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Abstract: Stand structure develops with stand age. Old-growth forests with well-developed stand structure
support many species. However, development rates of stand structure likely vary with climate and topography.
We modeled structural development of 4 key stand variables and a composite old-growth index as functions of
climatic and topographic covariates. We used a hierarchical Bayesian method for analysis of extensive snap-shot
National Forest Inventory (NFI) data in Japan (n = 9244) to account for differences in stand age. Development
rates of structural variables and the old-growth index exhibited curvilinear responses to environmental covariates.
Flat sites were characterized by high rates of structural development. Approximately 150 years were generally
required to attain high values (approximately 0.8) of the old-growth index. However, the predicted age to achieve
specific values varied depending on environmental conditions. Spatial predictions highlighted regional variation
in potential structural development rates. For example, sometimes there were differences of >100 years among
sites, even in the same catchment, in attainment of a medium index value (0.5) after timber harvesting. The NFI
data suggested that natural forests, especially old natural forests (>150 years), remain generally on unproductive
ridges, steep slopes, or areas with low temperature and deep snow, where many structural variables show slow
development rates. We suggest that maintenance and restoration of old natural forests on flat sites should be
prioritized for conservation due to the likely rapid development of stand structure, although remaining natural
forests on low-productivity sites are still important and should be protected.

Keywords: broadleaved tree, conifer plantation, DEM, digital elevation model, mapping, old-growth index,
snow depth, temperature, terrain

Un Modelo Emṕırico Espacialmente Expĺıcito de Procesos de Desarrollo Estructural en Bosques Naturales Basado
en el Clima y la Topograf́ıa

Resumen: La estructura de un rodal se desarrolla con la edad. Los bosques maduros con una estructura bien
desarrollada dan sustento a muchas especies. Sin embargo, las tasas de desarrollo de los rodales probablemente
vaŕıan con el clima y la topograf́ıa. Modelamos el desarrollo estructural de 4 variables clave de un rodal y un
ı́ndice de crecimiento antiguo compuesto como funciones de covariables climáticas y topográficas. Utilizamos
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un método bayesiano jerárquico para analizar datos (n = 9,244) en fotograf́ıas del inventario nacional forestal
(INF) de Japón para entender las diferencias en la edad de los rodales. Las tasas de desarrollo de las variables
estructurales y el ı́ndice de crecimiento antiguo mostraron respuestas curviĺıneas a las covariables ambientales.
Los sitios planos se caracterizaron por altas tasas de desarrollo estructural. Por lo general, se requeŕıan 150 años
para alcanzar valores altos (�0.8) en el ı́ndice de crecimiento antiguo. Sin embargo, la edad prevista para alcanzar
valores espećıficos varió dependiendo de las condiciones ambientales. Las predicciones espaciales pusieron de
relieve la variación regional en las potenciales tasas de desarrollo estructural. Por ejemplo, a veces hab́ıa diferencia
de >100 años entre sitios, aun en la misma cuenca, en el consecución de un valor de ı́ndice medio (0.5) después
de la cosecha de madera. Los datos de INF sugieren que los bosques naturales, especialmente los bosques
maduros (>150 años) permanecen generalmente en crestas improductivas, pendientes pronunciadas o en áreas
con baja temperatura y nieve profunda, donde muchas variables estructurales muestran tasas de desarrollo lentas.
Sugerimos que el mantenimiento y la restauración de bosques naturales maduros en sitios planos deben priorizarse
para conservación debido al probable desarrollo rápido de la estructura del rodal, aunque los bosques naturales
restantes en sitios de baja productividad también son importantes y deben ser protegidos.

Palabras clave: árbol de hojas anchas, DEM, ı́ndice de crecimiento antiguo, mapeo, modelo de elevación digital,
plantación de cońıferas, profundidad de nieve, temperatura, terreno
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Introduction

Forests regrow after harvesting at different rates due to
the heterogeneous distribution of environmental condi-
tions that influence site productivity (Perry et al. 2008).
These include local factors, such as fine-scale topography
(slope position, slope angle, aspect, etc.), soil type, water
and nutrient availability, windiness (Curt et al. 2001), and
regional- to continental-climatic conditions, such as tem-
perature, precipitation, and snow cover (McKenney &
Pedlar 2003). Environmental controls of forest growth are
particularly important because environments are globally
changing rapidly (Kirilenko & Sedjo 2007).

