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1  |   INTRODUCTION

Our body allows for expression of a rich set of emotional states 
intrinsic to social interaction (Darwin, 1872; Nummenmaa, 

Glerean, Hari, & Hietanen, 2014; Nummenmaa, Hari, 
Hietanen, & Glerean, 2018). Especially facial muscles have 
a fundamental role in communicating emotion and mood, 
that is, expressing and, from the observer point of view, 
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Abstract
Muscular activity recording is of high basic science and clinical relevance and is 
typically achieved using electromyography (EMG). While providing detailed infor-
mation about the state of a specific muscle, this technique has limitations such as the 
need for a priori assumptions about electrode placement and difficulty with record-
ing muscular activity patterns from extended body areas at once. For head and face 
muscle activity, the present work aimed to overcome these restrictions by exploit-
ing magnetoencephalography (MEG) as a whole head myographic recorder (head 
magnetomyography, hMMG). This is in contrast to common MEG studies, which 
treat muscular activity as artifact in electromagnetic brain activity. In a first proof-
of-concept step, participants imitated emotional facial expressions performed by a 
model. Exploiting source projection algorithms, we were able to reconstruct mus-
cular activity, showing spatial activation patterns in accord with the hypothesized 
muscular contractions. Going one step further, participants passively observed af-
fective pictures with negative, neutral, or positive valence. Applying multivariate 
pattern analysis to the reconstructed hMMG signal, we were able to decode above 
chance the valence category of the presented pictures. Underlining the potential of 
hMMG, a searchlight analysis revealed that generally neglected neck muscles exhibit 
information on stimulus valence. Results confirm the utility of hMMG as a whole 
head electromyographic recorder to quantify muscular activation patterns including 
muscular regions that are typically not recorded with EMG. This key advantage be-
yond conventional EMG has substantial scientific and clinical potential.
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perceiving related bodily signals. To investigate emotional 
expression, studies in this field often exploit a technique of 
muscular recording called surface electromyography (EMG; 
Fridlund & Cacioppo, 1986; Larsen, Norris, & Cacioppo, 
2003). When expressing a specific emotional state, special-
ized muscles in the face contract, resulting in differentiated 
activity patterns of facial muscles. In order to start a muscle 
contraction, motor neurons release acetylcholine at the neu-
romuscular junction leading to muscle fiber action potential, 
which in turn causes the fiber to contract. Typically, EMG 
uses a bipolar arrangement to record the voltage difference 
between two electrodes placed along the muscle fiber di-
rection. Given its low cost and relative ease of use, EMG 
is the gold standard for noninvasive recordings of muscular 
electrical activity. While yielding signals at relatively high 
signal-to-noise levels for a specific muscle, a limitation is 
that, in order to record different muscles, many electrodes 
are needed. Naturally spatial and practical limits are reached 
fairly quickly (commonly not more than 5–6 muscles are 
investigated), forcing the researchers to a priori selection. 
Further, some muscles are very difficult to record via sur-
face EMG (e.g., inner neck). These issues limit the clinical 
use of the surface and (more invasive) needle EMG, since 
indeed some muscles (such as longus colli in chronic neck 
pain syndromes; Falla, Jull, O’Leary, & Dall’Alba, 2006) 
are difficult to record with these techniques. In addition, the 
use of conventional techniques can be highly unpleasant in 
pain conditions such as allodynia or hyperalgesia (Coutaux, 
Adam, Willer, & Le Bars, 2005).

In an attempt to overcome these issues, we introduce a 
novel application of whole head magnetoencephalogra-
phy (MEG) to record and reconstruct myographic activity 
from the head at once. MEG uses superconductive sensors 
(SQUIDs) to record magnetic potentials primarily produced 
by postsynaptic currents. Given the resemblance between 
functioning principles of neurons and muscle fiber contrac-
tion, MEG also records electromagnetic signals originating 
from muscles. In fact, in typical cognitive neuroscience ex-
periments, muscular activity is visible even in MEG raw sig-
nals. Such muscular signals are normally regarded as noise 
that needs to be removed from the neural data. In the present 
work, we treat muscular activity as signal since MEG has 
distinct advantages with respect to the aforementioned EMG-
related issues: (a) no electrodes and no a priori locations are 
needed since MEG records from the entire head at once, and 
(b) ideally, it might also record deep muscle activity, which 
(using inverse models) could be separated from more super-
ficial ones.

Fifty years ago, researchers had already attempted to re-
cord magnetic fields generated from muscular contractions: 
David Cohen was the first, using one SQUID, to record activ-
ity from forearm and hand muscles; he called the technique 

“magnetomyography” (MMG, Cohen & Givler, 1972). 
Nowadays, MMG is used to investigate uterine contractions 
using arrays of SQUIDs specifically implemented for this 
purposes (Escalona-Vargas, Oliphant, Siegel, & Eswaran, 
2019; Eswaran, Preissl, Murphy, Wilson, & Lowery, 2005) 
and muscular activity from the heart (magnetocardiography, 
Fenici, Brisinda, & Meloni, 2005).

In contrast to previous research, the present work focuses 
on exploiting existing MEG devices to record muscular ac-
tivity from face and head and to localize, taking advantage 
of source reconstruction algorithms, the magnetic activity 
generated by a variety of face and head muscles at the same 
time.

