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Abstract

Background—Epidemiologic studies investigating prenatal exposures in relation to growth 

typically rely on cumulative growth measures such as weight or BMI. However, less is known 

about how prenatal exposure may impact other aspects of growth dynamics, including timing and 

velocity.

Objectives—To describe and apply a nonlinear growth model previously used in other health 

science fields to characterize postnatal growth trajectories for use in environmental epidemiology 

studies.

Methods—We used a double logistic function to model child weight trajectories from birth to 5.5 

years using data from the Swedish Environmental Longitudinal Mother and Child, Asthma and 

Allergy (SELMA) study. From this, we approximated several infant growth metrics: 1) duration of 

time needed to complete 90% of the infant growth spurt (Δt1), 2) the maximum growth rate in 

infancy or infant peak growth velocity (PGV), 3) the age at infant PGV (δ1), a measure of growth 

tempo, and 4) the weight plateau at the end of the infant growth spurt (α1). We assessed these 

metrics in relation to prenatal perfluorooctanoic acid (PFOA) exposure among 1,334 mother-child 

pairs, and differences between boys and girls.

Results—Average estimated infant PGV and its timing (δ1) were 0.68 kg/month and 3.4 months, 

respectively. Mean infant growth spurt duration (Δt1) was 13 months, ending at an average weight 

plateau (α1) of 8.2 kg. Higher prenatal PFOA concentrations were related to a longer duration of 

infant growth (Δt1: 0.06; 95% CI=0.01, 0.11). PGV was not impacted, but higher prenatal PFOA 

concentrations were significantly related to delayed infant PGV (δ1: 0.58; 95% CI=0.17, 0.99) and 

a higher post-spurt weight plateau (α1: 0.81; 95% CI=0.21, 1.41). After adjusting for false 

discovery, results were only significant for δ1 and α1. We observed a significant interaction by sex 
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for the association with δ1, and stratified analyses revealed the association was only significant 

among girls.

Conclusion—Model-derived growth metrics were consistent with published growth standards. 

This novel application of nonlinear growth modeling enabled detection of altered infant growth 

dynamics in relation to prenatal PFOA exposure. Our results may help describe how PFOA yields 

lower birthweights, but higher weight later in childhood. Future applications may characterize 

adolescent growth or additional metrics of biological interest.
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1. INTRODUCTION

Human growth patterns in early life provide critical information on individual- and 

population-level health. Early life growth can serve as a marker of overall health status, or 

may be an initial indication of developmental abnormalities and be used as a risk factor for 

health effects in later life (Himes 2009; Regnault and Gillman 2014). The clinical 

importance of monitoring child growth trajectories is illustrated by the high frequency of 

well-child visits in the first few years of life (Regnault and Gillman 2014), and by 

considerable attention by the World Health Organization and Centers for Disease Control 

and Prevention to developing and updating child growth standards (Kuczmarski et al. 2002; 

World Health Organization 2009).

In addition to genetics, environmental factors such as nutrition, infection, and social 

conditions were long acknowledged as determinants of human growth, evidenced by war 

and famine related changes in stature (Himes 2009). David Barker first proposed that 

adverse environmental conditions (i.e., famine) during the prenatal period impacted fetal 

growth and predisposed individuals to cardiovascular diseases later on in life (Barker 2007), 

inspiring broad research into the Developmental Origins of adult Health and Disease 

(DOHaD) (Wadhwa et al. 2009). It is now recognized that the prenatal and early postnatal 

periods are highly sensitive to environmental exposures, including anthropogenic 

contaminants (Barouki et al. 2012). Although chemical contaminants may only elicit subtle 

alterations to endocrine signaling and gene expression, these alterations may lead to 

persistent changes in long term health (Barouki et al. 2012).

Mounting evidence suggests that perfluoroalkyl substances (PFASs) are one such group of 

chemicals that may impact growth (Bach et al. 2015). Numerous laboratory and 

epidemiology studies report that reduced fetal growth and lower birth weight are associated 

with prenatal PFASs exposures such as perfluorooctane sulfonic acid (PFOS) and 

perfluorooctanoic acid (PFOA) (Marks et al. 2019; Negri et al. 2017). These substances 

were also reported to alter postnatal growth, including lower weight and BMI among infants 

and toddlers (Andersen et al. 2010; Gyllenhammar et al. 2018; Maisonet et al. 2012; Shoaff 

et al. 2018; Yeung et al. 2019), but then eventually leading to higher weight and adiposity 

later in childhood (Braun et al. 2016; Gyllenhammar et al. 2018; Høyer et al. 2015; 

Lauritzen et al. 2018; Maisonet et al. 2012). A potential limitation of prior studies is the near 
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exclusive use of cumulative growth measures, such as weight and BMI as the outcome of 

interest, rather than evaluating growth characteristics and trajectories. To further our 

understanding of how PFAS may impact postnatal growth, alternative growth metrics are 

needed.