Stand structure is the horizontal and vertical distribu-
tion of forest components, including tree height and
diameter, depth and extent of the crown, and pres-
ence and abundance of snags and down woody de-
bris (Helms 1998). Stand structure changes with forest
growth and typically becomes more complex over time,
a process referred to as stand structural development
(Franklin et al. 2002). Old-growth forests are charac-
terized by horizontally and vertically diverse structural
attributes (Spies 1997; Franklin et al. 2002) and have
many environmental values, such as biodiversity con-
servation, carbon sequestration, and hydrological regu-

lation (Barlow et al. 2016; Lutz et al. 2018; Watson et al.
2018).

Because old-growth forests are becoming increasingly
scarce worldwide (Mackey et al. 2015; Potapov et al.
2017), indicators of structural complexity have been de-
veloped to help identify stands with high conservation
value (McElhinny et al. 2005; van Galen et al. 2018). One
of these indicators is an old-growth index, which was de-
vised to distinguish old-growth Douglas fir (Pseudotsuga
menziesii) stands in western North America based on 4
key structural variables of a stand: mean tree diameter
at breast height (dbh), density of large Douglas fir trees
(>100 cm dbh), standard deviation (SD) of tree dbh, and
tree density (Acker et al. 1998; Zenner 2004; Whitman
& Hagan 2007). In old-growth forests, the first 3 and
the fourth variables typically have large and small values,
respectively. An advantage of the old-growth index is
its use of common stand variables that can be calcu-
lated readily from tree plot data. These structural vari-
ables are also likely to distinguish temperate old-growth
forests in other parts of the world (Burrascano et al.
2013).

Close relationships between forest growth and struc-
tural development suggest that site productivity influ-
ences development rates of forest structure following
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disturbance (Franklin et al. 2002). Using the old-growth
index, Larson et al. (2008) demonstrated that, after tim-
ber harvesting, forest structure develops most rapidly on
productive sites. This suggests that there may be substan-
tial spatial heterogeneity in structural development rates.
However, because Larson et al. (2008) used measured
tree heights as a proxy of site productivity, it remains un-
clear which and how environmental factors drive spatial
heterogeneity in structural development rates.

Local drivers of site productivity (e.g., topography, soil
types, soil nutrients, wetness, and local climate) have
been measured in intensive field surveys (e.g., Curt et al.
2001). However, topography can be represented by a dig-
ital elevation model (DEM). Other local drivers, which are
affected by topography (Swanson et al. 1988), can also be
represented by a DEM (Moore et al. 1993). For example,
topography influences soil formation (Perry et al. 2008)
and can be used to predict tree biomass as an alternative
of soil properties (de Castilho et al. 2006). Furthermore,
regional to continental climates can be incorporated into
the models of site productivity (McKenney & Pedlar
2003; Nothdurft et al. 2012). Therefore, it is possible to
model structural development based on spatially explicit
environmental covariates.

Our objective was to model structural development
processes in natural forests based on climate and topog-
raphy with the extensive plot data from Japan’s National
Forest Inventory (NFI) (n = 9244 plots). We tested a
series of hypotheses (Table 1) to answer the following
question: What are the relationships between the de-
velopment rates of structural variables and climatic and
topographic covariates? We used hierarchical Bayesian
modeling (Gelman & Hill 2007; Royle & Dorazio 2008),
which enabled us to infer underlying structural devel-
opment processes based on snap-shot NFI data and to
account for differences in stand age among plots (Fig. 1
& Supporting Information). We then applied the model to
predict potential structural development rates and values
for the old-growth index across a 20 × 20 km region
in central Japan. Maintaining and restoring old-growth
forests may be a key conservation goal (Watson et al.
2018), and we sought to further this objective.

Methods

Plot Data and Usage

Japan’s NFI forest monitoring system consists of >13,000
permanent plots on a 4-km, country-wide lattice grid.
The survey commenced in 1999 and required 5 years to
complete a survey of all plots. We obtained stand vari-
ables from the plots of natural forests (i.e., we excluded
plantations comprising 35% of the data from the analysis).
We used all available plot data collected from 1999 to
2013 (4729 plots in which 1934 and 2581 plots were

Climate

Topography
Control

Structural 
development rate Stand age

(b)

A:  15 years
B:  80 years
C: 100 years
D: 170 years
…Infer environmental control

(a)

