for multiple different regions. Ex-
cluding these variants from the figures did not change
our interpretation of the results.

Testing whether the effects of the prognostic germline
variants are at least partially independent
If the effects of the prognostic germline variants are at
least partially independent of each other, we would ex-
pect that if two prognostic germline variants are found
in the same patient that the outcome observed in those
patients would be even more extreme than the outcome
in patients with only a single germline variant. In other
words, a patient with two prognostic germline variants
associated increased risk for poor outcome should have
a worse outcome than a patient with only one prognos-
tic germline variant associated with poor outcome.

To test this hypothesis, we analyzed the set of prog-
nostic variants identified in individual cancers. We set a
few boundaries on our analysis to reduce bias.

(1) We identified prognostic germline variants highly
linked to each other and only kept the first
prognostic germline variant by chromosomal
position in this set. The determination of which
germline variant was selected did not substantially
alter our results.

(2) We analyzed pairs of variants in individual cancers.
Although we could evaluate multiple prognostic
variants in each of the cancers, this would make the
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analysis more complex, given the differing effect
sizes of the prognostic germline variants.

(3) Because most of the prognostic variants in
individual cancers were associated with increased
risk for poor outcome, we limited this analysis to
only variants associated with increased risk for poor
outcome and excluded variants associated with
favorable outcome.

(4) In the testing of each pair of prognostic germline
variants, we excluded individuals who were
homozygous for one of the prognostic germline
variants. Our Kaplan-Meier plots suggest that for
some of the prognostic germline variants, having
two copies of the variant has a stronger effect than
having a single copy, so including homozygotes for
the prognostic germline variants could confound
our results. The homozygotes for the prognostic
germline variant were relatively rare and so we
could not test them separately. Since they were
relatively rare, the exclusion of homozygotes for the
prognostic germline variant did not dramatically re-
duce our sample size.

Having setup the conditions for this test, we created
three groups for each pair of prognostic germline vari-
ants associated with poor patient outcome:

(1) Patients homozygous for the reference allele of both
prognostic germline variants

(2) Patients heterozygous for one of the two prognostic
germline variants and homozygous for the reference
allele of the other prognostic germline variant

(3) Patients heterozygous for both of the prognostic
germline variants

We then tested for differences in patient outcome be-
tween groups (2) and (1) and groups (3) and (1). If the
effects of the prognostic germline variants are at least
partially independent, we would expect the hazard ratio
from the comparison of groups (3) and (1) to be greater
than the hazard ratio from the comparison of groups (2)
and (1). We calculated these hazard ratios for each pair
of prognostic germline variants and ran a paired one-
sided Wilcoxon signed-rank test to evaluate whether the
hazard ratio from the comparison of groups (3) and (1)
was greater than the hazard ratio from the comparison
of groups (2).

Association of prognostic germline variants with somatic
driver mutations

We tested whether the prognostic germline variants
were more likely to be associated with somatic muta-
tions in driver genes than would be expected by random
chance. We retrieved the set of driver genes for each
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cancer and consensus somatic mutation calls for each
cancer from TCGA Network analyses [2, 47]. For each
cancer, we only considered driver genes with five or
more patients with a somatic mutation in that driver
gene in that cancer. For each prognostic germline vari-
ant, we tested whether the variant associated with in-
creased risk of poor outcome was associated with an
increased incidence of somatic mutations in each of the
driver genes being considered for that cancer in patients
with the allele associated with increased risk of poor out-
come compared to patients with the protective allele
using one-sided Fisher’s exact test. p values were ad-
justed using the Benjamini-Hochberg procedure.

We were then able to determine the number of germ-
line variants that were associated with a somatic muta-
tion in a driver gene. We repeated this approach for all
germline variants included in this analysis and per-
formed one-sided Fisher’s exact test to determine
whether or not more prognostic germline variants than
expected were associated with a somatic mutation in a
driver gene.