In order to make first steps into expanding the application 
of MMG into the affective neuroscience, we implemented a 
proof of principle that illustrates some of these potential ad-
vantages: in a first step, using an imitation task, we demon-
strate that the multiple muscular sources contributing to the 
MEG signal are distinctly localizable on the participants’ 
face. In a second step, we apply this novel approach to a more 
typical experimental environment by asking participants to 
passively watch emotion-eliciting pictures. Validating the ap-
proach, we replicate a classical finding in the emotion litera-
ture, namely, that m. corrugator supercilii activity correlates 
negatively with stimulus valence (Cacioppo, Petty, Losch, 
& Kim, 1986; Lang, Greenwald, Bradley, & Hamm, 1993). 
Going beyond this replication, we use classification algo-
rithms to predict the valence category of the observed picture 
from the reconstructed muscular signals, pointing to the im-
portance of neck muscles, which has not been considered in 
studies using conventional EMG. This underscores the prom-
ise of this approach as a tool for future scientific discoveries 
as well as a potential clinical tool. From this point on, we 
refer to our implementation of MEG muscular recording as 
head magnetomyography (hMMG).

2  |   METHOD

2.1  |  Participants

The experiment took place in the MEG Lab of the University of 
Salzburg located at the Christian Doppler Clinics (Salzburg). 
The protocol was approved by the Ethics Committee of the 
University of Salzburg. Twenty-two healthy participants (15 
female, mean age 24.8 ± 3.6) were tested, after having signed 
an informed consent. All participants had normal or cor-
rected-to-normal vision and declared no knowledge of any 
neurological or psychiatric disorder. Participants received 
either a monetary reimbursement (10 € per hour) or course 
credit for their participation. In total, the experimental ses-
sion lasted about 2 hr.
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2.2  |  Data collection procedure

Participants were asked to remove any metal objects from 
their body. Considering the features of the MEG signal we 
were interested in (gamma to high gamma frequencies, see 
Section 2.3.6), participants wearing metallic braces were not 
excluded since the noise produced by braces on the MEG 
sensors does not affect the frequency bands of interest for the 
subsequent analyses.

Participants’ head shape was digitized by means of a 
Polhemus tracker (3Space FASTRAK, Polhemus, Colchester, 
VT); at least 300 points were tracked on participants’ head, 
including five head-position (HPI) coils and three anatomical 
landmarks. For each participant, in addition to the standard 
head points, the nose shape and position of the eyebrows 
were also tracked. On a subset of participants (10), three 
EMG electrode pairs were placed in correspondence of left 
m. corrugator supercilii, right m. frontalis, and right m. zy-
gomaticus major  (Figure 2a). Participants were then seated 
in the MEG device in an electromagnetically shielded room 
(AK3b, Vacuumschmelze, Hanau, Germany). The MEG lab 
in Salzburg is equipped with a 306-channel Elekta Triux 
whole head MEG device (102 triplets composed of one mag-
netometer and two orthogonally placed planar gradiometers). 
Signal from MEG sensors was sampled at 2,000 Hz, with the 
acquisition filters set to 0.1 Hz high-pass and 660 Hz low-
pass. The head position inside the MEG helmet was localized 
by means of HPI coils, which were energized throughout the 
whole experiment.

Visual stimuli were presented by means of a projector 
(PROPixx, VPixx Saint-Bruno, QC, Canada) back-projecting 
the images on a semitransparent screen.

2.3  |  Imitation task: Materials and methods

2.3.1  |  Stimuli

We selected five pictures from the Radboud Face Database 
(RaFD, Langner et al., 2010) data set of an actress producing 
five emotional expressions: joy, disgust, fear, sadness, neu-
tral (Figure 1a, top). Each imitation task session was com-
posed of 175 trials, 35 for each emotion.

2.3.2  |  Procedure

The presentation of a picture lasted 2.5 s on the screen, fol-
lowed by 2.5  s of black screen on which a white “Relax” 
label was presented (Figure 1a, bottom). The order of the 
emotion conditions was randomized across participants. 
Their task was to imitate the emotional expression observed 
in each trial. Before going inside the MEG scanner, partici-
pants were trained outside the shielded room to produce the 
facial contraction pattern that best approximated the one ob-
served in the pictures. Some participants reported that it was 
sometimes difficult for them to imitate the facial expressions, 
especially for fear and sadness pictures. Acquired data were 
stored on a local server.

2.3.3  |  EMG power spectrum

EMG power spectrum was computed for the three channels 
recorded from participants wearing EMG electrodes. The 
signal was band-pass filtered between 9 and 550 Hz, and then 

F I G U R E  1   Stimuli and procedure in the imitation and passive observation tasks. Imitation (a) Top: Pictures showing an actress performing 
five different emotional facial expressions. Bottom: Time line of two trials: pictures were presented for 2.5 s, followed by a “Relax” label again 
for 2.5 s. (175 pictures, 35 per expression). Participants were asked to imitate the facial expressions observed and to relax their face during the 
relax label. Passive observation (b) Top: pictures showing exemplars of the five valence categories. Bottom: Time line of two trials: pictures were 
presented for 6 s each, followed by a blank screen for 3 s (100 pictures, 20 per valence category)
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it underwent a time-frequency analysis from 9 to 550 (5-Hz 
step, 0.3-s sliding time window, Hanning taper); the result-
ing time-frequency data were averaged between 0.5 and 2.5 s 
after picture presentation, yielding a single value for each fre-
quency tested. Eventually, we performed a time-frequency 
analysis, averaged across time. As a final step, trimmed mean 
at 20% across trials (10% trimming for each side) was com-
puted at each frequency to detect the average power spectrum 
across participants. A Z-score transformation was applied 
to the power spectra separately for each channel from 9 to 
250 Hz. This analysis, as well as showing the distribution of 
power spectra at different muscles, also guided us in select-
ing a frequency band optimal for the following analyses.