Figure 1. Structural development processes and
modeling scheme. (a) Four hypothetical trajectories
(A–D) of forest structural development processes that
initiated in different years (black circles, states of
stand structure surveyed by National Forest
Inventory); different forest plots had different stand
age (also shown in [b]) and different rates of
structural development, which could yield different
stand structure even with similar stand age. (b)
Structural development rates driven by climate and
topography and stand structure driven by stand age
and development rates (also shown in [a]). We
inferred these latent (unobserved) environmental
controls and structural development processes given
stand structure, stand age, climate, and topography by
assuming they followed the series of formulations in
Eqs. 2 and 3.

measured 3 and 2 times, respectively) (see Supporting
Information for the treatment of NFI data). Tree species
composition of Japan’s natural forests is influenced by
a thermal gradient, specifically a warmth index (corre-
sponding to the period of plant growth) calculated by
summing monthly mean temperatures >5°C (Kira 1991).
We used only those NFI data within 45–180 for the
warmth index to focus on the deciduous and evergreen
broad-leaved forests (cool- and warm-temperate forests
[Kira 1991]), which are 2 major forest types in Japan. We
excluded subarctic and subtropical forests.

Based on the successful application of an old-growth
index in the United States (e.g., Acker et al. 1998;
Zenner 2004; Whitman & Hagan 2007) and the rela-
tionships between structural variables and stand age
(derived from forest registers) in our NFI data, we
used the following 4 structural variables to distinguish
Japanese old-growth forests from younger stands: mean
dbh of live trees with >5 cm dbh, density of live trees
with 40 cm dbh (large tree density/ha), SD of dbh for
live trees with >5 cm dbh, and density of live trees
with >5 cm dbh (Supporting Information). The first 3
and the fourth variables typically increase and decrease
with stand age, respectively. The correlation coefficients
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Table 1. Possible effects of 6 climatic and topographic covariates on development rates of forest structure.

Covariate Possible effect (reason)a This studyb Reference

Climate
snow depth negative (as snow depth increases, growth

period shortens)
unimodal (many tree species have a

common optimal climate under which
sampled environmental conditions vary
widely)

mean dbh: unimodal
tree density: positive∗

large tree density: positive
SD of dbh: positive∗

old-growth index: positive∗

Peterson & Peterson
2001

Nothdurft et al. 2012

warmth index positive (as the temperature increases, the
growth period increases)

unimodal (many tree species have a
common optimal climate when the
sampled environmental conditions vary
widely)

mean dbh: negative
tree density: negative
large tree density: unimodal
SD of dbh: unimodal
old-growth index: negative∗

McKenney & Pedlar
2003

Nothdurft et al. 2012

Topography
slope angle negative (steep slope induces soil

movement and tree fall)
mean dbh: negative∗

tree density: negative∗

large tree density: positive
SD of dbh: neutral
old-growth index: negative

Guariguata 1990

terrain
openness
(positive
openness)

unimodal (concave terrain [small terrain
openness] induces soil movement and
tree fall; convex terrain [high terrain
openness] induces water and nutrient
deficiencies; flat terrain has a rapid forest
growth rate due to high soil moisture and
nutrients)

mean dbh: unimodal
tree density: negative
large tree density: positive
SD of dbh: neutral
old-growth index: neutral

Hunter & Parker
1993; Chen et al.
1998; Curt et al.
2001

catchment area positive (lower part of slope has rapid
forest growth rate due to high soil
moisture and nutrients)

mean dbh: positive∗

tree density: positive∗

large tree density: positive∗

SD of dbh: positive∗

old-growth index: positive∗

Chen et al. 1998; Curt
et al. 2001

solar radiation negative (greater solar radiation induces
water deficiency in the temperate zone)

mean dbh: negative∗

tree density: negative∗

large-tree density: positive
SD of dbh: negative∗

old-growth index: negative∗

Chen et al. 1998;
Fekedulegn et al.
2003; Mitsuda et al.
2007

aPossible effects and mechanisms are from studies on forest and tree growth (or site productivity).
bBased on the significance of parameter estimates at 5% level. When both simple and quadratic terms were significant (∗, indicating nonlinear
or curvilinear decrease or increase), the effects of simple terms had higher priority for simplicity. Abbreviation: dbh, diameter breast height.

between the 4 structural variables were |0.31|–|0.73|
(Supporting Information).