Area under the curve

To assess the clinical relevance of our findings, we tested
whether the germline variants enhanced patient outcome
predictions made using clinical information alone. While
we had identified germline variants associated with out-
come controlling for clinical covariates, we aimed to de-
termine whether these variants significantly improved
patient outcome predictions beyond predictions made
using the clinical model alone, particularly in cancers in
which the prediction by the clinical model was already
quite accurate. We generated receiver operator charac-
teristic (ROC) curves from the tenth percentile of pa-
tient death or patient progression to the ninetieth
percentile of patient death or patient progression for
each variant in R (https://cran.r-project.org/web/pack-
ages/survivalROC/survivalROC.pdf,  https://cran.r-pro-
ject.org/web/packages/timeROC/timeROC.pdf). We
generated two ROC curves per variant: (1) the first was
made using only patient clinical information (C) and (2)
the second was generated using both patient clinical in-
formation and germline variant status (C + GV). We ran
a one-sided Wilcoxon rank sum test in R to determine
whether the model supplemented with germline variant
status consistently yielded better predictions across time
for each variant. While our Cox regression analysis iden-
tified variants that were significantly associated with pa-
tient outcome, these variants may not necessarily
substantially improve clinical outcome predictions in
cancers in which the clinical variables are already very
good at predicting outcome. Running the one-sided Wil-
coxon rank sum test allowed us to test whether the im-
provement to the prediction was significant.


https://cran.r-project.org/web/packages/survivalROC/survivalROC.pdf
https://cran.r-project.org/web/packages/survivalROC/survivalROC.pdf
https://cran.r-project.org/web/packages/timeROC/timeROC.pdf
https://cran.r-project.org/web/packages/timeROC/timeROC.pdf

Chatrath et al. Genome Medicine (2020) 12:15

Gene annotation and literature review

We annotated the variants resulting from our analysis
using biomaRt [48, 49]. We reviewed the literature for
the functions of these genes to understand their func-
tions. Many of the authors (RP, SK, ZS, SS, BW, TT, JA,
KL, TP, ES, MK) initially reviewed the literature for in-
formation about each gene. The literature review was
then verified by three of the authors (RP, SK, ZS) to en-
sure consistency and validity.

Having generated a list of genes that the germline vari-
ants are associated with from biomaRt, we first specific-
ally searched the literature to see if these genes had a
function in cancer that had been characterized and that
fit a category described by Weinberg and Hanahan [50].
This part of the literature review had the largest number
of unknowns due to the large amount of specificity re-
quired by the studies. We then relaxed our stringency
and checked to see whether or not the gene was associ-
ated with findings in the literature consistent with onco-
genic or tumor suppressor activity in the context of
cancer. The classification of the genes as oncogenes or
tumor suppressors was based on published biochemical
or molecular studies of the genes in the context of can-
cer. Multiple studies supported the classification as ei-
ther an oncogene or tumor suppressor gene for a
substantial number of the genes. Finally, to understand
in general whether or not these genes are being actively
studied by the field, we categorized these genes based on
whether or not the literature suggested that the genes
are being studied in a cancer in which the germline vari-
ant was found to be prognostic, studied in any cancer,
or studied in any human disease. We also overlapped
our gene list with the list of driver genes generated by
the TCGA research network [2].

Variant mechanisms and literature review

We next aimed to understand the mechanisms by which
the prognostic germline variants may be exerting their
effects. We started with the germline variants that were
predicted to cause significant amino acid changes
(CADD >25). We determined the position and amino
acid change caused by these germline variants using
Ensembl [51]. We determined the domain in which
these germline variants cause their amino acid changes
using the National Center for Biotechnology Information
databases  (https://www.ncbinlm.nih.gov/) and the
Ensembl and Uniprot databases [52]. We next identified
germline variants that are likely acting as expression
quantitative trait loci in cis (cis eQTLs). For each germ-
line variant, we separated patients based on whether or
not they had at least one non-reference allele and then
determined whether or not there was a statistically sig-
nificant difference between the mean expression of the
gene associated with the variant between the two groups
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using a Wilcoxon rank sum test. We then combined our
prediction as to whether the germline variant was pro-
tective or associated with increased risk of poor outcome
with the expression difference between the two groups
to determine whether increased expression of the gene
would be expected to be protective or associated with
increased risk of poor outcome. We fit Cox regression
models using the expression of each of the genes, con-
trolling for clinical covariates, and compared the result
to our prediction. We reported variants that are con-
cordant with our predictions. Because the differential ex-
pression and Cox regression results had to both be
concordant with each other, we used a more relaxed
cut-off of p<0.10 for hypothesis generation. Further
studies with larger cohorts and statistically more power
are necessary to further interrogate these associations.
Finally, we checked to see whether the eQTL was also
reported in GTEx in the tissue from which the tumor
was derived by downloading the list of tissue-specific
and pan-tissue eQTLs and comparing the eQTLs identi-
fied in our analysis to those reported in GTEx.