2.3.4  |  Sensor to source space projection

We conducted two types of analysis for the imitation task, 
the hMMG-EMG correlation and the hMMG analysis of 
emotional facial expressions. Both were conducted in source 
space, projecting the sensor data onto a set of virtual sensors. 
FieldTrip toolbox (version updated to November 15, 2018) 
and custom-made MATLAB functions were used to analyze 
the data (Oostenveld, Fries, Maris, & Schoffelen, 2011).

As a first step, we epoched all trials from 0.5 to 2.5  s 
after picture presentation onset. Data were checked only for 
broken channels but not for physiologically driven artifacts, 
given that participants wearing braces were also included in 
the experiment. Data were band-pass filtered depending on 
the type of analysis conducted; details on filtering procedures 
are described in the hMMG-EMG correlation (Section 2.3.5) 
and the hMMG analysis of emotional facial expressions 
(Section 2.3.6).

After filtering, sensor data were projected onto source 
space, separately for each condition, to obtain virtual sensors 
by multiplying the spatial filters with the single trial data. 
We obtained structural MRIs of 10 participants’ heads. For 
the others, we used an MRI model downloaded from the 
FieldTrip toolbox website (ftp:/ftp.field​tript​oolbox.org/pub/
field​trip/tutor​ial/Subje​ct01.zip); we manually (interactively) 
morphed the MRI shape in order to fit each participant's head 
shape.

Then, the morphed head MRIs were segmented into sur-
face (“scalp” tissue) and interior (“brain” tissue). In order to 
create a volume conduction model, the geometry of the head 
was determined using a triangulated surface mesh made of 
5,000 vertices for each compartment. Finally, we used the 
FieldTrip implementation of the volume conduction algo-
rithm (singleshell option) proposed by Nolte (2003).

To create virtual sensors, we scanned the scalp using steps 
of 1 cm between voxels and then subtracted the brain volume 
from it, in order to delete voxels falling into brain tissue. The 
inner border of the scalp was extended inside by 2 cm (i.e., 

setting: cfg.inwardshift = 1), producing a scan grid of 4,735 
voxels.

Once a volume conduction model and a source model had 
been constructed, the lead field was estimated for each point 
of the grid, and the covariance matrix between MEG sensors 
was calculated. We applied the linear constrained minimum 
variance (LCMV) beamformer algorithm onto the data (Van 
Veen, van Drongelen, Yuchtman, & Suzuki, 1997) to gener-
ate a spatial filter, mapping virtual sensors to MEG sensor 
data for each trial. At the end of this procedure, we obtained 
the time course of the activity of 4,735 virtual sensors on the 
surface of the head. For displaying the surface plots, we used 
the MRI of one of the authors (G.B.).

2.3.5  |  hMMG-EMG correlation

Given that projecting data from each single frequency (from 
9 to 550 Hz) into source space would have been computa-
tionally very demanding, for each participant wearing EMG 
electrodes we band-pass filtered the data into nine frequency 
bands (i.e., 9–25, 25–45, 45–70, 70–100, 100–160, 160–200, 
200–250, 250–350, 450–550 Hz) before projecting them onto 
source space (Dalal et al., 2008). The band-pass filtering has 
been applied in order to optimize the beamformer reconstruc-
tion to the frequencies of interest. To determine which one of 
the virtual sensors correlates best with each EMG channel, 
we linearly correlated (Pearson), separately for each partici-
pant, for each condition, and for each frequency band, the 
time course of each virtual sensor with the time course of 
each EMG channel, ending up with a matrix of correlation 
values for each frequency band with Number of Trials × 
Virtual Sensors × Number of EMG Channels as dimensions 
(35 × 4,735 × 3). Finally, we averaged the correlation values 
across trials using a trimmed mean at 20%. Since we were not 
interested in the direction of the correlation, we computed the 
absolute value of the obtained matrix.

For each participant and frequency band, absolute cor-
relation values were sorted from the lowest to the highest 
value. Subsequently, the 2.5% of the virtual sensors showing 
the highest absolute correlation values were selected. At the 
group level, we computed a map in which every virtual sen-
sor represents the number of participants having that virtual 
sensor among the 2.5% highest absolute correlation value. 
Only a subset of condition-EMG pairings was analyzed be-
cause of their theoretical correspondence (Cacioppo et al., 
1986): disgust-corrugator, fear-frontalis, joy-zygomaticus.

To show the distribution of correlations across frequency 
bands, we computed a correlation spectrum for each fre-
quency band. We computed this correlation spectrum on the 
voxels showing the highest count and the highest count minus 
one on the hMMG-EEG correlation maps, separately for each 
condition (e.g., if maximum count for one condition was 9, 

ftp:/ftp.fieldtriptoolbox.org/pub/fieldtrip/tutorial/Subject01.zip
ftp:/ftp.fieldtriptoolbox.org/pub/fieldtrip/tutorial/Subject01.zip
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then all the channels having 9 or 8 counts were selected). As 
a final step, separately for each condition, we averaged the 
power of the selected voxels, obtaining one power value for 
each condition and each frequency band.

2.3.6  |  hMMG analysis of emotional facial 
expressions

Differently from the filtering strategy adopted for the 
hMMG-EMG correlation analysis, we band-pass filtered the 
MEG signal from 25 to 150 Hz, being the frequency range in 
which the EMG power spectrum showed the highest activity 
and best correlated, on average, with the correspondent MEG 
sensors (see Sections 3.1.1 and 3.1.2).