Climate and Topography Covariates

We used maximum snow depth and the warmth index
as climate covariates in our model, both of which are
known to affect tree species composition across Japan
(Kira 1991; Nakashizuka & Iida 1995), possibly because of
their effects on tree survival and regeneration processes
(Supporting Information). We used Climate Mesh Data
2000 published by Japan’s Meteorological Agency (1-km
resolution) to generate values for these 2 covariates (Sup-
porting Information). We obtained data on topograph-
ical covariates (slope angle, terrain [positive] openness,
catchment area [surrogate for soil moisture and nutrients]
(Table 1), and solar radiation [Supporting Information]),
which are known to influence forest growth and struc-
ture (e.g., Guariguata 1990; Mitsuda et al. 2007), from

a 20-m DEM based on a 10-m DEM published by the
Geospatial Information Authority of Japan (Supporting
Information). We used ArcGIS 10.3 Spatial Analyst exten-
sion (ESRI, Redlands, California, U.S.A.) and SAGA GIS
(Conrad et al. 2015) for geospatial analyses.

Model Structure

Following the earlier definition of the old-growth index,
we formulated the old-growth index (Iog) to have values
from 0 to 1:

Iog = mean
(
Ii,og

) = 1

4
×

4∑

i=1

∣∣∣∣
xi − xi,young

xi,old − xi,young

∣∣∣∣ , (1)

where xi is the ith structural variable, xi,young is the me-
dian value of xi for young forests derived from the plot
data, and xi,old is the median value of xi for qualified old-
growth forests in Japan. This formulation means Iog is a
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mean value of 4 subindices calculated from 4 structural
variables (Ii,og). We used median values rather than mean
values, as employed by Acker et al. (1998), to reduce the
effects of outliers. Although Larson et al. (2008) obtained
xi,young from 40- to 80-year-old forests, the stand ages of
interest in this study included forests <40 years old be-
cause Japan is dominated by young forests (Yamaura et al.
2012). We then set xi,young by using the plot data from
�10- to 30-year-old forests (Supporting Information). To
obtain xi,old, we used median values from 18 permanent
plots registered as old-growth deciduous and evergreen
broad-leaved forests (>150 years old) in Japan (Ishihara
et al. 2010). This simplification enabled us to analyze the
national data set with a single criterion (median value) for
each structural variable. We did not find clear differences
in structural variables between deciduous and evergreen
broad-leaved forests except for live tree density (Sup-
porting Information). Live tree density also varied little
between young and old growth forests; however, we
incorporated this variable into the analysis because its
development rates showed a dependency on topographic
covariates. Nevertheless, modeled environmental depen-
dency for the rates of development of old-growth index
remained mainly unchanged when live tree density was
excluded (Supporting Information). We assigned xi,young

or xi,old for the values of xi beyond the range of xi,young

and xi,old, and delimited Ii,og within 0 and 1. Although
live tree density decreases with stand age, older stands
can have higher indices due to the use of absolute values
in Eq. 1.

We then examined the effects of environmental co-
variates on development rates of Iog and the 4 subindices
(Ii,og). Following Larson et al. (2008) and Warton and Hui
(2011), we logit transformed these proportional data (Iog

and Ii,og) and regressed stand age (explanatory variables)
on logit-transformed proportions (as response variables):

log
(
Iog, j/

[
1 − Iog, j

]) = β0 + coeff j × age j

+ plot.effsite[ j] + period.effterm[ j] + e j , (2)

where Iog,j is the old-growth index of the jth sample (plot
data), agej is its stand age, β0 is an intercept, coeffj is a
coefficient of stand age (can be specific to the jth sample)
that dictates structural development rates (Larson et al.
2008), plot.eff is a random plot effect because the same
plots could be measured multiple times, and period.eff
is a fixed-effect term that captures the possible effects of
measurement period by first and second periods relative
to the latest third period (third period was treated as a
reference category). As the initial phase of model devel-
opment for the old-growth index, we made the intercept
constant across the plots to simplify the model following
Larson et al. (2008) (but see Supporting Information).
Subscripts site (j) and term (j) denote the identity of the
plots and measurement periods for jth sample. The final
term (ej) is an unexplained error term with a normal

distribution. A challenge in this method is the inability to
deal with possible maximum and minimum proportional
values (1 and 0) because the denominator of the logit
transformation cannot take a value of 0 (Iog = 1) and its
logarithm cannot take 0 (Iog = 0). We therefore added to,
or subtracted from, the minimum nonzero values, called ε

(Supporting Information), the possible minimum or max-
imum values (0 or 1 values in proportion) that allowed
the application of logit-transformed regression (Warton
& Hui 2011).

