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Abstract

This review assesses harmful algal bloom (HAB) modeling in the context of climate change, 

examining modeling methodologies that are currently being used, approaches for representing 

climate processes, and time scales of HAB model projections. Statistical models are most 

commonly used for near-term HAB forecasting and resource management, but statistical models 

are not well suited for longer-term projections as forcing conditions diverge from past 

observations. Process-based models are more complex, difficult to parameterize, and require 

extensive calibration, but can mechanistically project HAB response under changing forcing 

conditions. Nevertheless, process-based models remain prone to failure if key processes emerge 

with climate change that were not identified in model development based on historical 

observations. We review recent studies on modeling HABs and their response to climate change, 

and the various statistical and process-based approaches used to link global climate model 

projections and potential HAB response. We also make several recommendations for how the field 

can move forward: 1) use process-based models to explicitly represent key physical and biological 

factors in HAB development, including evaluating HAB response to climate change in the context 

of the broader ecosystem; 2) quantify and convey model uncertainty using ensemble approaches 

and scenario planning; 3) use robust approaches to downscale global climate model results to the 

coastal regions that are most impacted by HABs; and 4) evaluate HAB models with long-term 

observations, which are critical for assessing long-term trends associated with climate change and 

far too limited in extent.
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1. Motivation and background

Climate change is expected to affect the frequency, magnitude, biogeography, phenology, 

and toxicity of harmful algal blooms (HABs) (Moore et al. 2008; Hallegraeff 2010; 

Anderson et al. 2015; Wells et al. 2015). Projecting likely responses of HABs to climate 

change is critical for informing the development of societal response strategies to mitigate 

their impacts and requires development and application of various types of models. Models 

used to project HAB response range from simple conceptual exercises to complex, highly 

resolved dynamical systems (Anderson et al., 2015). Regardless of model complexity, their 

efficacy depends on how well fundamental physical, biological, and biogeochemical 

processes are represented, as well as the ability to prescribe accurate initial conditions (i.e., 

model starting conditions) and model forcing at boundaries (i.e., time series of external 

variables essential to run the model). The challenges associated with representing physical 

and biological processes important for HAB development and prescribing accurate forcing 

vary greatly by region, HAB species, and time horizon, and inevitably introduce some level 

of uncertainty in model output. HAB scientists have struggled with how to address this 

uncertainty, as the complexity and multitude of processes that influence HAB response can 

be overwhelming (e.g., Wells et al. 2015). This difficult conundrum of anticipating climate 

change effects but struggling with how to evaluate potential HAB response has been 

described as a “formidable predictive challenge” (Hallegraeff 2010), and has inhibited the 

development of actionable projections to increase resilience to future HABs.

The term “harmful algal bloom” applies to a diverse subset of algae that cause a variety of 

negative impacts when they bloom, including human illness from eating contaminated food, 

drinking contaminated water, or breathing harmful aerosols, fish kills, and environmental 

degradation due to high biomass (Erdner et al. 2008). Major types of HABs include toxin-

producing pelagic diatoms (e.g., Pseudo-nitzchia), dinoflagellates (e.g., Alexandrium, 

Pyrodinium, Gymnodinium, Dinophysis, Karenia), and cyanobacteria (e.g., Microcystis, 

Nodularia); toxin-producing benthic dinoflagellates (e.g., Gambierdiscus); fish-killing 

raphidophytes (e.g., Heterosigma); and high-biomass events (e.g., Phaeocystis, Ulva). 

Consistent with this diversity in HAB organisms, the expected HAB response to climate 

change is also diverse. The sensitivity and even the sign of the response of HABs to climate 

change may vary depending on the organism and the setting. For example, increased 

temperature may increase growth rates of organisms that are currently at the poleward limit 

of their thermal habitat at a particular location, but may also result in some locations 

becoming too hot to support growth (e.g., Kibler et al. 2015).

A number of in-depth reviews of climate change impacts on HABs identify a range of 

potential responses to environmental factors including warming temperature, increased 

stratification, altered nutrient availability and composition, light intensity, and ocean acidity 

(Moore et al. 2008; Hallegraeff 2010; Anderson et al. 2015; Wells et al. 2015). HAB 

response may also depend on how climate change will affect zooplankton grazers or 

microbial pathogens that limit their growth, which is particularly difficult to characterize 

since grazer activity may also respond to the same changes in environmental factors that 

determine HAB response and are also likely to be regionally specific (Wells et al. 2015). 

Many of the projected responses of HABs to changing environmental factors rely primarily 
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on theory or laboratory studies that isolate particular organisms or processes. The derived 

rates and responses from these culture studies do not always correspond with those observed 

in the field, potentially reflecting variation among isolates, effects of competition, and/or 

interactions among factors that occur in the environment (Fu et al. 2012; Wells et al. 2015). 

Consequently, these interactions are typically not well parameterized in HAB models, if they 

are included at all. This may lead to greater uncertainty in model projections if interactions 

emerge or become more important to HAB formation in the future as a result of changing 

climate conditions.

Directly linking changes in observed HAB distribution, frequency, or intensity to shifts in 

climatic forcing remains difficult (Moore et al. 2008; Wells et al. 2015), but examples are 

emerging as time series of observations accumulate. Identifying HAB responses (or lack 

thereof) to anomalous climate events or natural climate cycles provide the best opportunities 

for formulating hypotheses as to how HABs might respond to climate change (Trainer et al., 

2019 this special issue). For example, anomalously warm water associated with the 2014–16 

northeast Pacific marine heatwave was associated with an intense, widespread Pseudo-
nitzschia bloom along the U.S. West Coast beginning in spring 2015 that may have been 

fueled by the combination of higher growth rates at warmer temperatures and nutrients 

supplied by upwelling (McCabe et al. 2016). Increased closures of shellfish harvesting due 

to domoic acid from Pseudo-nitzschia and saxotoxin from Alexandrium were linked with 

anomalously warm sea surface temperatures off the coast of Oregon during a positive phase 

of the Pacific Decadal Oscillation (PDO) and strong El Niño event (McKibben et al. 2015). 

In the Rias Baixas along the Northwest Iberian Peninsula, a decrease in upwelling intensity 

over the past 40 years was linked to increased time scales for flushing, which corresponded 

with increased Dinophysis occurrence and shellfish harvest closures (Álvarez-Salgado et al. 

2008). The frequency and magnitude of Pseudo-nitzschia blooms off the coast of Southern 

California was linked to the PDO and more directly with the North Pacific Gyre Oscillation 

(NPGO), but the correlations were weak and exact mechanisms unclear (Sekula-Wood et al. 

2011). Long time series also reveal systems that are not responsive to climate regimes. For 

example, warm water anomalies in Puget Sound (Washington State) generated during El 

Niño winters do not persist into the seasonal window (summer and fall) when blooms of the 

dinoflagellate Alexandrium typically occur. Because of this mismatch in timing, no robust 

relationship exists between levels of paralytic shellfish toxins in Puget Sound shellfish and 

an index of the El Niño-Southern Oscillation (ENSO) (Moore et al. 2010). The use of 

models prognostically to represent mechanistic links between climate and HABs enables 

some hypotheses of HAB response to future climate change to be tested and remains a 

research priority.