We reviewed the literature for previous associations
tied to these variants reported in the literature. As was
the case with gene annotation, the literature review was
first done by multiple authors (RP, SK, ZS, SS, BW, TT,
JA, KL, TP, ES, MK) with the final round of quality con-
trol and verification being done by a single author (BW).

Correlation with drug sensitivity

We found the germline variant rs1800932 in MSH6 to
be associated with favorable patient outcome and in-
creased MSH6 expression. Because a previous analysis
found that MSH6 knockdown resulted in increased tem-
ozolomide resistance, we tested whether MSH6 expres-
sion was correlated with temozolomide sensitivity in
cancer cell lines [53]. To do this, we downloaded MSH6
expression levels and temozolomide sensitivity for 915
cell lines using data from the Genomics of Drug Sensi-
tivity in Cancer database through CellMinerCDB [54,
55]. We tested for an association using Spearman’s cor-
relation test.

Pathway dysregulation

For selected prognostic germline variants described in
the text, we tested whether or not these prognostic
germline variants were associated with upregulation or
downregulation of genes in specific pathways. For each
prognostic germline variant, we separated patients into
two groups based on whether or not the variant allele
was called in those patients. We calculated the log fold
change of each gene expressed greater than a median of
1 fragment per kilobase per million mapped reads and
used these values as an input for gene set enrichment
analysis [56].
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Results

Identification of high-quality germline variants

Germline variants were called and filtered as shown in
Additional file 1: Figure S1 using sequencing data from
10,582 TCGA patients with 33 different types of cancers.
In total, 77.6 million unique variants were called. After
filtering, we limited our analysis to 519,319 unique vari-
ants (Additional file 1: Figure S2). Because the final vari-
ant call set was created by merging variant calls from
whole-exome sequenced (WXS) normal tissue samples,
WXS tumor samples, and RNA sequenced tumor sam-
ples, we evaluated our variant calls for contamination by
somatic mutations or RNA editing. Our final germline
variant call set did not substantially overlap with somatic
mutations or RNA editing sites (Additional file 1: Figure
S3-S4, Additional file 1: Text S1).

Determination of prognostic clinical models for each
cancer

To identify prognostic germline variants that provide
additional outcome information not already captured by
clinical variables, we created clinical models predictive
of patient outcome for each cancer using the clinical in-
formation previously collected by the TCGA research
network along with the components of calculated race
from The Cancer Genome Ancestry Atlas. The variables
selected for each cancer are summarized in Add-
itional file 1: Table S1. The study was powered to cap-
ture prognostic germline variants with moderate to high
effect sizes (beginning at hazard ratios >2) (Add-
itional file 1: Figure S5, Additional file 1: Text S2).

Identification of prognostic germline variants
The 191 prognostic germline variants from the six ana-
lyses are described in Additional file 2: Table S2A-F.
The first three analyses identified germline variants as-
sociated with prognosis in (1) individual cancers, (2)
multiple cancers giving roughly equal weight to each
cancer, and (3) cancers grouped by organ system, histo-
logical, or molecular classifications (Fig. 1a). Analysis 1
tested 519,139 variants for associations with patient out-
come in individual cancers and identified 70 unique
prognostic variants (Fig. 1b, Additional file 2: Table S2A,
Kaplan-Meier plots of selected examples in Fig. 2).
While analysis 2 identified hundreds of variants re-
currently predictive of outcome in >4 cancers, we
will only discuss the 5 variants that were predictive in
seven or more cancers (Fig. 1lc, Additional file 2:
Table S2B). Both the direction of the hazard ratios
(increased or decreased risk of poor outcome) and
the magnitude of the effect on patient outcome for
germline variants across different cancers were highly
correlated (Additional file 1: Text S3).
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Analysis 3 increased our statistical power by grouping
similar cancer types to increase the number of patients
with the minor allele that could be included in the study.
A total of 29 different patient groups were created based
on the organ system, histological, or molecular classifica-
tion (Fig. 1d, group justification in Additional file 1:
Table S3). In total, 258,466 unique germline variants
were tested and 103 prognostic variants were identified
(Fig. 1e, Additional file 2: Table S2C, Kaplan-Meier plots
of selected examples in Additional file 1: Figure S6).