To address this research gap, we propose implementing a nonlinear model to characterize 

early postnatal growth, and derive dynamic growth metrics for novel application to 

environmental epidemiology. Our proposed approach uses two independent steps. First, we 

describe individual growth curves using a double logistic model. Second, we apply the 

derived growth indicators in a linear model conditioned on the exposure of interest. Our 

example application assesses prenatal PFOA exposure in relation to the model-estimated 

growth indicators using data from the Swedish Environmental Longitudinal Mother and 

Child, Asthma and Allergy (SELMA) study.

2. METHODS

2.1 Infant Growth Characterization

Logistic functions are commonly used to model exponential growth limited by some natural 

process, producing a characteristic S-shape (Figure 1) (Tsoularis and Wallace 2015). 

Equation 1 is a single logistic function.

μ(t) = α
1 + e−β(t − δ) (1)

In the context of child growth over time, μ(t) is an anthropometric measurement (e.g., height, 

weight) at time t (e.g., age), α is the asymptotic limit on growth (e.g., final height or 

weight), β is the slope at the inflection point, and δ is the location in time of the inflection 

point where concavity flips (Hauspie and Molinari 2009; Molinari and Gasser 2009). Since 

logistic functions are symmetric about the inflection point, the y-coordinate of the inflection 

point is defined by Equation 2.

μ(δ) = 1 2α (2)

Growth velocity (Equation 3) is calculated by taking the first derivative of Equation 1 with 

respect to time.

∂μ(t)
∂t = αβe−β(t − δ)

(1 + e−β(t − δ))2 (3)

The maximum growth rate occurs at the inflection point and can be calculated using 

Equation 4, and is often called Peak Growth Velocity (PGV) (Hauspie and Molinari 2009).

∂μ(δ)
∂t = αβ

4 (4)
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Finally, the length of time, i.e. Δt, it takes to grow from 10% to 90% of the final weight or 

height (α) can be interpreted as the duration of growth. This can be calculated by Equation 5 

(Meyer 1994).

Δt = ln81
β (5)

Some growth processes may have multiple pulses (Meyer 1994). In the case of child growth, 

genetic and environmental factors may produce defined growth spurts which can be 

described using a double logistic model (Figure 2, Equation 6) (Hauspie and Molinari 2009; 

Meyer 1994).

μ(t) =
α1

1 + e
−β1 t − δ1

+
W − α1

1 + e
−β2 t − δ2

(6)

Here, μ(t) and t are as previously described. The two logistic terms describe two growth 

spurts with rate constants β1 and β2 and inflection point locations at δ1 and δ2, respectively. 

In contrast to the single logistic model with a single asymptote (Equation 1, α), the double 

logistic model has two asymptotes, α1 and W. Growth spurts are separated by the α1 

asymptote (an intermediate plateau in height or weight). W is the final asymptote (e.g. final 

height, weight). Growth velocity over time (Equation 7) can be estimated by taking the first 

derivative of Equation 6 with respect to time.

∂μ(t)
∂t =

α1β1e
−β1 t − δ1

1 + e
−β1 t − δ1

2 +
β2 W − α1 e

−β2 t − δ2

1 + e
−β2 t − δ2

2 (7)

Bock (1973) proposed Equation 6 to describe the onset and intensity of pubertal growth 

where the first and second logistic terms characterized child and adolescent height growth, 

respectively. Later, a third logistic term was added to describe early- and mid-childhood 

growth spurts along with adolescent growth (Bock and Thissen 1980). Due to model 

flexibility and our interest in characterizing weight gain, we propose applying the double 

logistic model to weight observations in infancy and early childhood. Weight measurements 

after age two years are subject to greater uncertainty (Bozzola and Meazza 2012), therefore 

we primarily focus on early growth. In our application the maximum infant growth rate, or 

infant PGV, corresponds to the first inflection point, δ1, and can be calculated using 

Equation 8.

∂μ δ1
∂t =

α1β1
4 +

β2 W − α1 e
−β2 δ1 − δ2

1 + e
−β2 δ1 − δ2

2 (8)
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Meyer (1994) described a taxonomy of double logistic models where growth may be 

sequential in that the second spurt does not begin until the first spurt finishes, or overlap to 

some degree. Since infant and child growth spurts may not be clearly defined and vary by 

individual child (Molinari and Gasser 2009), partial overlap is possible. This overlap may 

impact infant growth parameter estimates. Therefore, to understand how much the child 

growth spurt impacted the infant estimates of interest, we calculated the percent saturation 

S2 of the second logistic term with respect to W when time was set to δ1 (Equation 9).

S2 =
μ δ1 − 1 2α1

W − α1
× 100% (9)

The lower the saturation level, the more sequential the two logistic curves. The higher the 

saturation level, the more overlap between logistic curves. For sequential growth spurts, 

parameters for the two logistic terms can be reasonably isolated since the second logistic 

term will provide negligible information to the first logistic term. Therefore, PGV may be 

approximated by the first term in Equation 8 (e.g. 
α1β1

4 ), and the duration of the isolated 

infant growth spurt, Δt1, can be approximated by Equation 10.

