TABLE III.
Supervised classification accuracy for parameter recovery using a trained linear SVM with various input feature vectors. In some cases, the dimensionality of feature vectors has been reduced using PCA.
| Summary | Feature | Dimension | Accuracy (%) |
|---|---|---|---|
| Order parameters | P(t) | 87 | 57.7 |
| Mang(t) | 87 | 34.4 | |
| Mabs(t) | 87 | 68.0 | |
| DNN(t) | 87 | 91.1 | |
| All | 4 × 87 | 89.2 | |
| All (PCA) | 87 | 69.6 | |
| P(t) (PCA) | 3 | 46.7 | |
| Mang(t) (PCA) | 3 | 30.0 | |
| Mabs(t) (PCA) | 3 | 58.8 | |
| DNN(t) (PCA) | 3 | 81.5 | |
| All (PCA) | 3 | 68.6 | |
| TDA (position) | b0 | 200 × 87 | 97.0 |
| b1 | 200 × 87 | 93.7 | |
| b0 and b1 | 2 × 200 × 87 | 96.4 | |
| b0 (PCA) | 87 | 96.2 | |
| b1 (PCA) | 87 | 95.2 | |
| b0 & b1 (PCA) | 87 | 96.2 | |
| b0 (PCA) | 3 | 93.0 | |
| b1 (PCA) | 3 | 79.4 | |
| TDA (time-delayed position) | b0 & b1 (PCA) | 3 | 93.1 |
| b0 | 200 × 86 | 99.6 | |
| b1 | 200 × 86 | 99.3 | |
| b0 & b1 | 2 × 200 × 86 | 99.1 | |
| b0 (PCA) | 87 | 99.7 | |
| b1 (PCA) | 87 | 99.9 | |
| b0 & b1 (PCA) | 87 | 99.7 | |
| b0 (PCA) | 3 | 89.7 | |
| b1 (PCA) | 3 | 82.8 | |
| b0 & b1 (PCA) | 3 | 89.6 |