We examined effects of environmental covariates on
structural development rates by modeling coeffj as the
function of covariates:

coeff j = β1 +
∑

k

(
βk,1xk, j + βk,2x2

k, j

)
, (3)

where β1 is an intercept, xk,j is the kth covariate of the
jth site, and βk,1 and βk,2 are coefficients of xk,j and its
squared term, respectively. Using a quadratic model, we
considered the possible nonlinear effects of covariates.
Although we also constructed low-rank thin-plate splines
(one of the generalized linear models) that can deal with
more complex functional forms, modeled effects were
mostly blurred and not significant (Supporting Informa-
tion). We therefore used this relatively simple quadratic
model (cubic models also yielded the similar results with
quadratic models). Our model was hierarchical in that
the slope for stand age (coeffj) in Eq. 2 was a function of
covariates in Eq. 3 (varying-slope model [Gelman & Hill
2007]).

Our approach allowed the use of snap-shot plot data
from stands of different age (Fig. 1). Specifically, each
stand can have different structural development rates
(coeffj), depending on the values of environmental co-
variates (Eq. 3), and their development after disturbance
follows logistic curves (Eq. 2). Current development (Iog)
is therefore the product of these processes with specific
period (stand age). In other words, given current stand
and environmental data and the assumed model formu-
lations, we inferred the latent underlying development
processes and their possible environmental dependen-
cies (parameters of Eqs. 2 & 3).

Because our NFI data set had 2 consecutive pairs of
the structural variables at the same plots, we compared
the 4 variables between third and second periods and
second and first periods. It was shown that more recent
data sets had generally larger values (Supporting Informa-
tion), which was inconsistent with the expected pattern
for live tree density (typically decreases with stand age).
This may be due to underestimated tree densities in the
older periods of field surveys (Forestry Agency 2017b).
We therefore incorporated the effects of measurement
period in Eq. 2 (period.eff). As an independent data set,
we also examined the longitudinal permanent plot data
from Ishihara et al. (2010). We derived structural vari-
ables from 7 plots of broad-leaved forests <100 years old
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with 5–13 years of longitudinal surveys (mean [SD] = 9.9
years [2.5]). The temporal changes of structural variables
generally exhibited the expected pattern (Supporting In-
formation). Although we did not include these perma-
nent data in our analysis, their inclusion did not change
the obtained results due to their small sample size. In
our model, although we simplified variable trajectories of
structural development processes depending on a range
of factors, such as disturbance history (Spies 1997), we
could flexibly alter the model structure. For example,
we could consider variability in initial conditions in the
intercept of Eq. 2, decadal climatic variability in Eq. 3, or
both.

Model Fitting

To estimate relationships between covariates and struc-
tural development rates, we fitted the models (Eqs. 2 & 3)
for the old-growth index (Iog) and for 4 subindices (Ii,og).
We standardized each covariate to enhance convergence
(Kéry & Royle 2016) and stabilized estimates, especially
quadratic terms (Schielzeth 2010). Although there was
limited correlation between most covariates (|r| <0.3),
snow depth and warmth index (−0.57) and positive
openness and catchment area (−0.62) were highly cor-
related (Supporting Information). Highly correlated co-
variates are not always detrimental to an analysis and can
be required to explain variations in response variables
(e.g., Hamilton 1987). We therefore fitted these corre-
lated covariates simultaneously because we considered
that they likely had different ecological meanings and our
sample size was large. We also confirmed that parameter
estimates remained qualitatively unchanged when we ex-
cluded one of the pairs of covariates from the model.

We estimated parameters with Markov Chain Monte
Carlo analysis with JAGS version 4.2.0 (Plummer 2013),
jagsUI version 1.3.7 (Kellner 2015), and R version 3.2.3
(R Core Team 2015) software. We used conventional
vague priors, ran 3 chains with different initial values,
discarded the initial 100 iterations, and ran an additional
10,000 iterations to examine the posterior distributions
(change of the prior distributions did not affect the es-
timates [Supporting Information]). Chain convergence
was achieved when the R̄ statistic was <1.1 for parameter
estimates; otherwise, an additional 10,000 iterations were
conducted until convergence in the autojags function in
jagsUI. We calculated the coefficient of determination
(R2) from the Pearson correlation coefficient between
observed and predicted values at logit scale. To calculate
R2, we excluded random plot effects but included mea-
surement period effects in Eq. 2. We also tested the model
performance by cross-validation (holdout method). We
randomly chose 90% of the data for model training and
tested the model with the 10% of remaining data. We
repeated this procedure 100 times and obtained R2 at
each repetition. We did not undertake model selection

because many covariates had significant effects (their
95% CI did not include zero) such that we could compare
the fitted functional forms among the structural variables
given the large sample size (Supporting Information).