A time-frequency analysis of the virtual sensors was com-
puted on the whole band-passed signal (from 25 to 150 Hz, 
in steps of 5 Hz, mtmconvol method option of the ft_frequen-
cyanalysis FieldTrip function) and on the time window from 
−0.5 to 2.5 s after the picture presentation (taper = Hanning, 
sliding window 0.3  s). The result of this procedure was a 
three-dimensional matrix (Virtual Sensor × Frequency Range 
× Time). Data were averaged across frequencies, and the 
baseline time window was averaged between −0.5 and 0  s, 
while the target time window was averaged between 0.5 and 
2.5 s; in this way, we obtained for each participant two vectors 
of virtual sensors containing a single power value. In order to 
avoid any possible artifactual effect due to the estimation of 
different spatial filters for different conditions, the baseline 
time data were used to normalize the data in the time window 
of interest (db baseline from ft_freqbaseline function).

Statistical analyses were performed comparing at a group 
level each of the active emotions (joy, fear, disgust, sadness) 
against the neutral one. Then, all combinations involving ac-
tive emotions were compared with each other (p < .05, two-
tailed). For presentation purposes, we thresholded pictures 
at t ≥ |5|.

2.4  |  Passive observation task: 
Materials and methods

2.4.1  |  Stimuli

We selected 100 pictures from the International Affective 
Picture System (IAPS) data set (Bradley & Lang, 2007). The 
IAPS database provides normative ratings on three dimen-
sions: valence, dominance, and arousal. Based on the valence 
feature (lowest valence 1.45, highest valence 8.2), they were 
divided into five categories with 20 pictures, respectively: 
very negative (median valence rating 1.79 ± median absolute 
deviation 0.14), negative (2.45 ± 0.17), neutral (3.76 ± 0.40), 
positive (5.18 ± 0.58), and very positive (7.31 ± 0.40).

2.4.2  |  Procedure

Each picture was presented on the screen for 6 s, followed by 
a black screen of 3 s (Figure 1b, bottom). Order of pictures 
was randomized across participants. Participants were asked 
to pay attention to the pictures and were told that, at the end 
of the experiment, they would be asked some questions about 
the stimuli.

2.4.3  |  Valence-contraction correlation

Data preprocessing followed almost identical steps as the 
hMMG analysis of emotional facial expressions, with two 
notable differences: (a) Spatial filters were estimated using 
all available trials, that is, including trials from all conditions. 
In this case, baseline correction was not necessary, given that 
the spatial filter applied was identical for all trials. (b) Data 
were epoched from −7 to 7 s with respect to picture presenta-
tion onset.

Concerning the analyses strategy, we used for consistency 
the same approach used to analyze imitation task data (see 
Sections 2.3.3 and 2.3.6). However, given that for the cur-
rent task we expected effects likely smaller in magnitude 
and less temporally aligned to the onset of the pictures, we 
averaged the data over a longer period of time; accordingly, 
data included in the time window −7 to −1  s were aver-
aged both along the time and frequency domain (mean fre-
quency = 87.5 Hz) to form the prestimulus time window. The 
same averaging was applied between 1 and 7 s after stimulus 
presentation onset (note that spontaneous facial expression 
typically exceeds the stimulus offset) to form the poststimu-
lus time window.

The result of these data processing steps is a two-dimen-
sional matrix of virtual channels containing two power val-
ues, one from prestimulus and the other from poststimulus 
time periods.

At first, we conducted a more conventional analysis with 
the scope of highlighting head muscles correlating with 
picture valences. On the poststimulus data set, we linearly 
correlated (Pearson) the valence of each picture with the av-
eraged amplitude of the 25–150  Hz frequency window for 
each virtual sensor, thus obtaining a correlation value for 
each virtual sensor for each participant.

To test the statistical significance of the correlation val-
ues, we used a nonparametric randomization procedure in 
order to control for multiple comparisons over sensors (Maris 
& Oostenveld, 2007) implemented in FieldTrip.

We compared the obtained values against 0 correlation 
(settings: cfg.method = “montecarlo”; cfg.clusterthreshold 
= “nonparametric-individual”; cfg.clusterstatistics = “max”; 
cfg.numrandomization = 5,000, 15.5 neighbors on average; 
method = “distance,” neighbor distance = 1.5 cm).
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Statistical threshold was set at alpha  =  .05, one-tailed, 
since we focused only on negative correlations (i.e., the lower 
the pleasantness of the picture, the higher the muscle contrac-
tion). Our results are in agreement with the literature, show-
ing negative linear correlation between regions close to m. 
corrugator supercilii and hedonic picture ratings (Cacioppo 
et al., 1986).

2.4.4  |  Valence classification based on 
hMMG activity

A linear discriminant analysis (LDA) was used to classify 
the data adopting a cross-validation approach provided by 
the CoSMoMVPA MATLAB toolbox (Oosterhof, Connolly, 
& Haxby, 2016) both on the prestimulus and on the post-
stimulus periods. We conducted a k-fold (k  =  10) cross-
validation, with 90 pictures used as the training set for the 
classifier and 10 as the test set. The accuracies resulting from 
the 10 cross-validation procedures were averaged, provid-
ing one accuracy value for each of the time periods for each 
participant.

Two paired-sample t tests against chance level accuracy 
(0.2) were performed on the accuracy of the prestimulus and 
the poststimulus time windows at group level.