Δt1 = ln81
β1

(10)

This duration can also be interpreted as the age when 90% of infant growth is attained.

3. APPLICATION

While Bock’s logistic models have been used to evaluate growth metrics in relation to 

cardiometabolic outcomes (Sun et al. 2014; Sun and Schubert 2009), evaluations of prenatal 

environmental influences on growth are lacking using this approach. To illustrate the utility 

of these growth indicators in environmental health, we applied the double logistic growth 

models to child weight trajectories using participants in the SELMA study. We then assessed 

prenatal PFOA concentrations in relation to the estimated infant growth indicators.

3.1 Study Population

The SELMA study is a population-based study that recruited more than 2300 pregnant 

women in the first trimester (median week 10) from prenatal clinics in Värmland county, 

Sweden, from November 2007 to March 2010. Detailed recruitment and sample collection 

procedures were described previously (Bornehag et al. 2012, 2015). Participants provided 

written consent. The study was reviewed and approved by the Regional Ethical Review 

Board (Uppsala, Sweden).

3.2 Prenatal Blood

Non-fasting blood samples were collected from mothers during their first prenatal visit. 

Samples were stored at −70°C (serum) at the Laboratory of Occupational and Environmental 

Medicine (LOEM) at Lund University, Lund, Sweden. Serum was analyzed for PFOA and 

cotinine, a biomarker of tobacco exposure, using LC-MS/MS (UFLCXR, SHIMADZU 
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Corporation, Kyoto, Japan and QTRAP 5500, AB Sciex, Foster City, CA, USA), with full 

details provided elsewhere (Lindh et al. 2012; Shu et al. 2018). The limits of detection were 

0.02 ng/mL for PFOA and 0.2 ng/mL for cotinine.

3.3 Covariates

At study entry, data on maternal age, parity, and smoking were collected via questionnaires. 

Mothers were considered smokers if they reported current smoking or had cotinine levels 

indicative of active smoking (>15 ng/mL) at the first prenatal visit (Shu et al. 2018). Data on 

gestational age, birthweight, and maternal weight were collected from the Swedish Medical 

birth register.

3.4 Anthropometric Measurements

Weight measurements and exact age recorded at birth and during well-child visits were 

obtained from medical records. Up to 15 measurements were available from birth to age 5.5 

years (birth; week 2; months 2, 3, 4, 5, 6, 8, 10, and 12; years 1.5, 2.5, 3, 4, 5.5).

In some instances, there were apparent data entry errors for age and weight data, including 

incorrect units (e.g. years vs. months, g vs. kg). To avoid subjective interpretations of 

specific values, we systemically cleaned data to eliminate apparent data entry errors and 

reduce measurement error. This is essential for nonlinear model convergence to a global 

minima (Molinari and Gasser 2009). Visits that did not meet the following criteria were 

deleted. First, age and weight must be ≥10% of the overall median age and weight for each 

visit. Second, age must be ≤3 times, and weight must be ≤10 times the overall median for 

each visit. Third, individual child age must increase monotonically in each consecutive visit. 

Fourth, to allow for known weight variability (e.g., diurnal, seasonal) without losing many 

data points, individual child weight must increase monotonically within a 5% margin of 

error in each consecutive visit. Finally, we excluded children with fewer than 8 of the 15 

possible visits to minimize nonlinear model nonconvergence due to sparse data.

3.5 Statistical Analysis

3.5.1 Child Growth Modeling—We fit individual child weight measurements to the 

double-logistic model (Equation 6) using PROC NLIN in SAS 9.4 (SAS Institute Inc. 2018). 

Example code is provided in the Supplemental Material. The final weight for the children 

(W) was unknown since there is no clear evidence for distinct mid-childhood weight plateau 

(Molinari and Gasser 2009) and observation numbers varied by child in the SELMA study. 

Therefore, we set W to 40 kg, a value that exceeded the data range, to reduce computational 

complexity when there were inadequate data to estimate the plateau of the second curve, 

avoid arbitrarily choosing an age cutoff, and since the second logistic curve is not of primary 

interest. We specified a range of starting values based on visual inspection of observed 

growth trajectories.

For each child, we estimated the infant growth spurt slope (β1), age at infant PGV (δ1), and 

weight plateau (α1) using nonlinear least squares. As an indicator of fit, we output the sum 

of squares error (SSE). To quantify the amount of overlap between the two logistic curves, 

we calculated the percent saturation in the second curve at the time of the first inflection 
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point (S2). We then calculated the duration of infant growth spurt (Δt1) and infant PGV 

assuming sequential growth spurts (saturation ≤10%). We reviewed the distribution of each 

parameter; to eliminate the need for outlier analysis based on regression residual diagnostics, 

we deleted study subjects with growth parameter estimates greater than three standard 

deviations above the mean. We also deleted two study subjects where the approximated δ1 

was less than zero. All growth metrics used in this application to infant weight growth are 

summarized in Table 1.