Most models used to project HAB response at climate time scales (i.e., decades to a century) 

were initially developed and applied over shorter time scales (i.e., several days to a season) 

to provide hindcasts or forecasts of present conditions. Other reviews have richly detailed 

the current state of HAB modeling over shorter time scales (Glibert et al. 2010; 

McGillicuddy 2010; Flynn and McGillicuddy 2018; Franks 2018), so modeling applications 

of present conditions will be addressed here only in the context of how such models might 

be applied to understand future conditions. As a simplification, most HAB models can be 

characterized as being primarily statistical or process-based. Statistical models are 
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developed from relationships between input and response variables in observations. While 

they have proven effective for hindcasts and near-term forecasts, the statistical relationships 

become less predictable as forcing conditions shift outside the range of past observations 

(Flynn and McGillicuddy 2018). Process-based models may be more robust for projecting 

HAB response under novel environmental conditions, but this assumes that the dominant 

processes remain unchanged under a different set of forcing conditions. Additionally, 

models of response to climate change are dependent on the ability to predict forcing 

conditions such as water temperature, wind strength, or river discharge at spatial and 

temporal scales relevant to the processes represented in the HAB model. The uncertainty in 

the environmental conditions increases greatly with the time scale of forecast, in part 

because of greater uncertainty in the global circulation models (GCM) at longer time scales 

but also because the unpredictability of human behavior becomes a greater factor. For 

example, representing the source of nutrients that might fuel a bloom or affect toxicity could 

depend on resolving shifts in upwelling wind intensity or hydrologic response to 

precipitation events from local watersheds, but changes in land use or direct anthropogenic 

nutrient inputs may have even greater effects on regional nutrient concentrations (Glibert et 

al. 2010). The paucity of successful HAB models at even interannual time scales and the 

uncertainties in predicting future environmental conditions make extending meaningful 

projections to climate time scales challenging.

This review examines the state of HAB modeling in the context of climate change. We 

assess the key components of modeling HAB response to climate change, starting with an 

overview of the HAB modeling methodologies currently in use, reviewing studies that have 

examined HAB response to climate change, and offering recommendations on how to move 

forward by incorporating approaches used in the broader climate and ecosystem modeling 

communities. Considerations include the spatial resolution, time horizon, and forecast 

accuracy of HAB models developed in the present climate, representation of future forcing 

conditions that govern bloom development and transport, and an assessment of whether the 

models developed and calibrated under present forcing conditions can adequately represent 

future response, or if additional factors might emerge to dominate bloom dynamics.

2. Modeling HABs in the present climate

Most HAB models currently in use for present climate conditions focus on either hindcasts 

in process studies or near-term (a few days to seasonal) forecasts for operational and 

management uses. These existing HAB models are the most likely bases for projecting 

future response to climate change. They use a wide range of methodologies, in part 

reflecting the diversity of HAB species, the availability of data for model forcing or 

calibration, and differences in motivation for model development. Here we broadly classify 

HAB models as those that apply statistical (or empirical) techniques, process-based 

formulations, or merge multiple approaches (i.e., hybrid models). The categorizations are 

not meant to be rigid. Other key model attributes could instead be used to distinguish 

methodologies, such the level of complexity from a single organism to full ecosystem, the 

degree of spatial and temporal resolution, the time scales of simulation (event, seasonal, 

interannual, or longer), and whether models are diagnostic hindcasts or prognostic forecasts. 

Nevertheless, we find our categorization of the current modeling approaches facilitates 
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thinking about how each of the methodologies might be adapted to assess HAB response to 

climate change. A brief summary of the modeling studies reviewed here is given in Table 1, 

including this categorization, HAB organism, geographic region, and model type and time 

scales.

2.1 Statistical models

Statistical models use observations to relate key forcing variables (e.g., a nutrient 

concentration, temperature, upwelling wind index, or time of year) to relevant measures of 

HABs (e.g., the timing of HAB events or the abundance, toxicity, and spatial distributions of 

HAB species). A wide range of forcing variables are typically considered during model 

development, some of which may be interrelated (e.g., temperature and time of year, salinity 

and river discharge). While the choice of forcing variables is often guided by our 

understanding (theoretical or empirical) of the underlying physical and biological processes, 

statistical models do not attempt to represent those processes directly, only the cumulative 

effects of them. Statistical models require extensive observations to develop robust 

relationships between forcing variables and HAB response. As such, some of the most 

compelling examples come from regions with long records of HAB monitoring and 

investigation. Examples include Pseudo-nitzschia and Dinophysis blooms off the Iberian 

Peninsula and Ireland (Raine et al. 2010; Cusack et al. 2015; Díaz et al. 2016), Pseudo-
nitzschia off the U.S. West Coast (Anderson et al. 2009; Lane et al. 2009), Alexandrium in 

Puget Sound and the U.S. Northeast (Moore et al. 2009; Ralston et al. 2014), Karenia in the 

Gulf of Mexico (Stumpf et al. 2009), and multiple HABs on the Northwest European Shelf 

and in Chesapeake Bay (Anderson et al. 2010; Brown et al. 2013). Statistical models are 

typically used in hindcasting, but may provide nowcasts if real-time observations of forcing 

variables are available or limited forecasts if lags are built in to the model. Alternatively, 

output from operational physical models can be used in place of observations to provide 

input for statistical models, enabling near-term forecasts of HABs. A wide variety of 

statistical approaches have been used to model HABs in the present climate, ranging from 

simple linear regressions to more complex analyses using artificial neural networks, fuzzy 

logic, or Bayesian inference. Here, we highlight a few approaches that have been used to 

predict the timing and distribution of HABs.

Statistical analysis of observational data sets that record HAB response to changes in 

environmental forcing at climate-relevant time scales can be informative for identifying 

forcing variables that are climate sensitive. Past performance is no guarantee of future 

results, but multi-decadal observations provide evidence at time scales relevant to climate 

change of HAB variation with forcing conditions. For example, in Puget Sound (Washington 

State), optimal conditions for Alexandrium catenella blooms – warm air and water 

temperatures in combination with low river discharge and wind speed – have become more 

common over the past 30 years, as have the frequency and duration of toxic blooms (Moore 

et al. 2009). In many cases, identification of a “window of opportunity” with increased risk 

for bloom development and toxin accumulation, and potential alterations to that window of 

opportunity with climate change, is a primary goal of HAB modeling rather than 

representing specific events or the phytoplankton community. Another example is a study of 

a 30-year record of Dinophysis acuta in the rias of northwest Spain that used a general 
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additive model (GAM) based on upwelling intensity, thermocline depth, tidal range, and 

inoculum strength to predict cell abundances. The analysis did not find evidence for 

increasing trends in bloom frequency or intensity, nor clear relationships to long-term 

climate indices like the North Atlantic Oscillation (NAO) (Díaz et al. 2016). The study did, 

however, find that an exceptional bloom in 1989–1990 appeared to be associated with high 

positive anomalies in sea surface temperature (SST) and the NAO index. That analysis did 

not extend their GAM to climate time scales. To do so effectively, a GCM would need to 

represent the combination of upwelling and solar heating that are ideal for HAB 

development. These ideal physical conditions occur relatively briefly and infrequently, and 

remain challenging to reproduce in finer scale regional models that would be needed to 

adequately represent the blooms (Ruiz-Villarreal et al. 2016).