Prognostic germline variants causing significant amino
acid changes

Analyses 4—6 repeated analyses 1-3 but limited these
analyses to variants within the top 0.3% of deleterious
mutants across the human genome with CADD > 25
(Fig. 3a). Analysis 4 tested a total of 981 unique variants
and identified nine unique prognostic variants (Fig. 3b,
Additional file 2: Table S2D). Of the 16 variants that
were recurrently predictive of patient outcomes in four
or more cancers (analysis 5), we will discuss the one
variant that was predictive in five cancers (Fig. 3c, Add-
itional file 2: Table S2E). Analysis 6 tested 903 unique
variants for an association with outcome in the patient
groups used in analysis 3 and described in Fig. 1d and
identified 3 additional prognostic variants (Fig. 3d, Add-
itional file 2: Table S2F).

The pan-cancer landscape of prognostic germline variants
The large number of prognostic variants identified in
analyses 1 and 3 allowed us to compare the characteris-
tics of these germline variants with previously reported
characteristics of variants identified by genome wide as-
sociation studies (GWAS). Three characteristics have
been noted in variants identified through GWAS: (1) the
minor allele tends to be associated with increased risk
for poor outcome when considering the set of variants
with large effect sizes, (2) there is a negative correlation
between effect size and allele frequency, and (3) most
germline variants identified by GWAS do not cause
amino acid changes [45].

To test whether the allele associated with increased
risk for poor outcome is usually the minor allele, the
predictive alternate alleles from analysis 1 were classified
as associated with increased risk for poor outcome (HR
> 1) or decreased risk for poor outcome (HR < 1) based
on the Cox regression results. Of the prognostic germ-
line variants from analysis 1, the allele associated with
increased risk is clearly often the minor allele (p=
7.077E-8) (Fig. 4a). A similar analysis with the predictive
variants from analysis 3 (Fig. 4b) did not show a signifi-
cant statistical depletion of alternate alleles associated
with increased risk for poor outcome from the popula-
tion (p=0.115). The predictive variants from analysis 3
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format of the figure is the same as in Fig. 1h.

A N it 1
. umber of  Unique i Unique
Analysis Description Significance Criteria Cancers or Variants Total Statistical Prognostic
Number Tests Performed "
Groups Tested Variants
GV Predictive of Patient
1 Outcome in Individual FDR <0.10 33 Cancers 519,319 5,217,214 70
Cancers
GV Consistently Predictive .
2 of Patient Outcome in 7 or co%;s(:é(:ﬁlwzq gqu 33 Cancers 519,319 519,319 5
more cancers v
3 GV Preditive of Patient FDR<0.10 20Groups 258,466 2,352,228 103
Outcome in Patient Groups

Fig. 1 Prognostic germline variants identified in analyses 1 through 3. a A description of the three analyses used to identify prognostic germline
variants in this figure. b Analysis 1. Germline variants found to be predictive of patient outcome in each cancer. Each dot represents a germline
variant that was tested for an association with patient outcome. Variants closer to the outside of the plot are more closely associated with patient
outcome. Variants in red are significantly (FDR < 0.10) associated with patient outcome. The alternating black and gray colors reflect alternating
chromosomes for the germline variants that were not significant predictors of patient outcome. ¢ Analysis 2. Germline variants found to be
recurrently predictive of patient outcome in multiple different cancers. We identified five total germline variants that were recurrently predictive
(p <0.05) of favorable (HR < 1) or poor (HR > 1) patient outcomes in seven or more different cancers. d Analysis 3. A total of 29 groups of cancers
created to identify germline variants with weaker effect sizes in larger patient cohorts. Justification for these groups is provided in

Additional file 1: Table S3. e Analysis 3. Germline variants found to be predictive of patient outcome in the groups described in Fig. 1d. The
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were detectable only with larger sample sizes and have
smaller effect sizes than those identified by analysis 1.
Thus, the result in Fig. 4b is still consistent with the first

premise that an allele associated with increased risk for
poor outcome with a large effect size (as in analysis 1,
but not analysis 3) is usually the minor allele [45].
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Fig. 2 Selected Kaplan-Meier plots of the prognostic germline variants from analysis 1. The number of patients in each group is indicated next to
each line, and the patient outcome measure of each disease is given in Additional file 1: Table S1. The reported p values and hazard ratios were
calculated using univariate regression and are different from the p values and hazard ratios reported elsewhere which are based on
multivariate regression