3.5.2 Univariate, Bivariate, and Missing Data Analyses—We log-transformed 

PFOA concentrations, β1, Δt1, and SSE to approximate a normal distribution and calculated 

geometric means (GM) and geometric standard deviations (GSD). We reported descriptive 

statistics for population characteristics, PFOA, and growth metrics for all children as well as 

for boys and girls separately. We used the χ2 test for homogeneity and t-tests to assess 

potential differences between boys and girls, as well as those included in the current analysis 

compared to those excluded due to missing data. We set the statistical significance level to 

α=0.05.

3.5.3 Linear Regression of Infant Growth Metrics—We assessed prenatal PFOA 

levels in relation to individual estimates of infant growth (β1ι, δ1ι, α1ι, Δt1ι, ιn f ant PGV ι) 

using linear regression. Potential confounders were selected based on prior literature; we 

adjusted for child sex, preterm birth (gestational age <37 weeks), mother’s age, weight, 

parity, and smoking (Andersen et al. 2010; Maisonet et al. 2012; Shoaff et al. 2018). We 

chose to adjust for preterm birth rather than continuous gestational age because bivariate 

associations with exposure and growth parameters were stronger for the dichotomized 

variable. Since PFOA may impact boys and girls differently (Andersen et al. 2010; Maisonet 

et al. 2012), we assessed the interaction of child sex by maternal PFOA concentrations, and 

also reported sex-stratified results. We set the statistical significance level to α=0.05 and 

controlled for false discovery using the Benjamini-Hochberg procedure (Benjamini and 

Hochberg 1995).

3.5.4 Sensitivity Analyses—To evaluate whether associations were driven by preterm 

and low birthweight babies, we assessed PFOA and infant growth indicators among full term 

babies with birthweights greater than the International Statistical Classification of Diseases 

and Related Health Problems low birthweight cut-off of 2,499 g (World Health Organization 

2004). To evaluate the impact of overlapping logistic functions, we compared results for 

children with and without second curve saturation levels (S2) above 10%. Finally, we reran 

analyses excluding one child with an extreme value for the double logistic model SSE.

4. RESULTS

4.1 Study Population and Missing Data Analysis

Of the more than 2300 women enrolled in the first trimester of pregnancy, 1,957 children 

were born into the study, and 245 mother-child pairs were excluded from the current analysis 

due to incomplete data on key demographic variables (e.g. maternal age, weight, smoking, 

parity, child sex, gestational age) (Supplemental Figure 1). Of the 1,712 children in the 
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database with 25,680 possible visits, 1,549 children with 18,740 total visits were remaining 

following data cleaning for age and weight measurements (described in section 3.4). Thirty-

eight children were excluded due to outlying estimated growth parameters (section 3.5.1), 

and another 177 excluded due to missing maternal PFOA measurements. The current 

analysis included 1,334 mother-child pairs with complete data. Children excluded due to 

missing data were on average 73 g heavier at birth (p=0.01), and were more likely to have 

mothers that smoked (11% versus 7%, p<0.01), had prior pregnancies (59% versus 54%, 

p=0.02), and were 1.7 kg heavier at the first prenatal visit (p=0.02). However, there were no 

differences in prenatal PFOA levels between those excluded and the current analysis sample. 

Therefore, adjustment for selection bias was not indicated.

4.2 Maternal and Child Characteristics

At study enrollment mothers had a mean age of 31 years and mean weight of 69 kg (Table 

2). Mean maternal parity was 1.8 children (including the current pregnancy), and 46% had 

no prior pregnancies. GM maternal serum cotinine levels were 0.2 ng/mL, and 7% of women 

either self-reported smoking or had serum cotinine levels > 15 ng/mL. Mean gestational age 

at serum sample collection was 10 weeks, and the GM serum PFOA concentrations were 1.6 

ng/mL. There were no differences in maternal characteristics by child sex. Fifty-three 

percent of children were boys. Mean gestational age was 39 weeks (Table 2), and 4% were 

preterm (<37 weeks gestation). Mean birthweight among all children was 3,617 g and 2.6% 

were low birthweight (≤2,499 g). The mean number of postnatal weight observations per 

child was 12. Boys had significantly higher birthweights, with a mean 89 g higher than girls 

(p<0.01), but there were no other differences in child characteristics by sex.