Forcing variables that represent dominant physical and biogeochemical processes can serve 

as the basis for forecasting the timing of HABs. For example, in southwestern Ireland, 

stratified, wind-driven circulation during summer months can bring harmful Dinophysis spp. 

from the continental shelf into coastal embayments where they can cause toxic events (Raine 

et al. 2010). A simple model based on the 5-day weather forecast for cross-shore wind and 

time of year was used to predict Dinophysis import events and Diarrheic Shellfish Poisoning 

(DSP) toxicity, and these model results were used to guide near-term shellfish resource 

management. In Monterey Bay (California), a logistic regression model incorporating 

multiple forcing factors including time of year, chlorophyll, silicic acid, water temperature, 

upwelling index, river discharge, and nitrate was developed from 8 years of observations and 

used to predict the probability of Pseudo-nitzschia blooms (Lane et al. 2009). Similarly, 

Pseudo-nitzschia blooms off the coast of Ireland were linked to upwelling, and a statistical 

model using a wind index, water temperature, and recent cell densities helped predict the 

timing, but not intensity, of bloom events (Cusack et al. 2015).

Statistical models that spatially resolve forcing variables can provide information on HAB 

distribution based on habitat suitability for the causative organism. For example, a regression 

model using satellite ocean color and sea surface temperature (SST) detected 98% of toxic 

Pseudo-nitzschia blooms in Santa Barbara Channel (California) with less than 30% false 

positive cases (Anderson et al. 2009). In Lake Erie, satellite imagery of Microcystis spp. 

bloom extent was correlated with river discharge and nutrient loading, and could be used to 

generate a seasonal forecast because of the several month lag between input variables and 

bloom response (Stumpf et al. 2012). In northwest Spain, the presence or absence of Pseudo-
nitzschia blooms in several coastal embayments was linked to location, day of year, 

temperature, salinity, upwelling index, and, most importantly, recent bloom occurrence using 

a support vector machine, which is a common machine-learning algorithm (González Vilas 

et al. 2014). In Chesapeake Bay, a Generalized Linear Model (regression-based approach 

allowing for both Gaussian and non-Gaussian distributions) was developed with 22 years of 

cell abundance data and used to make hindcast maps of Pseudo-nitzschia bloom probability 

based on factors including time of year, temperature, salinity, nutrients (phosphate, nitrate, 

silicic acid), river discharge, dissolved organic carbon, and Secchi depth (Anderson et al. 

2010). Another approach in Chesapeake Bay used output from a physical model as input for 

empirical habitat suitability models to make near-term forecasts of HAB occurrence (Brown 

et al. 2013). The methodologies (neural network or logistic regression) and input variables 
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(time of year, temperature, salinity, chlorophyll, nutrients, Secchi depth, total suspended 

solids, dissolved oxygen) for the habitat models varied for the three HAB species 

(Karlodinium veneficum, Prorocentrum minimum, and Microcystis aeruginosa) modeled. 

This approach relied on both physical model results and extensive HAB observations for 

development of the empirical model.

2.2 Process-based models

Process-based (or mechanistic) models use mathematical equations to explicitly simulate 

key physical and biological processes that govern HABs and HAB outcomes. Their 

development requires detailed knowledge of critical life history characteristics and the 

factors that modulate them as well as transport pathways. As such, they require large 

amounts data to represent the many processes in the system and can be limited by their 

parameterizations of rates of growth, mortality, mobility, toxin production, and other key 

processes that are typically derived from simplified laboratory studies of isolated strains. In 

situations where observational or laboratory data are limited, process-based models instead 

may be informed by data on similar organisms or may be limited to focusing on a subset of 

processes that are particularly important to bloom dynamics. Because process-based models 

are more comprehensive than statistical models, they take more time and effort to develop 

and are more computationally expensive to run. Process-based models can be difficult to 

constrain given the nonlinearity and intermittency of HABs, but they are usually more 

transferable across regions because of their explicit representation of physical and biological 

processes.

In systems where transport processes are negligible, models based only on biological 

processes have utility. For example, in Nauset Estuary on Cape Cod (Massachusetts), a small 

embayment with limited exchange and long residence times, interannual variability in timing 

of A. catenella blooms was reproduced with a simple model based temperature-dependent 

growth rates (Ralston et al. 2014). In contrast, for many HABs physical transport provides 

the dominant control on bloom distribution. For these cases a common approach is to use 

velocity fields from a circulation model to advect particles that are representative of the 

HAB. For example, the accumulation of Dinophysis acuminata in the Bay of Biscay at 

temperature and salinity gradients associated with river plumes, and subsequent dispersion 

of the bloom by winds and tides, was well represented by passive particle tracking and 

circulation model hindcasts (Velo-Suárez et al. 2010). A passive particle tracking approach 

was also used in a forecast system for Dinophysis for the rias (drowned river valleys) of the 

northwestern Iberian coast (Ruiz-Villarreal et al. 2016). Particle tracking similar to that used 

for oil spills was used for a Microcystis aeruginosa bloom in western Lake Erie by linking 

satellite ocean color observations and a hydrodynamic model, and importantly the study 

included quantitative skill assessment of the predictions relative to persistence, or no 

influence of transport on the bloom (Wynne et al. 2011).

More commonly, both physical and biological processes play important roles in HAB 

development and they cannot be treated independently. Individual-based models (IBMs), 

like passive particle tracking, can be run within a circulation model or offline using model 

output to represent advection by currents, but IBMs also can incorporate biological 
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processes specific to the organism of interest. For example, an IBM with growth dependent 

on temperature, mortality dependent on shear and population density, and phototaxic vertical 

migration was used to hindcast Karenia mikimotoi blooms along coastal Scotland 

(Gillibrand et al. 2016). Results showed a strong dependence on bloom source region and 

uncertainty in the biological rate parameters, making the model less practical for forecasts. 

In the Gulf of Mexico, an IBM of Karenia brevis that included vertical migration based on 

internal nutrient ratios was used to identify potential source regions by running simulations 

backwards in time (Henrichs et al. 2015).