2.4.5  |  Searchlight classification

In order to identify areas on the surface of the head carrying 
most of the information about the picture valence category, 
a searchlight virtual sensor pattern analysis procedure was 
carried out on the poststimulus time window. The search-
light procedure follows similar steps as the previous clas-
sification analysis but with the difference that, instead of 
considering the whole set of virtual sensors as a feature 
for the classifier, it takes each virtual sensor along with its 
neighbors (eight on average) as features (called the search-
light), to perform the cross-validation analysis as before and 
then repeats the same procedure for the next virtual sensor 
(Kriegeskorte, Goebel, & Bandettini, 2006). Thus, differ-
ently from the hMMG analysis of emotional facial expres-
sions, which produced one value of accuracy per participant, 
the result of the searchlight procedure provides a value of 
accuracy for each virtual sensor, reflecting the amount of 
information contained in each virtual sensor and its immedi-
ate neighbors.

To statistically evaluate the results of the searchlight 
classification procedure, we used a threshold-free cluster 
estimation (Smith & Nichols, 2009) algorithm implemented 
in CoSMoMVPA (E = 0.5, H = 2). We compared, at group 
level, the accuracy of each searchlight against the chance 
value of 0.2.

3  |   RESULTS

The experimental session was divided into two parts, passive 
observation and imitation tasks (Figure 1). While experimen-
tally the two tasks were run in the above-described order, 
with the aim of not directing participants’ attention to their 
own facial expressions during the passive observation task, 
we will describe results in the reverse order (i.e., first imita-
tion followed by passive observation task).

3.1  |  Imitation task

In the imitation task, participants (N = 22) were asked to imi-
tate five facial expressions (joy, disgust, fear, sadness, neu-
tral) performed by an actress on the screen (RaFD; Langner 
et al., 2010, Figure 1a). For comparison purposes with con-
ventional EMG, 10 participants wore electrodes in corre-
spondence of left m. corrugator supercilii, right m. frontalis, 
and right m. zygomaticus major (Figure 2a). The general pur-
pose of the imitation task was to provide an important quality 
check that the signal recorded from facial muscles was well 
reconstructed in the hypothesized face locations.

3.1.1  |  EMG power analysis

Being the gold standard in muscular signal recording, as a 
first step, a spectral characterization of the muscular activ-
ity picked up by EMG was performed in order to inform the 
subsequent MEG source localization analysis. The resulting 
power spectrum shows strongest signal in the 25–150  Hz 
range, peaking between 35 and 45  Hz (Figure 2a). The 
highest overall power is reached by zygomaticus major and 
corrugator supercilii, followed by frontalis muscles, which 
show the lowest absolute power. However, following a Z-
score transformation of the power spectra of each muscle, the 
channels show virtually identical spectral power distribution. 
Based on the Z-scored EMG power spectra, we selected a 
frequency band ranging between 25 and 150 Hz to be used in 
all of the following analyses.

3.1.2  |  hMMG-EMG correlation

If hMMG is to be used as a tool to record muscular activity 
localized on the face, we would expect a strong correlation at 
relevant locations with signals recorded using conventional 
EMG. To test this, we conducted a correlation analysis be-
tween band-passed filtered hMMG and EMG time courses; 
an example of such band-passed time series is provided in 
Figure 3a. EMG signal from m. corrugator supercilii and 
hMMG signal were correlated during imitation of disgust, 
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while EMG from m. frontalis, and zygomaticus major, re-
spectively, were correlated with hMMG during fear and joy 
imitation. We selected the 2.5% (approximately 118 out of 
4,735 voxels) of the highest correlation values for each par-
ticipant, in each condition and frequency band. Figure 3b 
shows the number of counts representing the number of par-
ticipants having a virtual sensor among the highest 2.5% in 
correlation values for different frequency bands. The results 
show that overall the location of the highest count number 
matches the a priori EMG electrode placement, being in 
close proximity to the position of the targeted muscles.

After having localized the voxels that consistently 
showed the highest correlations with the EMG signal, we 
wanted to measure in absolute terms the average magnitude 
of the correlations. Figure 3c shows the distribution of the 
average hMMG-EMG correlation values across frequency 
bands by considering virtual sensors showing the highest 
count and highest count minus one, separately for each mus-
cle (e.g., if maximum count for one condition was 9, then all 
the channels having 9 or 8 counts were selected, and their 
correlation values averaged). For all channels recorded, the 
highest correlation values lay approximately between 25 
and 150 Hz, in line with the EMG power analysis results. 
Within that frequency range, zygomaticus and corrugator 
muscles had the highest correlation values, between 0.296 
and 0.317 and between 0.322 and 0.349, respectively. The 
frontalis muscle has overall smaller correlation values com-
pared to the other two muscles, ranging between 0.127 and 
0.09 in the 25–150 Hz band. Overall, the results of this anal-
ysis established a strong similarity between hMMG-based 
muscular recordings and standard EMG.

3.1.3  |  hMMG analysis of emotional facial 
expressions

To illustrate the potential of our approach to measure facial 
muscular activity, we performed statistical contrasts of the 
hMMG signals in order to obtain topographic differences 
between emotional facial expressions. In a first step, we 
contrasted emotional expressions to the neutral expression 
in order to test whether commonly reported muscle groups 
can be identified. As Figure 4a shows, the expected muscular 
activity characterizing each emotion was detected; joy imita-
tion showed peaks at inferior-lateral locations on the face, in 
proximity to m. zygomaticus minor, m. zygomaticus major, 
and m. risorius, while disgust and fear imitation showed 
peaks in correspondence to lower (m. corrugator supercilii, 
m. procerus) and higher forehead (m. frontalis), respectively. 
Notably, other portions of the head, outside those predicted, 
were activated for joy and fear imitation; areas close to the 
ears showed a peak of activity in joy imitation, possibly 
pointing to anterior auricularis muscle contractions, while 
in fear imitation, activity in correspondence to neck muscles 
was detected. Comparisons between active emotions (Figure 
4b) are in line with observations shown in Figure 4a and 
highlight specific areas of muscular activation differences 
between emotion expressions.