4.3 Infant Growth Characteristics

Figure 3 shows the growth trajectory for a child in the SELMA study with near average 

growth parameters; observed and predicted weight, and predicted weight velocity over time 

are plotted. Among all children, the mean slope of the inflection point was 0.33 kg/month 

and the GM infant growth spurt duration was 13.3 months (Table 3). Mean infant PGV was 

0.68 kg/month, age of infant PGV was 3.4 months, and the mean infant weight plateau was 

8.2 kg. At the first inflection point, the mean saturation of the second logistic curve was 

6.3%, indicating growth was approximately sequential and that the second logistic curve 

could be ignored when approximating information on infant growth. The GM SSE was 0.7, 

but varied widely with a minimum value rounding to 0 and a maximum value of 95.1. The 

second highest SSE was only 10.3, indicating that the maximum value was extreme for the 

distribution. Note that the growth parameters corresponding to the child with an SSE of 95.1 

were not outliers and were therefore retained for analysis.

Compared to girls, boys had significantly steeper slopes at the inflection point (β1: 0.35 

versus 0.31 kg/month, p<0.01) and shorter growth spurt durations (Δt1: 12.6 versus 14.1 

months, p<0.01) (Table 3). Boys had significantly higher infant PGV (0.74 versus 0.62 kg/

month, p<0.01) that occurred significantly earlier (δ1: 3.3 versus 3.7 months, p<0.01). The 

weight plateau was also significantly higher among boys (α1: 8.4 versus 8.0 kg, p<0.01). 

Figure 4 shows the average predicted weight and weight velocity for boys versus girls. Note 

that the infant PGVs in Figure 4 are slightly higher than the approximated PGV in Table 3. 
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This is due to the fact that infant PGV presented in Table 3 was approximated using the first 

term in Equation 8 for ease of calculation since our focus was on infant growth, and because 

average growth trajectories were sequential (e.g. second term in Equation 8 negligible). In 

contrast, the time series plot in Figure 4 necessitates use of both terms in Equation 8.

There were no differences in curve 2 saturation levels by child sex (Table 3), and values 

indicated that both boys and girls had approximately sequential growth spurts. SSE was 

significantly higher among boys (0.8 versus 0.6, p<0.01), indicating a poorer fit. This 

difference between boys and girls remained significant even after excluding a boy with the 

maximum SSE value.

4.3 Prenatal PFOA Exposure and Infant Growth

Higher PFOA levels were related to smaller slopes at the first inflection point (β1: −0.06; 

95% CI=−0.11, −0.01), and analogously, a longer duration of infant growth ((Δt1: 0.06; 95% 

CI=0.01, 0.11) (Table 4). This change corresponded to a 4% increase in the infant growth 

spurt duration for an interquartile-range (IQR) change in PFOA levels. However, these 

associations were not significant after controlling for false discovery. While infant PGV was 

not impacted, higher prenatal PFOA concentrations were significantly related to PGV 

occurring later in infancy (δ1: 0.58; 95% CI=0.17, 0.99). This change corresponds to infant 

PGV occurring five days later for an IQR change in PFOA levels. Finally, higher PFOA was 

related to a significantly higher weight plateau (α1: 0.81; 95% CI=0.21, 1.41). This 

corresponded to the infant growth spurt stabilizing 255 g higher for an IQR change in PFOA 

levels. Figure 5 shows the average predicted weight and weight velocities for children with 

prenatal PFOA exposure levels at the 10th and 90th centiles to represent high versus low 

exposure.

In sex-stratified analyses, we observed associations among girls only. An IQR change in 

prenatal PFOA concentrations was related to a 7% increase in the infant growth spurt 

duration (Δt1: 0.09; 95% CI=0.01, 0.16), infant PGV occurring approximately 10 days later 

(δ1: 0.58; 95% CI=0.17, 0.99), and stabilizing at a weight 432 g higher (α1: 1.37; 95% 

CI=0.47, 2.27) among girls (Table 4). However, only the associations for age at infant PGV 

(δ1) and infant weight plateau (α1) remained significant after controlling for false discovery. 

In analyses of interaction between prenatal PFOA and child sex, significant differences in 

PFOA-induced changes in the age at PGV (δ1) between girls and boys was detected 

(p=0.02). However, the PFOA-by-sex interaction terms were not statistically significant for 

any other growth parameters.

4.4 Sensitivity Analysis

After excluding 63 infants whom were classified as preterm (<37 weeks gestation) or low 

birthweight (≤2499 g) infants, associations between PFOA and infant growth parameters 

were similar among the remaining 1,271 infants. For example, among all children, prenatal 

PFOA concentrations were related to smaller slope at the first inflection point (β1: −0.07; 

95% CI=−0.12, −0.01) and infant PGV occurring later (δ1: 0.62; 95% CI=0.19, 1.04). 

Among children with sequential double logistic curves (second logistic curve saturation 

levels less than 10% at time set to δ1), results were similar to those presented in Table 4. 
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Specifically, prenatal PFOA concentrations were related to a smaller slope at the first 

inflection point (β1: −0.06; 95% CI=−0.11, −0.01) and infant PGV occurring later (δ1: 0.68; 

95% CI=0.22, 1.15). In contrast, among children with more superimposed double logistic 

curves (saturation levels >10%), there was no association between PFOA levels and slope 

(β1: 0.01; 95% CI=−0.09, 0.12) or age of infant PGV (δ1: 0.19; 95% CI=−0.49, 0.86). 