A negative correlation is seen between effect size and
allele frequency with both variants from analysis 1
(Spearman’s rho =-0.282, p=0.0184) and analysis 3
(Spearman’s rho = -0.667, p<2.2E-16), satisfying the
second premise. Finally, the vast majority of predictive
variants identified by this study do not cause amino acid
changes (Fig. 4c, d), satisfying the third premise.

If the effects of the prognostic germline variants are at
least partially independent of each other, we would ex-
pect that patients with two prognostic germline variants
that increase the risk for poor outcome should do worse
than patients with only one of these prognostic germline
variant that increases the risk for poor outcome. Indeed,
when tested, we found this to be true (p=845E-17,
analysis approach detailed in “Methods”).

A previous study had identified germline variants asso-
ciated with an increased incidence of somatic mutations
in cancer-related genes [27]. We also found that some of
the prognostic germline variants were associated with an
increased risk of somatic mutations in cancer driver

genes. While more prognostic germline variants were as-
sociated with an increased risk of somatic mutations in
driver genes than was expected by random chance (OR =
1.89, p =0.0001, Additional file 1: Text S4), not all of
the prognostic germline variants were associated with an
increased risk of such somatic mutations. A more de-
tailed study of somatic mutations in driver genes is ne-
cessary that will take into account differences in genes
and cancer types.

Germline variants significantly improve outcome
prediction models

The effect sizes of prognostic germline variants from
analysis 1 were large enough to hypothesize that germ-
line variants identified in individual cancers could im-
prove clinical outcome models in current use.

The clinical variables predictive of outcome (Add-
itional file 1: Table S1) were used to generate the first
outcome model (Clinical: C). The second outcome
model was based on clinical information plus the status
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Fig. 3 Prognostic germline variants that cause significant amino acid changes (CADD > 25) identified in analyses 4 through 6. a A description of
the three analyses used to identify prognostic germline variants in this figure. b Analysis 4. Germline variants causing significant amino acid
changes found to be predictive (FDR < 0.10) of patient outcome in each cancer. ¢ Analysis 5. Germline variants causing significant amino acid
changes found to be recurrently predictive (p < 0.05) of favorable (HR < 1) or poor (HR > 1) patient outcomes in 5 or more different cancers. d
Analysis 6. Germline variants causing significant amino acid changes found to be predictive of patient outcome in patient groups defined
in Fig. 1d

of a particular predictive germline variant (Germline
Variant: GV) (C+ GV). An example receiver operator
characteristic (ROC) curve for predicting LAML patient
vital status at 366 days of follow-up is shown using C
and C+ GV for predictive variant rs3003628 (ROC in
Fig. 4e). The area under the ROC curves (AUC) for the
C model is 0.807 and for the C+ GV model is 0.928.
The change in AUC (AAUC) for the C + GV model rela-
tive to the C model in this example is 0.12 (12%). To en-
sure that the change in AUC is consistent at different
times of follow-up, AAUC was calculated from the 10th

to the 90th percentile of patient outcome time. The
mean and standard error of AAUC was plotted against
the p value of the one-sided test evaluating whether the
AUC for C+ GV is significantly larger than the AUC for
C (Fig. 4f).