These results prove that hMMG is suited for localizing 
muscular activity during facial expressions, but, most impor-
tantly, they highlight the advantage of whole head recordings 
against the classical a priori electrode selection, revealing 
that unexpected or overlooked muscles contributed to the ex-
pression patterns.

F I G U R E  2   Location and power spectra for the 3 EMG channels. (a) Average power spectrum across participants of the 3 EMG channels 
representing the power during the imitation conditions that are best associated with their contraction: left m. corrugator supercilii during disgust 
imitation, m. frontalis during fear imitation, m. zygomaticus major during joy imitation. (b) Z-score transformation of individual EMG power 
spectra shows that the channels have very similar spectral components. The band containing dominant frequencies, between 25 and 150 Hz, has 
been used in the following analyses



8 of 13  |      BARCHIESI et al.

3.2  |  Passive observation task

During imitation, muscular activity is particularly intense, so 
the usefulness of hMMG in a setting with more subtle muscle 
activity still needs to be established. This was the purpose 
of the passive observation task, where participants (N = 17) 
were asked to attentively observe a series of emotion-induc-
ing pictures selected from the IAPS database ranging from 
very negative to very positive valence ratings (Bradley & 
Lang, 2007).

We conducted a valence-contraction correlation analy-
sis in which, for each participant, the amount of activity of 
each virtual sensor was correlated with the normative valence 
rating of the pictures presented (Figure 5a), followed by a 

classification analysis based on hMMG activity (Figure 5b) 
and a searchlight classification (Figure 5c).

3.2.1  |  Valence-contraction correlation

To validate hMMG, it is important to illustrate that it is sen-
sitive to established effects. To this end, we aimed to repli-
cate a well-established result from studies using conventional 
EMG (Cacioppo et al., 1986; Lang et al., 1993; Larsen et 
al., 2003), showing that amplitude of m. corrugator super-
cilii contractions is negatively correlated with the valence 
of the perceived stimulus. Our cluster-based statistical pro-
cedure confirmed this finding, yielding one negative cluster 

F I G U R E  3   (a) Example trial hMMG versus EMG time course. The two traces represent EMG (m. corrugator supercilii) and a correspondent 
hMMG virtual sensor during a single contraction; magnification shows the similarity of the two traces during the time window from 1.5 to 2 s after 
picture presentation. MEG data have been band-pass filtered in the 25–150 Hz range before being submitted to LCMV beamformer. (b) hMMG-
EMG localization. hMMG-EMG absolute correlation values have been computed separately for each participant wearing EMG electrodes. The 
upper row shows the number of times in which a virtual sensor was among the 2.5% with the highest correlation during disgust imitation. The 
middle and the bottom rows show the same metric during fear and joy imitation. Correlations were computed after time series had been band-pass 
filtered in nine different frequency bands. (c) hMMG-EMG average correlation. The absolute correlation values have been averaged from virtual 
sensors containing the highest 2.5% absolute correlation values for the highest number of participants down to the highest number minus one, 
separately for each condition, after a 25–150 Hz band-pass filtering (e.g., if maximum count in the correlation after 25–150 Hz band-pass filtering 
for one condition was 9, then all the channels having 9 or 8 counts were selected). After the relevant voxels were obtained, means and standard 
error of the correlation per each frequency band were calculated. Dots represent single subject correlation data
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of voxels (p < .05 one-tailed) located medially on the upper 
face, including m. nasalis, corrugator supercilii bilaterally, 
and m. frontalis pars medialis bilaterally (Figure 5c), con-
firming the similarity between the classical EMG results and 
hMMG recordings.

3.2.2  |  Valence classification based on 
hMMG activity

Classical data from the literature, as the valence-contraction 
correlation, extracted information from the channels one at a 
time. hMMG instead, comprising multiple voxels, is suited to 
take advantage of classifiers to characterize informative mul-
tidimensional patterns of activity. To test if hMMG activity 
patterns could predict the valence of the observed pictures, 
we sorted the images, dividing them into five valence classes, 
and applied a LDA classifier. The analysis yielded, for the 
poststimulus time window, an accuracy level above chance 
level (0.2), indicating that valence can be classified signifi-
cantly above chance (0.222; t(16) = 2.70, p = .016, Figure 
5b). For the prestimulus period, accuracy not significantly 

different from chance was detected (0.199; t(16) = −0.05, 
p = .962). Since the previous analysis used all grid points 
simultaneously to classify valence category, no spatial infor-
mation was obtained. For this purpose, we used a searchlight 
approach, yielding a spatial distribution of accuracy. This 
analysis showed that valence categories are distinguishable 
above chance in different regions of the head, including 
lower and lateral portion of the face and, notably, neck re-
gions (Figure 5c).

4  |   DISCUSSION

Given its ease of application, usefulness, and low cost, EMG 
is the gold standard of muscular recording. As any other 
technique, however, EMG suffers from limitations; here, 
we focused especially on one of them, namely, the need 
for a priori selection of the electrodes to be placed on the 
participants’ face. In order to overcome this limitation, we 
used conventional whole head MEG as a large-scale EMG 
recorder, providing MMG recordings of the whole head at 
once.