Excluding the observation with the highest nonlinear model SSE also produced similar 

results.

5. DISCUSSION

This study evaluated the impact of early prenatal PFOA exposure on postnatal growth 

among 1,334 mother-child pairs from the Swedish SELMA study. In a novel application to 

environmental epidemiology, we used time series weight measurements to model growth 

trajectories and derived several infant growth metrics, including duration of the infant 

growth spurt, PGV, time at PGV, and the weight plateau at the end of the infant growth spurt. 

These metrics were then assessed as outcome variables in relation to first trimester PFOA 

levels. We found that higher PFOA levels were related to significantly delayed age of PGV 

and a higher infant weight plateau, particularly among girls. Higher PFOA levels were also 

related to a smaller infant slope and longer infant growth spurt duration, but these results 

were not significant after controlling for false discovery. PGV itself was not impacted.

Most prior literature evaluating PFASs in relation to child growth used cumulative growth 

metrics such as birth and postnatal weights. For example, numerous studies reported that 

prenatal PFOA was related to lower birthweight (Apelberg et al. 2007; Maisonet et al. 2012; 

Meng et al. 2018; Minatoya et al. 2017; Starling et al. 2017), and lower weight and BMI in 

early life (Andersen et al. 2010; Shoaff et al. 2018). In the SELMA cohort, an inverse 

relationship between prenatal PFOA exposure and birthweight was also observed (Wikstrom 

et al., accepted in Pediatric Research). A drawback of cumulative growth measurements is 

that they lack information on the dynamic growth processes (Lampl et al. 2015; Molinari 

and Gasser 2009). While repeated measures analyses of weight has shown that PFOA 

exposure reduced growth through age three (Yeung et al. 2019), alternative methods are 

needed to evaluate growth tempo and velocity.

By implementing a double logistic model and approximating additional growth indicators, 

we detected PFOA-induced changes to growth dynamics. We found that PFOA was 

associated with the tempo of infant growth spurts, where higher prenatal PFOA exposure 

was associated with PGV occurring later in infancy and the infant growth spurt ending at a 

higher weight plateau. The latter finding is consistent with studies reporting associations 

between prenatal PFOA exposure and higher adiposity and BMI among infants (Starling et 

al. 2019), older children (Braun et al. 2016; Gyllenhammar et al. 2018; Mora et al. 2017) 

and adults (Halldorsson et al. 2012). Although results were nonsignificant, we also detected 

that PFOA exposure may increase the duration of the infant growth spurt. However, PFOA 

did not influence peak growth velocity in our analysis.

The term ‘catch-up growth’ is defined as above average growth velocity for a particular age 

(de Wit et al. 2013). In contrast, our results indicated PFOA-related lower birthweight 
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(Wikstrom et al. accepted) preceded a delayed tempo and longer duration of infant growth, 

rather than higher velocity. This suggests that PFOA impacts on growth operate via different 

biological pathways than other potential causes of growth restriction, such as undernutrition 

that characteristically show catch-up growth once alleviated by medical or nutritional 

intervention (de Wit et al. 2013). While Hales and Barker proposed the thrifty phenotype 

hypothesis to explain the lifelong adverse health impacts resulting from fetal and infant 

undernutrition (Hales and Barker 2001), further development is needed to incorporate the 

role of environmental contaminants. Barker’s work also suggested that catch-up growth 

through 3 years of age was an important predictor of future health (Dover 2009). In contrast, 

our analysis focused on infancy because weight measurement data was sparse after 18 

months of age. This limited our ability to detect changes during critical growth periods in 

toddler and early childhood years.

Stratified analyses revealed the association was only significant among girls. We also 

detected a statistical interaction by sex for age at peak growth velocity. This is consistent 

with some prior studies that showed stronger associations between PFASs and growth 

among girls (Chen et al. 2017; Halldorsson et al. 2012; Maisonet et al. 2012; Mora et al. 

2017; Yeung et al. 2019). This may indicate an increased susceptibility among female 

infants to growth mediating pathways. However, we must also note that on average, the 

double logistic model we used fit the data for girls better than boys, which may have also 

influenced the results.

Our study estimated several metrics of postnatal weight growth that show consistency with 

prior literature, adding assurance to model validity. Overall, we observed an increase in 

weight velocity until 3.5 months where it peaked at 0.82 kg/month, after which weight 

velocity declined. The peak velocity is similar to standards developed for British children in 

the 1960s where peak velocities were estimated at 0.85 kg/month (Tanner et al. 1966), but 

less than median WHO standards of 1 to 1.1 kg/month (World Health Organization 2009). 