This analysis was repeated for all predictive variants.
There is a consistent, statistically significant (p < 0.05)
increase in AUC when the clinical model is enhanced by
germline variant information (C + GV) compared to the
clinical model alone (C) for 63 of the predictive germline
variants out of 70 tested (Additional file 3: Table S4).
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Fig. 4 Characteristics of prognostic germline variants and improvement of patient outcome models by the prognostic germline variants. a, b
Scatterplots of the prognostic germline variants identified in individual cancers in analysis 1 (a) and in groups of cancers in analysis 3 (b). Each pie
chart reflects the distribution of patients that are homozygous for the reference allele, heterozygous, and homozygous for the alternate allele for one
prognostic variant. The minor allele was much more likely to be associated with increased risk for poor outcome rather than decreased risk for poor
outcome (p = 7.077E=8) in analysis 1 though this trend was not significant in analysis 3 (p =0.115). ¢, d Pie charts displaying the genomic locations of
the germline variants in analysis 1 (c) and analysis 3 (d). e An example of a receiver operator characteristic (ROC) curve calculated using data from
LAML at 366 days of follow-up. The blue line represents the patient outcome predictions made using clinical information alone (C model). The red line
represents patient outcome predictions made using clinical information in addition to rs3003628 germline variant status (C + GV model), which we
found to be predictive of patient outcomes in LAML. The area under the curve (AUC) was 0.81 for the C model and 0.93 for the C + GV model giving a
AAUC of 0.12 (12%). f Many of the prognostic germline variants improve clinical outcome model predictions. For each prognostic variant, we created
a ROC curve based on the clinical (C) model and the clinical + germline variant (C+ GV model), as in Fig. 4e, at each point in time from the 10th-90th
percentile of patient progression or death for each cancer. The AAUC of the C+ GY model versus the C model at each time point was calculated
(Additional file 3: Table S4). X-axis: Mean and standard error of AAUC. Y-axis: The p values from testing whether or not the AUC of the C+ GV model is
significantly greater than that of the C model using a Wilcoxon rank sum test. Four examples of prognostic germline variants that significantly increase
the AUC are labeled and highlighted in Additional file 3: Table S4

These results demonstrate that adding predictive germ-
line variants to existing clinical criteria will improve the
prediction of outcome of many cancers.

Prognostic variants in driver genes, oncogenes, and
tumor suppressor genes

In total, 90 of the 193 genes in the proximity of one of
the prognostic germline variants have been functionally

implicated in nine of the 12 hallmarks of cancer (Fig. 5a,
Additional file 4: Table S5) [50].

Roughly 50% of the predictive variants are found in or
near genes that possibly have tumor suppressor or onco-
genic activity (Fig. 5b, Additional file 4: Table S5). About
25% of the predictive genes were previously studied in
the cancer in which the germline variant was found to
be prognostic, about half were previously studied in at
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least one cancer, and roughly two thirds were studied in
at least one human disease (Fig. 5c, Additional file 4:
Table S5). Prognostic variants were identified in or near
MSH6, POLQ, ARIDSB, and IDH2, which are previously
reported cancer driver genes (Fig. 5d).

Prognostic germline variants can cause significant amino
acid changes or act as eQTLs
The 12 prognostic variants identified in analyses 4—6
caused significant amino acid changes (CADD > 25),
with many of these amino acid changes occurring in
protein-coding domains with annotated or known func-
tions (Fig. 5e).

A total of 39 variants could act as cis eQTLs, as they
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proximate genes. We highlight five of these variants be-
cause the expression levels of the proximate genes are
also predictive of survival, with the direction of the effect
(HR >1 or <1) being concordant with the effect of the
variant (Fig. 5f). Of these five variants, three were also
cis eQTLs in the corresponding tissue in GTEx [57].

Prognostic variants implicated in other diseases

Some of the prognostic variants are linked with diseases
that occur in the tissue giving rise to the tumor, suggest-
ing the variant has an important function in that tissue
(Fig. 5g, Additional file 5: Table S6A). Additional file 5:
Table S6B lists prognostic genes that are linked in the
literature to traits in tissues outside the ones bearing the

were associated with expression differences of the tumors.
Angiogenesis (2) Cellular D TCGA Driver
A Energetics (7) Gene Name Function Cancers Gene
Classification
Growth ARID5B Transcriptional coactivator GBM, LGG UCEC
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Fig. 5 Literature review of genes associated with the prognostic germline variants and mechanisms by which prognostic germline variants may
exert their effects. a The cancer-related functions of genes associated with the prognostic germline variants are quite diverse. b Many of the
genes associated with the variants have previously been reported to be tumor suppressor genes or oncogenes. We categorized genes as tumor
suppressor genes or oncogenes based on phenotypes reported in the literature, even if the exact mechanism through which the genes act have
not yet been determined. ¢ Although many of the variants have been studied in the field, there are many genes that have not yet been studied
in the context of human disease and therefore may warrant investigation by the field. d Four of the genes associated with prognostic germline
variants are in previously reported cancer driver genes. @ Some of the prognostic germline variants cause dramatic amino acid changes and may
disrupt well-characterized protein domains. f Some of the prognostic germline variants likely act as expression quantitative trait loci in cis (cis
eQTLs) and the expression of these genes are predictive of patient outcome. We found three of these germline variants to also be eQTLs in the
genotype tissue expression (GTEx) database in the same tissue that the tumor was derived from. g Some of the prognostic germline variants
have been reported to be associated with other diseases related to the tissue from which the tumor was derived
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Individual prognostic variant characterization