F I G U R E  4   (a) hMMG of the comparisons of emotion versus neutral expression. (b) hMMG of the comparisons of emotion expressions 
against each other. Virtual sensors showing t values above |5| are displayed
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4.1  |  hMMG provides similar information 
as EMG with high spatial coverage

As a first step, to test the hypothesis that hMMG is capa-
ble of measuring and locating muscular activity at circum-
scribed regions, we calculated the correlation between the 
EMG and hMMG for facial expressions of joy, disgust, and 
fear. Clearly, if the MEG source space reconstruction of head 
muscular activity was spatially unspecific, then a dispersed 
pattern of hMMG-EMG correlation would have emerged 
with no consistent peak locations. Instead, we were able to 
find clear peaks of correlations among participants, located in 
correspondence to the muscles we expected to be correlated 
with the EMG activity. Second, we showed that the correla-
tion between EMG and hMMG time courses was modulated 
by the frequency range of the initial band-pass filtering of 
the traces and that correlation followed a trend, across fil-
tering frequency bands, that resembled the one found on 
the EMG power spectrum. Indeed, the highest correlation 
values were found within the band corresponding to the 
25‒150 Hz frequency range, analogous to the pattern found 
in the power spectrum of the EMG signal. If the two signals 

were unrelated, no pattern would have been found across fre-
quency bands. Instead, our results clearly point to a relation-
ship between EMG and hMMG signals. Third, we showed 
that the patterns of muscular activity detected by the hMMG 
across the imitation task are highly compatible with expected 
facial expression patterns, with the addition of unpredicted 
activations, as shown for the case of m. auricularis and neck 
muscles—an outcome that highlights the advantage of hav-
ing a large-scale muscle recorder compared to an a priori 
and limited channel selection. A possible concern is the lack 
of consistent activation of the mouth area, since it usually 
provides critical information regarding the emotion experi-
enced. One possibility is that signals from the mouth were 
not optimally captured due to the poor sensor coverage in 
proximity of the mouth area. However, most of the changes 
in mouth shape are due to muscles that pull the mouth edges, 
like the m. zygomaticus (both major and minor) or m. depres-
sor anguli oris, for example; these muscles, however, are not 
located inside the mouth but in its proximity (Netter, 2019). 
The mouth itself contains a muscle called m. orbicularis oris 
that allows, for example, whistling or kissing, which were not 
performed in this study. Nevertheless, it cannot be excluded 

F I G U R E  5   (a) Valence-contraction correlation: the only statistically significant cluster was found in the region including bilaterally the 
corrugator muscles but also regions higher on the z axis, a picture resembling the joy-disgust comparisons but also including areas in proximity 
to the medialis pars of frontalis muscles. The lateral bar represents the values of the t test against 0 correlation. (b) Accuracy values on the whole 
head voxel: average classification accuracies in the prestimulus and the poststimulus period. Error bars represent standard error of the mean. Dots 
represent single subject accuracies for each time period. (c) Searchlight classification results: A hub of information is provided within the neck 
region. Only voxels showing p < .005 are represented
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that signal from the mouth was not recorded due to the poor 
sensor coverage in proximity of the mouth area.

Overall, these findings illustrate that the hMMG can be 
used to reconstruct muscular information at circumscribed 
locations from the entire head. The latter aspect is the central 
added value of hMMG over or in conjunction with conven-
tional EMG. Our results also indicate muscular activity in 
head regions that are challenging to detect using classical bi-
polar EMG (e.g., due to presence of hair) such as auricularis 
muscles in proximity of the ears or occipitalis muscles on the 
back of the head.

4.2  |  hMMG detects subtle muscular 
activity patterns during affective 
picture viewing

While the application of hMMG might potentially expand be-
yond basic research, our study already shows the benefit for 
affective neuroscience research. In order to show consistency 
between hMMG and conventional EMG results in this do-
main, we correlated the activity at each voxel with the valence 
of the pictures observed, aiming to reproduce the well-known 
result of a negative linear correlation between valence and m. 
corrugator supercilii activity (Cacioppo et al., 1986; Lang et 
al., 1993; Larsen et al., 2003). A significant negative correla-
tion was observed comprising m. corrugator supercilii bilater-
ally, extending to upper fibers, possibly in the pars medialis 
of the frontalis muscle. Considering the Facial Action Coding 
System as an atlas for facial muscle contraction description, 
this pattern resembles a mix of activity in action-unit 1 and 4 
(inner brow raiser and brow lowerer, Ekman & Friesen, 1978), 
suggesting that the view of negative-valence pictures went 
along with sadder emotional states. To exploit the advantage 
of having multiple voxels recorded at one time, we applied a 
LDA to the hMMG data aiming to predict the valence category 
of the presented emotion-inducing pictures. Using whole head 
patterns enabled the above chance classification of a presented 
image's valence category. As a last step, the use of hMMG in 
combination with a searchlight analysis uncovered informa-
tive muscle activity patterns in the neck region, previously 
overlooked when studying the relationship between emotional 
experience and muscle contraction. It is worth noting that, dif-
ferently from EMG, no electrodes need to be attached to the 
participants’ face when using hMMG; this characteristic avoids 
the interaction between electrodes and skin, which might alter 
proprioceptive feedback and thus influence emotional facial 
expression. In addition, it might draw participants’ attention 
to their face and thus reduce spontaneity of facial expression. 
Overall, this set of promising results show how hMMG can be 
readily utilized as a neuroscientific tool for affective science, 
to significantly exceed the amount of information that can be 
acquired using conventional EMG alone.