However, both Tanner et al. (1996) and the WHO (2009) estimated peak weight velocity 

occurring approximately 4 to 6 weeks earlier than we predicted in the SELMA study 

population. This may be due to difference in estimation methodologies. We may have also 

estimated later peak velocities than the WHO standards since we only obtained two 

measurements by one month of age; additional measurements during the first few months of 

life may have revealed an earlier PGV. We also observed higher velocities among boys 

during early infancy which is consistent with standards (Tanner et al. 1966; World Health 

Organization 2009).

The growth modeling approach presented here has several strengths and limitations for 

future application. Beyond a more complete characterization of infant growth compared to 

cumulative weight measures, this method can be applied to other measurements (e.g., height, 

head circumference) and can be characterized beyond infancy. Instantaneous velocities for 

specific time periods coinciding with ongoing exposures, or a priori critical windows can be 

estimated. Further analysis of growth acceleration can be achieved by taking the second 

derivative of the logistic growth curve. The availability of simple, individual child growth 

metrics also allows flexibility for subsequent regression modeling.
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However, adequate reconstruction of growth velocity curves requires serial anthropometric 

measurements with limited measurement error. This may only be feasible in environmental 

epidemiology studies with medical record data linkage. The frequency of measurements also 

affects model-extrapolated growth metrics and nonlinear model choice. The growth metrics 

presented here should be interpreted as approximations, with further investigation needed to 

determine clinical relevance. If there were numerous measurements recorded within the first 

few weeks of life, a triple logistic or other nonlinear model may be required to adequately 

characterize post-birth weight loss. We modeled the unconditional growth curve of each 

child individually, implying that shape is determined by weight and age measurements only. 

In our second step, we evaluated shifts in the curve conditioned on exposure and covariates. 

While this adds simplicity to the nonlinear modeling step, alternative strategies are available 

for modeling all children simultaneously, with some able to condition on exposure and 

demographic variables. These include mixed effects models (Grajeda et al. 2016; Grimm et 

al. 2011), shape invariant models (Beath 2007; Cole et al. 2010), and Bayesian approaches 

(Arjas et al. 1997; McKeague et al. 2011). Future studies are needed to compare our 

approach with alternative strategies.

6. CONCLUSION

We presented a novel application of nonlinear growth models for assessing environmental 

exposures during pregnancy in relation to childreńs growth. Using a double logistic model, 

we characterized several aspects of infant growth including the duration and tempo of the 

infant growth spurt, weight velocity, and the post-spurt infant weight plateau. We found that 

this method provided insight into how prenatal PFOA exposure may shift child growth 

trajectories. Specifically, we observed that PFOA-related lower birthweight was followed by 

a delay in peak growth and a higher infant weight plateau. Follow-up of SELMA 

participants will help further characterize how prenatal exposures may impact child and 

adolescent growth trajectories. Future studies are needed to confirm findings presented here 

and investigate other aspects of postnatal growth in relation to environmental exposures, 

including height and BMI.
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HIGHLIGHTS

• Child growth trajectory modeling provides insight into individual growth 

dynamics

• Prenatal PFOA exposure was associated with a delay in infant growth

• Estimated growth metrics may identify mechanistic differences in growth 

restriction
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Figure 1. Logistic Growth
Logistic growth is exponential with an asymptotic limit (α). At the inflection point (δ, ½α), 

the rate constant is determined by the slope of the tangent line (β). The duration of growth is 

defined here as the time needed to grow from 10% to 90% of α. Growth velocity is the first 

derivative of the logistic growth curve, and the peak velocity is reached at time=δ.
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Figure 2. Double Logistic Growth
Double logistic growth describes two growth spurts governed by two logistic functions with 

slopes β1 and β2, and inflection points at δ1 and δ2. The spurts are separated by an 

intermediate asymptote (α1).
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Figure 3. Observed versus Predicated Postnatal Weight and Weight Velocity for an Average 
Child in the SELMA Study.
This individual child had 13 observations available through 39 months of age (dots), with 

time between observations increasing with age. Visual inspection shows that the predicted 

weight estimates (solid line) fit well to the observed weights. The predicted weight velocity 

curve (dashed line) estimates that the peak velocity occurs at approximately 3.7 months of 

age.
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Figure 4. Average Predicted Weight and Weight Velocity Trajectories from Birth to Age 2 Years 
by Sex
Predictions are shown through age 18 months to emphasize differences between girls and 

boys in infancy. On average, boys weigh more than girls from birth, and this difference 

increases through the first year of life due to a steeper slope (β1). Infant PGV is higher and 

occurs sooner (δ1) for boys compared to girls. Note that the velocity curve graphed here uses 

both terms in Equation 8 by necessity.
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Figure 5. Average Predicted Weight and Weight Velocity Trajectories for High versus Low (10th 

versus 90th Centile) Prenatal PFOA Exposure Levels
Higher PFOA levels were related to significantly delayed infant PGV and higher infant 

weight plateau. Higher PFOA levels were also related to nonsignificantly lower slope, and 

longer infant spurt duration. Note that the velocity curve graphed here uses both terms in 

Equation 8 by necessity.
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Table 1.