In this section, we characterize three germline variants
to illustrate how individual germline variants may be as-
sociated with patient outcome. These hypotheses are
supported by bioinformatic analyses and require future
molecular insight to confirm and fully understand the
mechanistic underpinnings of these associations.

rs1800932 in MSH6 may be associated with favorable
outcome by increasing temozolomide sensitivity
rs1800932 predicts favorable patient outcome in gliomas
(LGG and GBM). This variant is an eQTL for increased
expression of MSH6 in many tissues, including nerve, is
associated with increased expression of MSH6 in pa-
tients with LGG (p = 0.00732), and has previously been
reported to be associated with a decreased risk of pros-
tate cancer [57, 58]. We found MSH6 expression to be
correlated with elevated temozolomide sensitivity in can-
cer cell lines (Spearman’s rho = 0.165, p = 5.01E-7) [54].
Temozolomide is a DNA alkylating agent used in the
treatment of most glioma patients and is likely to have
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been used in the therapy of most patients with gliomas
in TCGA. MSH6 knockdown increases temozolomide
resistance and somatic mutations in MSH6 are associ-
ated with temozolomide resistance in gliomas [53, 59].
Taken together, this suggests that rs1800932 is an eQTL
for increased expression of MSH6 in gliomas, which may
increase sensitivity to temozolomide, the primary che-
motherapeutic agent for gliomas.

rs55796947 in MAP2K3 may result in cell cycle arrest and
apoptosis

rs55796947 in MAP2K3/MKK3 predicts favorable prog-
nosis in KIRC. This germline variant introduces a stop
codon in MAP2K3 that truncates the kinase domain.
MAP2K3 inhibition results in cell cycle arrest,
autophagy-mediated cell death, the unfolded protein re-
sponse (UPR), and sensitization to chemotherapy drugs
[60]. Indeed, tumors in patients with this variant upregu-
late genes involved with apoptosis (p <0.001, Fig. 6a, b)
and downregulate E2F targets involved in cell cycle pro-
gression (p = 0.047, Fig. 6¢). This germline variant likely
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truncates the kinase domain of MAP2K3, resulting in
cell cycle arrest, apoptosis, and favorable patient
outcome.

rs77903511 is an eQTL for BIRC5 which inhibits apoptosis
rs77903511 predicts poor patient outcome in UVM
(Fig. 6d). BIRCS inhibits apoptosis through interaction
with and inhibition of caspase 9 and effector caspases. The
alternate allele is associated with increased BIRCS expres-
sion in the tumors (p =0.02, Fig. 6e). Consistent with a
role of BIRCS5 in apoptosis inhibition, BIRCS5 expression is
associated with poor patient outcome (Fig. 6f). This vari-
ant, therefore, may be associated with poor outcome be-
cause of an increase of the apoptosis inhibitor BIRCS.

Discussion

This study shows, as a general principle, that germline
variants are associated with cancer patient outcome. The
prognostic germline variants enhanced patient outcome
predictions compared to models based on currently col-
lected clinical data. We envision germline variants pro-
viding clinicians with information about a patient as a
supplement to reported history, physical exam findings,
and imaging and laboratory tests. These predictions will
improve over time with the use of more information
available in electronic medical records.