Rather than IBMs, HAB growth, mortality, and redistribution can also be represented as cell 

concentrations within circulation or biogeochemical models. For example, a model of A. 
catenella that represents cyst germination, growth dependent on temperature, salinity, 

nutrients, and light, and mortality has been used in diagnostic hindcasts and operational 

forecasts in the Gulf of Maine (Stock et al. 2005; Li et al. 2009), and a related model that 

also imposed diel vertical migration was used to simulate A. catenella in an estuary (Ralston 

et al. 2015). Those models treated the HAB as independent of the broader plankton 

community by simulating only the species of interest and prescribing the nutrient field based 

on observations rather than having it evolve dynamically. A more complete ecosystem, 

biogeochemical, and circulation model of the northwest European shelf incorporated 

multiple phytoplankton, zooplankton, and bacteria functional groups and benthic-pelagic 

coupling to simulate high biomass events, providing predictions after calibration to satellite 

ocean color (Allen et al., 2008).

In general, the many biological processes that contribute to HAB development remain 

poorly defined and present major sources of uncertainty in process-based models. Passive 

particle tracking models ignore this and IBM or Eulerian-based hindcasts typically calibrate 

model parameters within acceptable ranges that optimally correspond to observed blooms. 

However, models used to generate forecasts that have operational utility cannot rely on 

retrospective calibration, and so many adopt hybrid approaches that use physical models to 

predict transport processes along with empirical models to integrate biological response. For 

example, near-term forecasts for Pseudo-nitzschia in Bantry Bay in southwest Ireland were 

based on the combination of a passive particle tracking model to represent cross-shore 

advection by upwelling, a circulation model, satellite observations, and in-situ sensors to 

characterize local water properties, and recent toxicity reports (Cusack et al. 2016). 

Similarly, transport of Pseudo-nitzschia from formation regions offshore to the coast 

depending on upwelling or relaxation along the Pacific Northwest coast of the U.S. was 

simulated with particle tracking, and the rate of false positives for toxicity events was 

reduced by incorporating thresholds for overall phytoplankton abundance from an ecosystem 

model (Giddings et al. 2014). A hybrid approach using satellite SST and ocean color along 

with particle tracking was used to explain accumulations of Karenia spp. in the eastern Gulf 

of Mexico (Stumpf et al. 2008), although bloom forecasts are based primarily on satellite 

data (Stumpf et al. 2009). Satellite algorithms for bloom identification are important 

components of many hybrid systems for early warning, using either overall levels of 

chlorophyll-a (Stumpf et al. 2008; Cusack et al. 2016) or specific spectral response like for 

Microcystis in Lake Erie (Stumpf et al. 2012). The utility of satellite data in hybrid models 

depends on the HAB, as for example in Europe it was found to be useful for early warning 
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of Karenia mikimotoi and Lepidodinium chlorophorum but not Dinophysis (Maguire et al. 

2016).

3. Modeling HABs in a changing climate – what has been done?

Projecting HAB response to climate change involves extending the simulation period of 

existing HAB models to decades, centuries, or potentially paleo time scales for retrospective 

climate analyses. Data describing future forcing conditions can be obtained from GCM 

simulations and used as input variables to HAB models. GCMs forecast ocean circulation 

and water properties under future climate scenarios informed by various greenhouse gas 

concentration trajectories. These scenarios describe a range of possible futures based on 

greenhouse gas emissions, economic development, population growth, and other factors. The 

output generated by GCMs quantify changes in physical and biogeochemical conditions and 

can be combined with statistical relationships from past observations to project changes in 

HABs. Additional model layers to represent climate change effects outside of the ocean, 

such as watershed hydrology or land use, can also be integrated. This offers a relatively 

simple approach for examining climate impacts on HABs, but statistical models become 

increasingly error-prone when projecting into conditions different from the training data set 

(Flynn and McGillicuddy 2018). This is because the statistical relationships may represent 

the cumulative effect of multiple processes or interactions that cannot be extrapolated, and 

also because thresholds or tipping points that were not identified or characterized by prior 

observations may be exceeded in the projections. Process-based models are less prone to 

these potential issues, but they represent only a portion of the physical and biological 

complexity due to computational constraints and data limitations, and so even process-based 

models validated under present conditions may not simulate many of the hypothesized 

responses to climate change. Here we discuss some of the approaches for using statistical 

and process-based HAB models to project HAB response to climate change. The different 

approaches vary in complexity in terms of how many forcing variables are considered and 

how they are derived.

3.1 Statistical models

A statistical modeling approach was used to link HAB observations in Puget Sound 

(Washington State) with physical observations and climate model forecasts to evaluate long-

term shifts in environmental conditions favorable for blooms (Moore et al., 2011). Based on 

a 15-year record of paralytic shellfish poisoning toxins in shellfish tissues, A. catenella 
blooms were associated with warm air and water temperatures, low streamflow, weak winds, 

and small tidal height variability. The relationship was extrapolated back in time using 

observations of the forcing variables, and the annual window of favorable environmental 

conditions for A. catenella was found to have increased from 1967 to 2006, with two step-

like increases occurring in 1978 and 1992 when higher annual values were attained 

compared to previous years. The 1978 step change may have been related to the reversal of 

the Pacific Decadal Oscillation (PDO) from cool to warm phase in 1977. The 1992 shift did 

not directly correspond with regional climate indices, and a lagged response to a regime shift 

to warmer summer SST off the Washington coast in 1989 could not be distinguished from 

natural variability. Projections of the statistical relationship using output from a GCM 
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indicated that by the end of the 21st century, the duration of favorable environmental 

conditions for A. catenella would increase by about 2 weeks annually on average (Moore et 

al., 2011).

Another statistical approach to climate response defined habitat zones for the shelf sea of 

northwest Europe based on temperature, salinity, depth, and stratification from regional 

climate projections, finding a general northward shift in HAB species composition (Townhill 

et al. 2018). Species distribution modeling based on current distributions was projected 

forward using a maximum entropy approach for multiple HAB species. On the shelf, 

Dinophysis acuta and Gymnodinium catanatum had the greatest northward shift of 200–500 

km by 2055, while optimal habitat suitability for three species (A. ostenfeldii, A. minutum, 

and P. australis) shifted southward. The southward shift was attributed to factors in addition 

to temperature change, including how the regional bathymetry affects habitat suitability.

Models of HAB response have also been coupled to models of future changes in freshwater 

or nutrient delivery from rivers, which are often not resolved in global models. For example, 

a Bayesian network model was used to link GCM results with process-based models of 

watershed hydrology and a lake ecosystem model to project climate impacts on 

cyanobacteria biomass in Lake Vansjø (Norway) (Moe et al. 2016). The Bayesian approach 

allowed assessment of multiple land use scenarios and incorporation of monitoring data and 

expert knowledge in the probabilistic links between nodes. Results suggest that the benefits 

of better land-use management were partly counteracted by future warming.

3.2 Process-based models

Temperature is a keystone parameter of climate change, and warming of the sea surface is 

apparent in many regions in observational records from satellites and in-situ measurements. 