Mapping Indices

To demonstrate the utility of our models, we made spatial
predictions of the old-growth index for natural forests in
northern Ibaraki Prefecture, central Japan (between the
cities of Kitaibaraki and Takahagi). We compiled relevant
climate, topographic, and stand (forest type and stand
age) covariates based on the above-described methods for
every 20-m resolution grid. We derived stand covariates
from forest registers.

Because our model for the old-growth index treated
structural development processes and stand age as func-
tions of climate and topography, we could estimate the
stand age required to attain a certain value of the old-
growth index under specific environmental conditions.
Following Larson et al. (2008), we inferred these ages at
values of 0.5 old-growth index (t0.5) for every 20-m grid.

We constructed the model of the old-growth index
substituting parameter estimates (posterior means) and
environmental covariates for each grid and equated the
linear predictor (right-hand side of Eq. 2 without random
plot and measurement period effects) with 0 (meaning
0.5 value of the index). We then numerically solved this
equation for stand age (i.e., obtained corresponding stand
age [t0.5]) with the uniroot function in R. To prevent
model extrapolation, we replaced the environmental co-
variates beyond 95% of the data used for model construc-
tion by 97.5% or 2.5% quantile values in predictions.

We also produced a map of predicted values (given the
current stand age) of old-growth index for natural forests.
Mean and median posterior estimates were almost the
same, and t0.5 predicted by mean and median estimates
was also almost the same and was highly correlated (r >

0.99). Finally, we compared the environmental covariates
among old natural forests (>150 years old), other natural
forests, and major plantation forests in NFI data. We only
used the latest third-period data and did not screen plots
by the warmth index.

Results

Modeling Structural Development Processes

Our 4 structural variables, as well as the old-growth
index, exhibited varied and curvilinear responses in
their development rates to 6 climatic and topographic
covariates (Fig. 2). Mean dbh and tree density were the
most sensitive and SD of dbh showed similar response,
but its environmental dependency was not as strong.
The density of large trees was also not sensitive but
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Figure 2. Modeled
dependency of 4 forest
structural variables and
old-growth index on 6
environmental covariates
(dbh, mean diameter at
breast height for live trees;
density, density of live trees;
density 40, density of live
trees with 40 cm dbh; SD,
standard deviation of dbh
for live trees; OG idx,
old-growth index; CA,
catchment area). Fitted
lines are derived from Eq. 3
and shown in the range of
95% percentiles of
environmental covariates.
Other covariates were held
constant at mean values.
See Supporting Information
for their corresponding 95%
CIs.

showed unique responses, and the old-growth index had
an intermediate response to the 4 structural variables.
Specifically, tree density showed clear positive responses
to snow depth. Tree density and mean dbh exhibited
negative responses to the warmth index. Responses of
mean dbh to snow depth and large-tree density and SD
of dbh to the warmth index were unimodal. Structural
variables (except for large-tree density) had consistent
negative responses to slope angle and solar radiation,
and large-tree density showed only positive responses
to these covariates. Structural variables exhibited varied
responses to terrain openness. All structural variables

consistently showed positive responses to catchment
area.

Inferred logistic curves showed large unexplained vari-
ation in measured structural variables and the old-growth
index (Fig. 3 & Supporting Information). The R2 ranged
from 0.23 (mean dbh) to 0.31 (SD of dbh), and cross
validation yielded 0.02-0.03 SD of R2 around these values
(Supporting Information). For example, many plots ap-
proximately 50 years old (most common stand age) had
higher values for the old-growth index than predicted
by the model (Fig. 3 & Supporting Information). Our re-
sults suggested that 150 years was generally required for
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° °

−

(a) (b)

(c) (d)

(e) (f)

Figure 3. (a–f) Inferred
logistic curves of old-growth
index relative to stand age
for 6 environmental
covariates (CA, catchment
area). Curves with different
covariate values (within the
95% percentiles) are
depicted. For example, (b)
shows 4 fitted lines with 4
different values of warmth
index (0.025 and 0.975
quantiles and their
intermediate values). Other
covariates were held
constant at mean values.
Effects of measurement
period are not included
(assuming they are from
the third period).

natural forests to attain high values (approximately 0.8)
for the old-growth index; the specific age to achieve such
values varied depending on plot-level environmental con-
ditions. Snow depth, warmth index, catchment area, and
solar radiation had large effects on the forms of logistic
curves (Fig. 3). We also found significant measurement-
period effects. While accounting for stand-age differences
given the model structure, the first and second periods
of plot measurements produced smaller values of 4 struc-
tural variables and old-growth index compared with the
third period (Supporting Information). These deviations

were generally larger in the older first period than in the
second period.