The results of this study are most easily applied at the
population level to identify groups of patients at in-
creased risk for poor outcome (for example for clinical
trials) and for follow-up mechanistic studies on how the
variants affect outcome. This study will serve as the basis
for future work to apply these findings at the level of in-
dividual patients, as a given variant will need to be con-
sidered in conjunction with other variants and with
clinical factors to calculate expected survival time or
time to progression. While we identified a large number
of prognostic germline variants in analysis 1, our sample
size for this study was relatively modest. The power cal-
culations and the identification of additional prognostic
germline variants by grouping similar cancers suggest
that more prognostic germline variants will likely
emerge as more tumors are sequenced and will further
support the notion that germline variation is associated
with patient outcome across cancers. Our study of prog-
nostic germline variants was limited to common germ-
line variants (allele frequency >5% in the population)
due to statistical limitations derived from sample size in
our ability to study pathogenic and low-frequency germ-
line variants. However, our results imply that these rarer
germline variants may have large effect sizes that may
make them particularly valuable for improving clinical
outcome model predictions. These variants will likely be
studied in the future through more complex approaches
or in studies of larger cohorts.
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Further study is necessary to validate the associations
that we identified, as setting the discovery threshold at
FDR <0.10 suggests that some of the associations may
have occurred by random chance. The variants identified
in analyses 2 and 5 require deeper interrogation, as we
were unable to develop an unbiased test to assess the
probability of those associations occurring by random
chance. While we identified germline variants associated
with significant improvements in clinical outcome pre-
dictions, further work is necessary to identify situations
in which the additional prognostic information would be
valuable for treatment decisions or end of life planning.

Given the paucity of studies testing for associations be-
tween germline variants and patient outcome in cohorts
of cancer patients, we were unsure of the effect sizes that
could be expected in this study across the 33 cancers.
This uncertainty was further exacerbated by reports of
effect sizes being negatively correlated with allele fre-
quency for some traits [45]. The results of this study will
provide researchers with a sense for the magnitude of ef-
fect sizes that can be expected from germline variants
associated with patient outcome along with the relation-
ship between effect size and allele frequency. These re-
sults will help better optimize future studies for
detecting significant associations.

It is reassuring that a significant fraction of prognostic
germline variants are found in or near possible tumor sup-
pressor genes, oncogenes, or known cancer driver genes.
The variants in cancer driver genes, MSH6, POLQ,
ARIDS5B, and IDH?2, warrant further study to determine
the mechanism by which these variant affect cancer pro-
gression [61]. The 12 germline variants in Fig. 5e that
cause substantial amino acid changes are prime candidates
for experimental follow-up and are discussed in detail in
Additional file 1: Text S5. A handful of the prognostic
germline variants have been associated with human dis-
ease, some in the same tissue and others in unrelated tis-
sues, suggesting that these pathologies may stem from
shared molecular phenomena (Additional file 5: Table S6).

The mechanisms of action of many of the prognostic
variants are currently unknown. There are many possi-
bilities by which the variants that do not cause amino
acid changes could affect cancer biology [62]. Many vari-
ants are likely acting as trans eQTLs, which are difficult
to study in datasets with relatively small sample sizes.
Some of the variants may also be acting as eQTLs in
non-tumor cells, such as immune system cells or cells of
the vasculature. The already high involvement of tumor
suppressor genes, oncogenes, and driver genes among
the prognostic germline variants is promising for future
study. This report provides basic science researchers
with genes and variants that should be studied to better
understand the etiology and progression of cancers,
while providing clinicians with the potential for better
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clinical predictions that could be made if germline vari-
ants are considered in the context of patient care.

Conclusions

While the prediction of outcome for patients with can-
cer is currently based on clinical factors, the analysis of
next-generation sequencing data in clinical oncology has
suggested that genomic information can further improve
these predictions. Previous studies analyzing the usage
of genomic information in clinical oncology have fo-
cused primarily on somatic aberrations. In this proof-of-
principle study, we systematically analyzed sequencing
data from 33 different cancers to test whether germline
variation could also be used to provide clinicians with
information about patient outcome. We identified prog-
nostic germline variants across individual cancers and
group of cancers and find that these germline variants
provide additional predictive power about patient out-
comes beyond the information that can be gathered
from clinical factors alone. Mechanistically, 12 of the
germline variants seem to be associated with patient out-
come through perturbation of protein structure and at
least five through association with gene expression dif-
ferences, though the molecular functions of most of the
germline variants are currently unknown. About half of
the germline variants are in previously reported tumor
suppressor genes, oncogenes, or driver genes with the
other half implicating loci that deserve further investiga-
tion in oncology. Further studies of germline variation in
other cancer cohorts are necessary to confirm that
germline variation is associated with patient outcome
across cancers.
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