Skip to main content
letter
. 2019 Dec 20;23(3):506–517. doi: 10.1111/ele.13450

Table 1.

Testing the sample area effect for two models

  δ βL (ML + F) βF (ML + F) βL (ML) βF (MF) AIC ML + F AIC ML AIC MF AIC M null
H 1 0.43 0.02 0.48 0.13 0 4.18 334.85 1116.4
H 3 0.43 0.02 0.48 0.21 0 5.73 569.25 2712.16
H 10 0.29 0.08 0.4 0.25 0 86.46 404.52 2819.03
P 1 0.41 0.03 0.47 0.13 0 9.78 301.38 1101.75
P 3 0.48 0 0.48 0.21 1.9 0 701.21 2872.84
P 10 0.29 0.07 0.38 0.24 0 64.7 423.59 2534.52
A 1 0.34 0.01 0.36 0.13 0 0.07 330.02 1283.33
A 3 0.37 −0.01 0.36 0.17 1.25 0 626.2 2496.63
A 10 0.26 0.02 0.29 0.17 0 8.53 565.51 2155.28

The row labels H, P and A denote the three modes (passive/hostile, passive/habitable and active/habitable) and δ denotes the average dispersal distance. Here, L denotes the log‐transformed total amount of habitat in the local landscape and F the log‐transformed area of the fragment. There are three regression models that explain the number of species given L and/or F. The columns βx(M) give the coefficient for explanatory variable x in model M. The last four columns give the ∆AIC values for each model and the null model.