Model Prediction

Predicted stand age to achieve a 0.5 value for the old-
growth index (t0.5) showed spatial heterogeneity in struc-
tural development rates associated with climate and to-
pography (Figs. 4c & 4d). Eastern grids had higher t0.5

(low development rates) due to higher temperatures and
limited snow (Fig. 4c). In each catchment, flat valley
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Figure 4. Spatial prediction of structural development processes based on the series of parameter estimates (Eqs. 2
& 3) and associated environmental covariates: (a) location of study area, (b) predicted old-growth index (Iog) for
natural forests in the study area, (c) predicted stand age required to achieve a 0.5 Iog (t0.5) in northern Ibaraki
prefecture, and (d) predicted stand age required to achieve a 0.5 Iog (t0.5) incenter of study area. Estimates of Iog

are available only for natural forests within the middle of the study area (b), where forest-register data are
available. See Supporting Information for the spatial distribution of environmental covariates.

bottoms had low t0.5, whereas ridges and steep slopes
had high t0.5 (Figs. 4c & 4d). Large values of t0.5 were
spatially clustered in some areas due to complex terrain
(Fig. 4c & Supporting Information). Predicted values of
the old-growth index exhibited substantial spatial hetero-
geneity (Fig. 4b), and high values were found in the west,
where old natural forests occur (Fig. 4b & Supporting
Information).

Environmental Condition Among Forest Types

The NFI data showed that site conditions differed be-
tween natural and plantation forests in Japan. Envi-
ronments supporting natural forests, especially those
for old forests, were typically in the areas with deep
snow, low temperatures, and large slope angle (Fig. 5).
Japanese cedar and cypress plantations, which are 2 pri-
mary species of plantations in Japan, have been estab-
lished in the warmer parts of Japan; cedar plantations
dominated the areas with large catchment areas at

which development rates of natural forests are high.
Japanese red pine plantations were an exception; they
have been established in locations with small catchment
area.

Discussion

To the best of our knowledge, we are the first to spa-
tially evaluate structural development processes of nat-
ural forests at a regional scale. Our results suggest that
old natural forests remain on unproductive areas, where
many structural variables have slow rates of develop-
ment. Our findings also highlighted the conservation im-
portance of old natural forests on flat areas. Given the
current scarcity of old-growth forests and the heteroge-
neous distribution of rates of structural development, our
empirical modeling is useful for assessing the impacts
of current land use from the perspective of biodiversity
conservation.
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Figure 5. (a–f) Relationship between 6 environmental covariates and 8 forest types covered by National Forest
Inventory data (O, natural forest >150 years old; N, natural forest �150 years old; S, Sakhalin spruce [Picea
glehnii] plantation; F, Sakhalin fir [Abies sachalinensis] plantation; L, Japanese larch [Larix kaempferi] plantation;
P, Japanese red pine [Pinus densiflora] plantation; E, Japanese cedar plantation; Y, Japanese cypress
[Chamaecyparis obtuse] plantation; CA, catchment area; boxes, 25th and 75th percentiles [interquartile range];
whiskers, minimum and maximum values within 1.5 times interquartile range from interquartile range;
horizontal line within bars, median; circles, outliers). In (a), numbers along the horizontal axis indicate the
number of plots for the respective forest types shown on the x-axes of the other graphs.

Structural Development Processes and Environment

Mean and SD of dbh and large-tree density showed uni-
modal responses to snow depth and the warmth index.
Unimodal responses are consistent with the growth rates

of a range of tree species in relation to precipitation and
temperature from southwest Germany (Nothdurft et al.
2012). There may be common optimal climate conditions
for these structural variables. Low structural develop-
ment rates in areas characterized by deep snow and low
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temperatures are most likely explained by a short growth
period (Peterson & Peterson 2001). Clear positive and
negative responses by tree density to snow depth and
warmth index, respectively, were partially because ev-
ergreen broad-leaved old-growth forests in southwestern
Japan had high tree densities (Supporting Information).