Infant Growth Metric Descriptions and Interpretations

Growth
Metric Technical Description Interpretation Symbol Units Equation

Infant Slope Slope of the tangent line at the 1st 

inflection point (a growth rate constant)
Proxy of overall infant growth rate β1 [kg/

months]
6

Infant Peak 
Growth 
Velocity

Peak instantaneous velocity on the 1st 

logistic curve
Peak instantaneous growth rate in 
infancy

PGV [kg/
months]

8, first 

term
a

Age at Infant 
PGV

Age at the 1st inflection point and when 
instantaneous growth rate peaks

Infant growth tempo; how early or 
late the peak infant growth rate 
occurs

δ1 [months] 6

Infant Weight 
Plateau

Asymptote of the 1st logistic curve; an 
intermediate weight, and starting point 
for the 2nd logistic curve

Intermediate plateau in weight at the 
end of the infant growth spurt

α1 [kg] 6

Infant Growth 
Spurt Duration

Time required to growth from 10% to 
90% saturation on the 1st logistic curve 
(a function of β1)

Time it takes to complete 80% of 
infant growth; Age when 90% of the 
infant growth is attained

Δt1 [months]
10

a

Curve 2 
Saturation

The %saturation of the 2nd logistic curve 
when the first logistic curve is at 50% 
saturation (age = δ1)

Measure of how well-defined the 
infant growth spurt is from the 2nd 

spurt; we define ≤10% as sequential 
spurts, >10% as overlapping

S2 [%] 9

a
Assumes sequential growth spurts (S2≤10%) where the 2nd logistic term has negligible contribution
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Table 3.

Infant Growth Characteristics (N=1,334 mother-child pairs)

All Children Boys (N=701) Girls (N=633)

Mean SD Min Max Mean SD Mean SD P
c

Slope (β1)
a
 [kg/months]

0.33 1.60 0.09 1.07 0.35 1.58 0.31 1.62 <0.01

Spurt Duration (Δt1)
a
 [months]

13.3 1.6 4.1 48.4 12.6 1.6 14.1 1.6 <0.01

PGV [kg/months] 0.68 0.22 0.27 1.50 0.74 0.24 0.62 0.20 <0.01

Age of PGV (δ1) [months] 3.4 1.7 0.1 8.8 3.3 1.5 3.7 1.8 <0.01

Weight Plateau (α1) [kg] 8.2 2.4 1.7 15.9 8.4 2.3 8.0 2.5 <0.01

Curve 2 Saturation (S2) [%] 6.3 3.5 0.0 15.0 6.4 3.5 6.2 3.4 0.43

SSE
a 0.7 4.1 0.0 95.1 0.8 3.9 0.6 4.3 <0.01

Abbreviations: p, p-value; PGV, peak growth velocity; SD, standard deviation; SSE, sum of squares error

a
Geometric mean and standard deviation reported

b
PGV was approximated using the first term in Equation 8

c
p-value based on t-test for differences between sexes
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Table 4.

Association between Prenatal log10PFOA Levels (ng/mL) and Growth Characteristics (N=1,334 mother-child 

pairs)

Sex Growth Characteristic Est SE LL UL p

All Children Log of Infant Slope (log10β1) −0.06 0.03 −0.11 −0.01 0.02

Boys −0.03 0.04 −0.10 0.04 0.37

Girls −0.09 0.04 −0.16 −0.01 0.02

All Children Log of Infant Spurt Duration (log10Δt1) 0.06 0.03 0.01 0.11 0.02

Boys 0.03 0.04 −0.04 0.10 0.37

Girls 0.09 0.04 0.01 0.16 0.02

All Children
Log of Infant PGV

a −0.02 0.02 −0.05 0.02 0.35

Boys −0.02 0.02 −0.07 0.03 0.42

Girls −0.01 0.02 −0.06 0.04 0.62

All Children Age of Infant PGV (δ1) 0.58 0.21 0.17 0.99 0.01*

Boys 0.14 0.27 −0.39 0.67 0.60

Girls 1.01 0.32 0.38 1.65 <0.01*

All Children Infant Weight Plateau (α1) 0.81 0.30 0.21 1.41 0.01*

Boys 0.26 0.41 −0.54 1.06 0.53

Girls 1.37 0.46 0.47 2.27 <0.01*

Abbreviations:

*
statistically significant after Benjamini-Hochberg correction for false discovery

Est, linear regression coefficient estimate; LL, 95% confidence interval lower limit; p, p-value; PGV, peak growth velocity; SE, standard error; UL, 
95% confidence interval upper limit

Notes: Models adjusted for sex, preterm birth, mother’s age, weight, parity, and smoking

a
PGV was approximated using the first term in Equation 8
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