Because temperature is a strong determinant of growth, changes in temperature can be used 

to approximate changes in potential growth rates of HAB organisms. Warmer waters may 

already be affecting bloom dynamics. For example, sea surface temperature records from 

1982 to 2016 were combined with laboratory-based growth rates for A. catenella 
(fundyense) and D. acuminata (Gobler et al. 2017). In the North Atlantic, calculated mean 

growth rates increased by about 0.01 d−1 over the study period and the duration of favorable 

growth conditions increased by 2 to 3 weeks. In the North Pacific trends were less clear, but 

some regions (the Salish Sea and coastal Alaska) were identified as having increasingly 

favorable growth conditions and HAB prevalence.

Temperature is an important forcing variable in nearly every HAB model of climate 

response reviewed here. A number of studies use projected changes in sea surface 

temperature at certain locations to approximate changes in growth rates and identify 

expansions (or contractions) of optimal growth windows for HAB organisms. The windows 

are defined as the number of days each year when temperatures are projected to be within 

thresholds that support optimal growth (e.g., Moore et al. 2008). For example, an ensemble 

of GCM projections were used to quantify changes in temperature-dependent growth rates of 

Gambierdiscus and Fukuyoa species, dinoflagellates associated with ciguatera fish poisoning 

(CFP), at six sites in the Gulf of Mexico through the end of the 21st century (Kibler et al. 

2015). The results suggest increased abundance and diversity of Gambierdiscus spp. and 

Ralston and Moore Page 10

Harmful Algae. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



greater CFP risk in the Gulf of Mexico, but a shift in the species composition at higher 

temperatures suggests lower overall risk in the Caribbean. A similar ensemble approach was 

used to calculate shifts in the timing of temperature growth windows for A. catenella and 

Vibrio spp. bacteria in Puget Sound and Chesapeake Bay, with the A. catenella bloom period 

predicted to start 1 month earlier and end 1 month later (Jacobs et al. 2015). In addition to 

changes in bloom timing, the study identified geographic shifts in optimal temperature zones 

along coastal Alaska for Vibrio, which while not a HAB, presents a methodology that could 

be applied in HAB studies to examine potential latitudinal shifts in species distribution 

without directly simulating HAB dynamics.

Potential shifts in the timing of optimal growth windows as well as the spatial distributions 

of HABs can be evaluated by utilizing spatially resolved information on future forcing 

conditions from GCMs or regional models of climate change rather than projections at a 

single location. For example, in Puget Sound, regional scale atmospheric, ocean, and 

hydrologic models were combined to represent multiple potential influences on optimal 

temperature (and salinity) windows for growth of A. catenella (Moore et al. 2015). 

Comparing model results for circa-1990 and circa-2050, atmospheric heating was projected 

to increase the duration of favorable growth conditions by 30 days per year with the biggest 

increases in HAB-favorable conditions occurring in the North Basin and Strait of Juan de 

Fuca. Changes in the timing and magnitude of river discharge and upwelling on temperature 

and salinity were found to have less effect on calculated growth rates. The study did not 

address potential changes in nutrient loading due to upwelling or anthropogenic sources.

In addition to HAB growth rates, warming temperature may also be expected to increase 

growth rates of some grazers that prey on HAB species, including zooplankton, benthic 

invertebrates, and fishes. Moreover, predator-prey interactions and the response to changing 

environmental conditions are more complex than species growth rates, as changes in the 

distribution, abundance, community composition, toxicity, and nutritional quality of HAB 

species may all depend on temperature and can affect the relative balance of growth rates 

and loss from predation, and thus bloom development (Wells et al. 2015). Representing 

quantitatively the many factors contributing to effects of predation on HAB growth and 

decline, including temperature, remains a major challenge for process-based models in both 

current and climate change scenarios. To this point, most of the modeling of temperature 

impacts has focused on HAB growth rates alone rather than assessing the potentially 

differential responses of grazers and prey.

The above examples directly link changes in temperature to temperature-dependent growth 

rates of HAB organisms to examine changes in bloom timing and spatial distribution. Some 

other examples also consider salinity, but the relatively small changes in salinity projected in 

the study regions meant that the growth responses were primarily driven by changes in 

temperature. Nutrients are another forcing variable that strongly determine growth rates and 

toxicity of HAB organisms and are projected to be altered by climate change. For example, a 

model of the mixotrophic dinoflagellate Karlodinium veneficum and its algal prey, 

Rhodomonas salina, was used to simulate growth under various temperature and nutrient 

stoichiometry scenarios (Lin et al. 2018). While these scenarios were not directly linked to 

GCM output of future climate change scenarios, they were informative of future HAB 
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response and suggest that warmer, wetter springs combined with increased nitrogen inputs to 

Chesapeake Bay may be more favorable to HAB development. In contrast, GCM output was 

used as boundary conditions for a coupled oceanographic and biogeochemical model with 

four classes of phytoplankton, three for zooplankton, one for bacteria, nitrogen and 

phosphorous in different forms, and benthic mineralization on three regional grids at 1/10-

degree resolution to assess conditions for Prorocentrum and Karenia spp. around 2100 

(Glibert et al. 2014). The study defined regions of suitable habitat or propensity for toxicity 

based on temperature, salinity, and nutrients for two time slices: the period 1980–1990 for 

the present day and 2090–2100 for the future climate scenario. Model results showed 

expansion both spatially and temporally of both species on the northwest European shelf and 

northeast Asia, and relatively little change in southeast Asia.

4. Modeling HABs in a changing climate – what should be done?

The fact that relatively few modeling studies quantitatively project how climate change may 

affect the distribution and abundance of HAB populations or toxicity is symptomatic of the 

challenges associated with this important task. Challenges associated with understanding the 

biological response of HABs to climate change, as well as suggestions for best practices that 

should be employed to address them, are discussed in Wells et al. (2015); however, little 

attention was given to the modeling infrastructure needed to project HAB response to 

climate change. Generating useful projections of HAB response to climate change will 

require engagement with other communities that can help refine the representation of future 

conditions in HAB models, including climate scientists, marine ecologists, watershed 

hydrologists, invasive species biologists, and environmental managers and policy makers 

(Glibert et al. 2010). Here we offer several suggestions to improve modeling of HABs in a 

changing climate, schematically summarized in Figure 1.

4.1 Use process-based models

Even though there are challenges associated with uncertainty in model parameterizations, 

nonlinear feedbacks, and computing power, process-based models have distinct advantages 

over statistical approaches for projecting impacts of climate change on HABs. In many 

cases, data limitations initially hinder development of process-based models for emergent 

HABs or regions without many observations, and so statistical models can be extremely 

important in the diagnosis of bloom mechanisms and development of process-based models. 

Statistical models are often well suited for shorter-term projections and management 

applications, particularly when the models incorporate a dominant influence of periodic 

forcing like from ENSO or PDO. Importantly for climate change response, process-based 

models explicitly represent physical and biological mechanisms involved in HAB 

development, and so they are less likely to lose validity when forcing variables are applied 

that extend outside of periods of historical observation. Incorporating multiplicative effects 

of changes in temperature, nutrient availability, or stratification (among other factors) into 

process-based HAB models requires focused, process-oriented field or laboratory studies 

that record organism response beyond just abundance, ideally in the context of the 

ecosystem response rather than just for individual strains (Flynn and McGillicuddy 2018). 

