Skip to main content
. 2019 Dec 18;29(12):123125. doi: 10.1063/1.5125493

TABLE III.

Supervised classification accuracy for parameter recovery using a trained linear SVM with various input feature vectors. In some cases, the dimensionality of feature vectors has been reduced using PCA.

Summary Feature Dimension Accuracy (%)
Order parameters P(t) 87 57.7
Mang(t) 87 34.4
Mabs(t) 87 68.0
DNN(t) 87 91.1
All 4 × 87 89.2
All (PCA) 87 69.6
P(t) (PCA) 3 46.7
Mang(t) (PCA) 3 30.0
Mabs(t) (PCA) 3 58.8
DNN(t) (PCA) 3 81.5
All (PCA) 3 68.6
TDA (position) b0 200 × 87 97.0
b1 200 × 87 93.7
b0 and b1 2 × 200 × 87 96.4
b0 (PCA) 87 96.2
b1 (PCA) 87 95.2
b0 & b1 (PCA) 87 96.2
b0 (PCA) 3 93.0
b1 (PCA) 3 79.4
TDA (time-delayed position) b0 & b1 (PCA) 3 93.1
b0 200 × 86 99.6
b1 200 × 86 99.3
b0 & b1 2 × 200 × 86 99.1
b0 (PCA) 87 99.7
b1 (PCA) 87 99.9
b0 & b1 (PCA) 87 99.7
b0 (PCA) 3 89.7
b1 (PCA) 3 82.8
b0 & b1 (PCA) 3 89.6