However, low structural development rates for other
variables in areas with limited snow and higher temper-
atures may not be explained by declines in growth rates
but rather by long-term and intensive forest use by hu-
mans. Evergreen broad-leaved forests have 2 times larger
annual net primary production as deciduous broad-leaved
forests, which dominate northeastern Japan (Kira 1991).
Japan’s southern forests, where warm temperatures and
limited snow allow people to use forests throughout the
year, have been exploited heavily (Totman 1989). This
is consistent with the evidence of there being few old,
natural forests (Fig. 5) and natural forests (Yamaura et al.
2011) in those areas in Japan.

Sites with steep slopes or concave terrain were likely
to have low development rates for many structural vari-
ables. This is most likely due to high soil movement and
elevated rates of tree fall (Guariguata 1990). It is also well
known that sites with small catchment areas and exposed
(convex) topography, such as ridges, have impaired for-
est growth rates (Curt et al. 2001). An unexpected result
was that large-tree density increased with slope angle
and terrain openness. The inaccessibility of steep sites
and ridges may lead to reduced human disturbance and
in turn more large old trees (Pederson 2010). Solar ra-
diation intensity had mostly negative effects, which was
consistent with studies on forest growth rates (Chen et al.
1998) and suggests that water deficiency can also affect
structural development rates.

Old-Growth Index as an Indicator of Forest Biodiversity

Forest structure is a well-known indicator of forest bio-
diversity (Lindenmayer et al. 2000), and the old-growth
index may be a potentially useful composite indicator.
Identifying forests with developed structure and high
conservation value was a key motivation for devising the
old-growth index (Spies & Franklin 1988, 1991; Whitman
& Hagan 2007). Because our model treated the index as
a function of stand age, it is straightforward to forecast
the future status of old growth in landscapes subject to
different kinds of forest management. The old-growth
index comprises common stand variables, and our envi-
ronmental covariates were also derived from a DEM and
a GIS. Our framework is therefore broadly applicable to
other regions.

Our results showed that fine-grained (20-m resolution)
topographic factors can lead to differences in structural
development rates (Figs. 4c & 4d). This scale intersects
well with the scale of forest management ownership and
decision making. For example, 74% of Japanese forest

owners have holdings of 1–5 ha (Forestry Agency 2017c).
In our mapping area, the mean [SD] size of the stand area
of natural forests was 0.73 [2.38] ha. It has been suggested
that fine-scale topography provides the underlying setting
for ecosystem processes and human land uses (Swanson
et al. 1988). It was predicted that topographic features
throughout a landscape could lead to differences in >100
years to attain an old-growth index of 0.5 after harvesting,
even within the same catchment (Fig. 4d). We suggest
the consideration of topography would be useful for the
spatial evaluation of biodiversity and ecosystem services
and would go beyond, for example, land use and cover
as simple proxies for them (Rieb et al. 2017).

Temporal Changes in Measurement Error

Our results showed that older surveys that have mea-
sured structural variables could yield smaller values. Sur-
veyors can miss trees at the margins of circular plots
or measure dbh of tree trunks at a height taller than the
prescribed height, which is especially likely for complex-
shaped broad-leaved trees (Forestry Agency 2017a). Un-
derestimation of the SD can be the products of these 2
processes. Accuracy of measurement has been improv-
ing since surveyors completed field training from 2011
(Forestry Agency 2017a, 2017b). Therefore, there is a risk
of overestimating development rates without considering
these measurement errors.

Limitations and Implications

Although we simplified our model to allow for scaling up
and did not analyze tree species composition and coarse
woody debris, these compositional and structural for-
est attributes characterize different forest development
stages and have important functions, such as habitat pro-
vision (e.g., Franklin et al. 2002). Relatively large amounts
of variation remained unexplained by our model, indi-
cating the potential for model improvement (e.g., with
other local information, such as disturbance history and
soil type; incorporating environmental covariates into
the intercept; and direct modeling of annual changes in
structural variables from repeated surveys) (Supporting
Information).

Our results suggest that the replacement of natural
forests by plantation forests is not a spatially random
process. Natural forests, especially old natural forests,
remain generally on unproductive ridges, steep slopes,
or areas with severe climatic conditions (Fig. 5), where
many key attributes of stand structure develop slowly
(Fig. 2). Therefore, the impacts of replacement of natural
forests by plantations are larger than those indicated by
the spatial extent of converted areas alone. The mainte-
nance and restoration of old-growth forest on flat sites
should be prioritized for conservation, although natural
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forests on unproductive sites will continue to be impor-
tant and should be protected.
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