Changes in HAB severity will depend on the cumulative effects of factors including 
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differential responses of predators and prey, changing nutrient availability, and shifts in 

transport patterns rather than a simple parameter dependence from on lab studies. 

Circulation models can be directly coupled with ecosystem models to simulate projected 

physical and biogeochemical changes at climate time scales. This approach is intrinsic to 

many earth system models that have been used to examine changes in ecosystem and 

nutrient dynamics globally and regionally using various downscaling methods. For HAB 

models, the limited understanding of complex predator-prey interactions and competition 

among classes within the ecosystem limit our ability to parameterize process-based models 

(Wells et al. 2015), and should be a focus of future research.

Process-based models are typically more complex than statistical models. The introduction 

of additional processes and parameters may improve model fit, but can also reduce 

predictive skill if not based on a robust representation of the underlying processes (Bell and 

Schlaepfer 2016). Regime shifts, in which the dominant processes or forcing variables 

controlling bloom development change in large, abrupt, and persistent ways, are particularly 

challenging to model, and additional complexity may increase variability in the results 

without incorporating the relevant combination of stressors leading to the regime shift, 

particularly if the model is not validated with data independent from the training region and 

forcing conditions. HAB models used to assess climate impacts should be rigorously 

evaluated to identify model parameters that most sensitively determine model outcomes, and 

this should guide efforts to simplify complex models and to focus laboratory and field 

studies to refine the uncertainty in those key parameters (Flynn and McGillicuddy 2018). 

The development of process-based models requires parallel efforts of laboratory and 

observational studies to refine key rate parameters and process dependencies, including the 

effects of changes to multiple forcing factors changing simultaneously. The applicability of 

process-based models is predicated on validation across a broad set of forcing conditions, 

and so data collection is particularly critical for in developing models for HABs in regions 

that have a sparse history of monitoring and research. Statistical approaches should continue 

to play an important role in HAB modeling, particularly for resource management and 

public health protection over event to seasonal time scales, but extending statistical models 

to predict climate change response has limited merit.

4.2 Use an ensemble approach

An ensemble approach can be used to address the uncertainty that is introduced to long-term 

projections of HAB response from a wide range of sources, including HAB or ecosystem 

model parameterizations, variability in the climate model forcing (GCM selection, emissions 

scenario, downscaling approach), and the stochastic response of non-linear physical-

biological interactions within the model system. An ensemble approach considers multiple 

model scenarios to quantify how different choices of key input factors, and potentially 

within the model formulation as well, affects the uncertainty in model projections. The 

selection of scenarios to use in an ensemble approach depends on the particular application 

and available resources, but sensitivity testing based on a subset of potential cases can be 

used to identify components of the model system that are particularly important sources of 

uncertainty in the long-term response. The central tendency (or “most likely” scenario) of 

the ensemble might be the focus of analysis and reporting on the modeling, but it may also 
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be informative to select scenarios that encompass the full range of possible future outcomes. 

The process used to develop the scenarios and the sensitivity to various model aspects within 

the ensemble provide critical context for interpreting the results and for guiding future 

research efforts to minimize or mitigate model uncertainty.

HAB models constitute a small subset of the broader array of ocean biogeochemical models, 

so models representing similar processes can provide context for assessing climate change 

response. A common approach is to couple global or regional circulation models with 

biogeochemistry models of varying complexity to project ecosystem response under future 

climate forcing. The ecosystem response depends both on the circulation model and the 

biogeochemical formulation, so generally an ensemble approach evaluating multiple, 

independent models with the same set of forcing conditions provides critical context for 

evaluating model results. For example, a study using six climate model simulations along 

with an empirical model for predicting chlorophyll from physical model fields projected a 

global increase in primary productivity of 0.7–8% in response to warming over the 21st 

century (Sarmiento et al. 2004). In contrast, analysis of four coupled climate-carbon cycle 

models projected a global decrease in primary productivity of 2–20% (Steinacher et al. 

2010). The differences between the results were attributed to differences in the biological 

model formulations, in that nutrient availability was incorporated in the coupled model but 

not directly in the empirical approach. Both studies found large regional variability in the 

response to climate change, as well as regional differences in the agreement among the 

ensemble members. Model skill varied regionally depending on the model, so appropriately 

weighting the ensemble members based on their skill regionally can provide a better solution 

than a simple average of ensemble members, and quantifying the inter-model variation 

provides a valuable measure of the uncertainty in the region of interest (Steinacher et al. 

2010; Stock et al. 2011). Evaluation of model skill for ecosystem response requires long-

term observations, as discussed in greater detail below. For chlorophyll, identifying 

observational declines at both regional and global scales required using Secchi depth 

measurements spanning more than 100 years because fluctuations in chlorophyll at the 

interannual to decadal time scales were sufficiently large that long-term trends were not 

robust over the ~30 years of satellite data (Boyce et al. 2010).

Modeling studies of climate impacts on HABs have typically examined responses at time 

scales of 50 to 100 years (e.g., Moore et al. 2008; Glibert et al. 2014; Townhill et al. 2018), 

as this is when greenhouse gas concentration trajectories associated with the different 

potential futures diverge and high emission scenarios become distinguishable from natural 

variability. Yet for management and public policy decisions, characterizing changes in HAB 

risks at shorter time scales (i.e., decadal) may be more critical. For physical models, 

projection of climate response at decadal time scales remains a major challenge (Zhang and 

Kirtman 2019). At decadal time scales, both external forcing and internal ocean response 

can be dominated by noise, making model response unpredictable. Internal climate 

variations like ENSO, AMO, or PDO may dominate responses of key climate variables like 

upwelling strength or river discharge, particularly at decadal time scales, swamping trends at 

century time scales that are more robustly represented across the suite of climate models. 

Climate predictability at decadal time scales varies regionally with the local modes of 

internal variability, such that some regions have greater predictability (North Pacific, North 
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Atlantic, Southern Ocean) than others (tropical Pacific) (Zhang and Kirtman 2019). An 

understanding of the regional predictability of climate model, including variation among 

models, is particularly important for HAB models that are typically only simulating regional 

scales at decadal time scales.

Using validation and sensitivity testing to understand uncertainty in HAB models, in 

addition to the uncertainty in projections of the physical and biogeochemical conditions, is a 

critical step prior to projecting HAB response to climate change. HAB models of present 

conditions need to include more thorough assessments of model uncertainty, with ensemble 

sensitivity studies or more formal means like Bayesian models that incorporate uncertainty 

estimates in the results (Anderson et al. 2015), as the uncertainty compounds when run in 

climate forecast scenarios. HAB model failures also are instructive particularly in the 

context of potential regime shifts with climate change when major shifts in forcing 

conditions are not adequately represented in the model setup, as with anomalous conditions 

that affected Alexandrium in the Gulf of Maine (McGillicuddy et al. 2011).