4.3  |  Limitations and caveats

The correlation analysis between EMG and hMMG provided 
intermediate values, with the highest average correlation of 
around 0.3. This value reached up to 0.6 for some partici-
pants, but overall it is clear that the hMMG does not model 
the EMG time series perfectly. Several reasons for this dis-
crepancy exist: (a) EMG spatial selectivity might have been 
influenced by cross talk, the phenomenon by which the EMG 
signal, aimed to record only one muscle, is contaminated by 
the activity of surrounding muscles. In hMMG, muscular 
activity is estimated at exact point sources using an adap-
tive spatial filter. (b) The signal-to-noise ratio is higher for 
the EMG compared to the virtual sensor traces as suggested 
by the precontraction period in Figure 3a. Some contributing 
reasons could be vicinity of EMG electrodes to the source or 
the measurement via a bipolar montage. (c) We used a tem-
plate MRI for almost half of the participants, which could 
have reduced average signal-to-noise ratio for hMMG. (d) 
While we could have chosen to correlate the envelopes of 
hMMG and EMG time series, we opted for the stricter com-
parison by directly correlating the raw time series. (e) To 
project sensor data into source space, we used the LCMV 
beamformer algorithm, which is frequently used to capture 
distributed brain activity. Application of alternative methods 
such as minimum norm estimation (MNE) are, of course, 
also possible and may lead to better results in some circum-
stances. In the context of our study, the use of MNE led to 
very similar patterns for the imitation task (see online sup-
porting information, Figure S1). (f) Performing emotional 
expressions was not easy for many participants since they 
were only briefly trained to perform those expressions before 
the experiment started; this problem might have resulted in 
nonoptimal contractions throughout the imitation, leading to 
the production of poor muscular signal, which might have 
reduced correlation values.

Related to the last point, it is obvious that some expres-
sions were performed better than others: the sadness map 
does not correspond entirely to the pattern of activity hy-
pothesized a priori, which would have been characterized 
by m. frontalis (pars medialis), plus m. corrugator super-
cilii activity. To a weaker extent, this also applies to fear 
expressions. While, as a first thought, this lack of corre-
spondence might be attributed to intrinsic limitations of 
the hMMG technique, the most likely explanation can be 
found in the participants’ difficulty in imitating emotional 
expressions. As a consequence, this difficulty should not 
only be reflected in the hMMG but also in the EMG signal; 
indeed, for example, the average EMG activity recorded on 
the frontalis muscle in fear expressions was approximately 
one fifth of the one recorded from the m. corrugator, so 
clearly differences like these might emerge also in the 
hMMG signal.
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It is also worth mentioning that source space activity 
maps for the imitation task as well as statistical maps have 
been created based on only 35 samples per emotion, which 
is a small number compared to classical experimental MEG 
brain designs.

Altogether, these considerations suggest that conventional 
EMG is advised whenever the relevant muscle is precisely 
known in advance and confounding due to proprioceptive 
feedback and emotion self-awareness is not of concern. In 
all other cases, hMMG is a powerful alternative or addition. 
hMMG is at the beginning of its development, which leaves 
space for important technical improvements that might pro-
vide a more fine-tuned identification of muscular activity 
patterns and signal-to-noise ratio. For example, muscle fi-
bers have been modeled as current dipoles (but also as trip-
oles and quadrupoles; Barbero, Merletti, & Rainoldi, 2012; 
Fuglevand, Winter, Patla, & Stashuk, 1992; McGill, 2004); 
since fibers run roughly parallel in most of the face muscles, 
we will exploit in future both the orientation of the magnetic 
dipoles produced by muscles to better separate close muscle 
fibers (e.g., as m. masseter and m. risorius) and also the a 
priori information from muscular atlases.

4.4  |  Conclusions and future perspectives

This study demonstrates that hMMG is a powerful method 
to monitor whole head muscular activity, yielding some 
advantages over classical EMG. In addition, our data show 
the potential of hMMG in psychological experiments, by 
replicating and extending established findings in emotion 
research; in this context, hMMG can be readily used as a 
stand-alone muscular recording technique. Beyond the il-
lustrated possibilities, hMMG holds promise as a clinical 
screening tool; for example, using hMMG as an adjunct to 
electroneurography might provide a deeper characterization 
of facial palsies, identifying more easily the muscular groups 
affected by such pathologies (electrical stimulation inside the 
MEG has been shown to be feasible by our group; Neuling  
et al., 2015). hMMG might also become an alternative to 
monitoring the innervation process of implanted muscle flaps 
after facial animation procedures (Bianchi, Copelli, Ferrari, 
Ferri, & Sesenna, 2010); normally, this monitoring is per-
formed by implanting a needle for EMG recording inside 
the innervated flap, which is uncomfortable especially for 
children. Another advantage over EMG, which in a clinical 
context could become critical, is that hMMG might record 
activity of muscles that are difficult to reach with standard 
bipolar surface or even needle recordings (e.g., stapedius 
muscle inside the inner ear, the extraocular muscles, mus-
cles involved in swallowing or located inside the larynx, and 
inner neck muscles such as m. longus colli). However, given 
the inexpensive and easy application of EMG, in many cases 

hMMG may be assisted by EMG, combining the strengths of 
both approaches. Overall, we believe that hMMG is likely to 
gain prominence as a muscular recording technique, expand-
ing its advantages not only to the affective sciences domain 
but also to applied contexts such as the clinical one.
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