Scenario planning is becoming a popular approach for decision-makers to address 

uncertainty in future projections and help prepare for conditions that may be substantially 

different from current conditions (Star et al. 2016). Scenario planning involves crafting 

stories about how the world might turn out in the future, it is not about predicting what will 
happen. Scenarios are developed around major uncertainties, or what ifs, in how key 

parameters m ight change in the future. Scenario planning can combine both quantitative and 

qualitative components, and involve input from researchers as well as stakeholders. Working 

through scenarios not only informs the development of societal response strategies to deal 

with future HABs, but also helps to understand how socioecological systems work and 

respond to HABs under current climate conditions. Benefits from scenario planning include 

increased flexibility to react quickly to a changing world, more thoughtful strategic planning 

and decisions, innovative ideas, early and broad risk assessment, and increased ability to 

achieve a common vision (Star et al. 2016). The use of scenario planning for evaluating 

HAB response to climate change offers a path forward for addressing some of the major 

uncertainties in biological responses identified in Wells et al. (2015) while still providing 

actionable projections.

4.3 Use downscaled climate models

Global earth system models typically have spatial resolution too coarse (nominally 1° for 

CMIP5 generation of climate models) to represent regional variability like tides, river 

inflows, coastal topography, or water column structure in detail. Even high resolution global 

models at 1/12° can’t resolve features at the scale of the baroclinic Rossby radius (ci/f, 
where ci is the internal wave speed and f the Coriolis parameter), which is relevant to coastal 

upwelling, frontal jets, and buoyant plumes, in more than 90% of the coastal ocean. To get to 

70% coverage, 6 times higher resolution would be required (Holt et al. 2017). Higher 

resolution regional circulation models provide better model skill for resolving stratification 

and variability at seasonal time scales, but linking regional scale models to forcing from 

GCMs requires accounting for the coarse resolution and regional biases through 

downscaling, bias corrections, and multi-model ensembles (Stock et al. 2011). Resolving 
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physical and biogeochemical processes at coastal scales is critical for HAB modeling, as the 

HABs that have the greatest impacts on fisheries, aquaculture, or through direct exposure 

typically occur near the coast.

Downscaling from global models can be statistical or dynamical. Dynamical downscaling 

provides physically consistent representations of the dynamical system at higher resolution, 

but it is comparatively expensive to setup and run the models and remains subject to regional 

biases in the global models (Stock et al. 2011). For example, dynamical downscaling was 

used to model the North Sea at 3 km resolution to project changes in bottom temperature 

and salinity, and these physical model fields were used to project changes in distributions of 

75 benthic species (Weinert et al. 2016). The results indicated northward shifts for about 2/3 

of species and southward shifts for the rest, and the downscaled model illustrated the strong 

influence of bottom topography on habitat gains and losses. An ensemble of dynamically 

downscaled regional models of the Baltic Sea with different nutrient loading scenarios was 

used to assess hypoxic and anoxic extent and potential influences of changes in river 

discharge, air-sea fluxes, and intensified nutrient cycling (Meier et al. 2011). The variance in 

biogeochemical response with forcing from three physical models with different structures 

but similar forcing provided a metric of the robustness of the results relative to model 

variability.

Statistical downscaling can take various forms, including linear regression, general additive 

models, and neural networks, and can link global climate model output variables to variables 

of interest in a particular region. Approaches for selecting appropriate downscaling 

approaches are reviewed elsewhere (e.g., Wilby et al. 2004; Haylock et al. 2006). The 

robustness of the downscaling depends in part on the data available to develop statistical 

relationships between predictor and response variables, and it requires keeping a subset of 

the observations separate from the training data for validation. Statistical downscaling also 

faces limitations when extrapolating into climate conditions that are outside the bounds of 

the observational record, as model failures may not be apparent even when using 

independent validation data from the same parameter space as the training data (Bell and 

Schlaepfer 2016).

Various statistical downscaling approaches have been used to link climate model outputs to 

biogeochemical models at regional, coastal, or estuarine scales. A constructed analogues 

approach that represents sharp geographical gradients and daily variability through linear 

regressions of model output to observations (Hidalgo et al. 2008) was used to relate air 

temperatures from GCMs to water temperature in the San Francisco Estuary, and thus 

project climate impacts on an endangered fish species (Brown et al. 2016). Four different 

downscaling methods were trained on 20 years of observations to downscale air temperature 

and precipitation fields from four GCMs to the Susquehanna River watershed to generate 

inputs to a water balance model and predict changes in surface salinity and temperature in 

Chesapeake Bay (Muhling et al. 2018). Those downscaled salinity and temperature 

projections were combined with habitat models for three Vibrio species to predict future 

increases in the seasonal duration and spatial extent of the pathogens (Muhling et al. 2017). 

Several examples using statistical downscaling, bias correction, and ensemble approaches to 

model climate change impacts on regional fisheries are examined in Stock et al. (2011), 
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which details many of the considerations in using downscaled climate models to drive 

ecosystem forecasts that are relevant to HAB models.

4.4 Evaluate models with long-term observations

Global climate models are known to have biases and skill that vary regionally, and these can 

be assessed by comparison with observation records during GCM model hindcast periods. 

Observations to evaluate physical parameters like air temperature or wind speed, and to 

lesser extent water temperature and salinity, are far more prevalent than long-term 

observations of biogeochemical parameters like nutrient or chlorophyll concentrations. 

Extended time series of HAB abundance or toxicity that are needed to evaluate HAB model 

hindcasts at climate time scales are even rarer. Long-term observations of biologically 

relevant data are critical to identify trends in what are often sparse, patchy distributions 

(Ducklow et al. 2009), and they also need to be incorporated into assessments of climate 

forecasts. Fisheries surveys are an example of a rich data type that has been used to identify 

decadal scale variability associated with the PDO or NAO as well as seasonal to interannual 

variability with ENSO (Lehodey et al. 2006). Models of climate impacts on fisheries 

incorporate these long-term records into statistical relationships between physical fields and 

the response of the variable of interest, and those relationships can be continually updated as 

additional data are collected (Hollowed et al. 2009; Hare et al. 2010). The Continuous 

Plankton Recorder (CPR) survey is another observational record that goes back more than 

half a century, and it has been used to document shifts in community composition with 

decreased abundance of dinoflagellates and increases of some diatoms, including Pseudo-
nitzschia, which were attributed to increased sea surface temperatures and stronger 

stratification (Hinder et al. 2012). CPR data were used to identify increases in warm-water 

phytoplankton and zooplankton species and decreases in cold-water species that were 

correlated with sea surface temperature in the northeastern Atlantic, air temperature in the 

Northern Hemisphere, and the NAO (Beaugrand and Reid 2003). Northward shifts in 

community composition in a coupled physical and biogeochemical model that were 

consistent with CPR observations were used to diagnose the processes leading to the 

changes, and showed that in addition to warmer temperatures that changes in circulation and 

stratification contributed to the patterns in the model (Barton et al. 2016).

To be useful for assessing climate impacts on biological systems, models must be able to 

distinguish the response to climate variability from internal biological dynamics (Lehodey et 

al. 2006), and ideally HAB models of climate response should help in identifying similar 

responses among different regions. Successful modeling approaches can be transferred to 

new regions, but requires accounting for similarities and differences in the physical 

environment, ecosystem characteristics, and HAB population, all of which are multi-

dimensional and difficult to quantify without observations. Identifying climate effects in 

observations requires at least several decades of consistent HAB monitoring, and yet few 

regions have such high-quality time series data, nor is there monitoring in regions where 

future outbreaks may occur (Anderson et al. 2015; Wells et al. 2015). In addition to climate 

change, anthropogenic stressors such as fishing pressure, nutrient inputs, and invasive 

species introduction increase the challenges of identifying trends in observations of HAB 

abundance and distribution. Nutrient inputs have increased more than ten-fold in some 
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coastal regions over the past few decades with usage of synthetic nitrogen fertilizer usage 

and urbanization, but the impacts vary widely (Howarth 2008). Projecting future nutrient 

conditions may require accounting for regional increases or decreases in nutrient loading 

with watershed land-use changes (Bouwman et al. 2009; Glibert et al. 2010) in addition to 

physical changes in the nutrient delivery by river discharge or coastal upwelling that are 

incorporated in models of HAB dynamics presently. Shifts in nutrient inputs by 

eutrophication or climate change may also affect nutrient limitation and require 

incorporating currencies in addition to nitrogen into HAB models (Flynn and McGillicuddy 

2018).

While it is generally accepted that HABs are globally increasing in severity and extent, the 

role of climate change in the observed trends has been challenging to isolate mechanistically 

among the many other contributing factors (Moore et al. 2008). HAB models applied 

retrospectively at climate time scales may provide a useful means of hypothesis testing as 

opposed to focusing on predictions of future impacts. As has been done with observations 

(Moore et al. 2011), weather events, anomalous seasonal conditions, or sharp changes in 

forcing can be simulated retrospectively with HAB models as analogues for climate change 

impacts. Such scenarios can more realistically incorporate multiple stressors, and allow for 

quantitative assessment of model performance and uncertainty using observations that are 

independent from the model calibration. For example, laboratory studies have found that 

growth rates for Alexandrium spp. increase up to 20–24 °C (Watras et al. 1982; Etheridge 

and Roesler 2005; Bill et al. 2016), suggesting that warmer water will lead to faster growth 

and greater bloom intensity. Observations of A. catenella in an estuary in the northeastern 

U.S. found that the blooms in warmer years occurred earlier but did not have longer duration 

or greater maximum cell abundance, and instead the blooms terminated before water 

temperatures reached the values corresponding with maximum growth rates from the 

laboratory (Ralston et al. 2014). A process-based, single-species model that used the 

laboratory growth rates could effectively reproduce the growth phase across multiple years 

with widely varying temperature conditions, but an empirical formulation for mortality that 

was not strictly temperature-dependent was needed to represent bloom termination across 

the years, and could only be calibrated based on comparison with the multi-year 

observations (Ralston et al. 2015). Bloom dynamics in that system remained similar enough 

over several years that the empirical formulation for mortality had predictive skill, but 

climate change can potentially induce more fundamental shifts in ecosystem dynamics, for 

example changing from bottom-up (nutrient availability regulating growth) to top-down 

(grazing control) control (Wells et al. 2015). Developing robust models of the interactions 

between HAB growth rates and grazer response under changing forcing conditions, 

particularly when the relationships may be strongly non-linear, remains a central challenge 

for HAB modeling across all simulation time scales (Flynn and McGillicuddy 2018).

5. Conclusions

Modeling HAB response to future climate change is still an emerging field, as evidenced by 

the limited number of studies (fewer than 10) and diversity of approaches reviewed here. 

Extending HAB models to decadal time scales or longer, extrapolating into forcing regimes 

that are outside historical observations, representing potential regime shifts in the dominant 
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processes controlling HAB development, and incorporating uncertainty and variability in 

physical climate model projections are challenging but feasible tasks. Based on this review, 

we offer several recommendations for how to best move forward with modeling HAB 

response to climate change. Statistical models have predominantly been used for near-term 

and operational HAB forecasts, but the uncertainty in model output increases as forcing 

conditions diverge from the historical observations that were used to develop them. Process-

based models more directly represent key physical and biological factors in bloom 

development, and thus are better suited to extrapolation into future climate forcing 

conditions. HAB models should be developed in the context of the ecosystem response to 

climate change, recognizing that the response of many key processes and the potential for 

regime shifts are common to the broader ecosystem. Uncertainty in HAB model projections 

associated with process formulations or climate model forcing should be quantified and 

conveyed using ensemble approaches and scenario planning. Downscaling of global (and 

potentially regional) climate models to coastal scales should be done robustly in 

collaboration with physical climate modelers to preserve features of the forcing that are key 

to HAB development. Finally, long-term observations of HABs and forcing conditions are 

essential to identify trends associated with climate change and for rigorously assessing HAB 

model results. Long-term observations are critically lacking in many HAB impacted regions, 

and this may represent the biggest impediment to the development of models that can 

effectively assess HAB response to climate change. Multiple decades of HAB monitoring 

are often necessary to distinguish long-term trends from the response to cyclic climate 

forcing, so any model-based assessment of HAB response to climate change needs to be 

closely coupled to high quality observations. Modeling studies of HAB response to climate 

change will likely expand as resource managers and policy makers increasingly demand 

projections of HAB impacts at both near-term and longer time scales. As such, HAB models 

will be crucial for informing the development of strategies to reduce socioeconomic and 

public health impacts as well as to increase resilience of socioecological systems to future 

HABs.
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Highlights:

• Process-based models preferred to statistical for projecting climate change 

impacts

• Long-term observations are critical for model development and evaluation

• Evaluate model uncertainty with ensemble approaches and scenario planning

• Use robust downscaling of climate model projections
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Figure 1. 
Schematic diagram summarizing considerations for improving modeling of HAB response 

to climate change. Multiple global earth systems models, emissions scenarios/relative 

concentration pathways, and downscaling approaches should be considered in an ensemble 
approach to generate downscaled climate and ocean model output. Downscaling is necessary 

to resolve critical physical and biogeochemical processes for HAB development at coastal 

scales. These downscaled data should be used to force process-based models of HAB 
response with the results considered in an ecosystem context. Models should be evaluated 
with long-term observations. This step can be informative for selecting global models, 
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identifying biases in downscaled model projections, and validating models of HAB and 

ecosystem response. An important final step is to identify components of the model system 

that are key sources of uncertainty in the long-term HAB response (i.e., evaluate uncertainty) 

and to develop scenarios (i.e., scenario planning) around those sources of uncertainty in the 

development of societal response strategies.
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