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This study investigated whole-brain dynamic lag pattern variations between neurotypical (NT) individuals and individ-
uals with autism spectrum disorder (ASD) by applying a novel technique called dynamic lag analysis (DLA). The use of
3D magnetic resonance encephalography data with repetition time = 100 msec enables highly accurate analysis of the
spread of activity between brain networks. Sixteen resting-state networks (RSNs) with the highest spatial correlation
between NT individuals (n = 20) and individuals with ASD (n = 20) were analyzed. The dynamic lag pattern variation
between each RSN pair was investigated using DLA, which measures time lag variation between each RSN pair combina-
tion and statistically defines how these lag patterns are altered between ASD and NT groups. DLA analyses indicated that
10.8% of the 120 RSN pairs had statistically significant (P-value <0.003) dynamic lag pattern differences that survived cor-
rection with surrogate data thresholding. Alterations in lag patterns were concentrated in salience, executive, visual, and
default-mode networks, supporting earlier findings of impaired brain connectivity in these regions in ASD. 92.3% and
84.6% of the significant RSN pairs revealed shorter mean and median temporal lags in ASD versus NT, respectively. Taken
together, these results suggest that altered lag patterns indicating atypical spread of activity between large-scale functional
brain networks may contribute to the ASD phenotype. Autism Res 2020, 13: 244-258. © 2019 The Authors. Autism
Research published by International Society for Autism Research published by Wiley Periodicals, Inc.

Lay Summary: Autism spectrum disorder (ASD) is characterized by atypical neurodevelopment. Using an ultra-fast neuro-
imaging procedure, we investigated communication across brain regions in adults with ASD compared with neurotypical
(NT) individuals. We found that ASD individuals had altered information flow patterns across brain regions. Atypical pat-
terns were concentrated in salience, executive, visual, and default-mode network areas of the brain that have previously

been implicated in the pathophysiology of the disorder.
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Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder characterized by repetitive behaviors, restricted
interests, and impaired social interaction and communi-
cation skills [American Psychiatric  Association,
2013]. ASD has long been associated with impaired com-
munication among brain networks. Multiple studies have
sought to characterize disordered brain function using
resting-state functional magnetic resonance imaging (rs-
fMRI) [Assaf et al., 2010; Ebisch et al., 2011; Just, Keller,
Malave, Kana, & Varma, 2012; Khan et al., 2013; Rudie
et al., 2012; Starck et al., 2013; Uddin, Supekar, & Menon,

2013; Uddin, 2015; von dem Hagen, Stoyanova, Baron-
Cohen, & Calder, 2013; Weng et al.,, 2010]. The recent
proliferation of resting state fMRI investigations in ASD
has provided mixed evidence for impaired communica-
tion among brain network in the disorder. Specifically, in
the young adult age range of interest in the current study,
there have been reports of null findings when comparing
within- and between-network functional connectivity
in clinical and neurotypical (NT) groups [Nomi &
Uddin, 2015; Tyszka, Kennedy, Paul, & Adolphs,
2013]. More recent work with larger samples exploring
wider age ranges, however, provides evidence for both
hypoconnectivity and hyperconnectivity in ASD [Abbott
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et al.,, 2016; Di Martino et al., 2013]. Another recent
report using the Autism Brain Imaging Data Exchange
(ABIDE) dataset provides evidence for globally reduced
network cohesion and density and increased dispersion
of networks in ASD compared with typically developing
participants [Keown et al., 2017]. All of these previous
studies used conventional measures of functional con-
nectivity, including independent component analysis,
seed-based functional connectivity, and whole-brain
functional connectivity matrix computation. The authors
take these findings as evidence of reduced network inte-
gration and differentiation across several brain networks
in ASD. Although there is large consensus that altered
brain circuitry underlies the atypical behavioral manifes-
tations observed in ASD, the precise nature of these alter-
ations continues to be debated.

Conventional analyses model resting-state fMRI time
series as a combination of network processes that evolve
over time [Beckmann, DeLuca, Devlin, & Smith, 2005;
Cordes & Nandy, 2006]. Most prior fMRI studies of intrin-
sic brain activity have used either spatial independent
component analysis (sICA) [Beckmann et al., 2005;
Kiviniemi, Kantola, Jauhiainen, Hyvirinen, & Tervonen,
2003] or seed-based correlation approaches [Biswal et al.,
2010] to define functional brain networks. These analyses
address connectivity as a continuous steady state process
rather than a dynamically altering propagation of signals
between brain regions. Several rs-fMRI studies in humans
and rats suggest that intrinsic activity is a spatiotempo-
rally dynamic, instead of continuous, phenomenon
[Chang & Glover, 2010; Hutchison, Womelsdorf, Gati,
Everling, & Menon, 2013; Kiviniemi et al., 2011; Liu &
Duyn, 2013; Majeed, Magnuson, & Keilholz, 2009;
Majeed et al., 2011]. However, more recent methods
applying temporal independent component analysis
(tICA) have shown that multiple “temporal functional
nodes” exist in human resting-state fMRI data
[Raatikainen et al., 2017; Smith et al., 2012].

Recently, several studies investigated blood oxygen
level dependent (BOLD) signal propagation by analyzing
temporal lags across the brain [Mitra, Snyder, Blazey, &
Raichle, 2015; Mitra et al., 2016; Mitra, Snyder, Hacker, &
Raichle, 2014]. These studies defined the lag between two
fMRI time series by computing the cross-correlation func-
tion for the full-time series and identifying the local
extremum using parabolic interpolation. Temporal lags
reflect that there exists a time delay in propagating brain
activation between distinct brain areas. It has been dem-
onstrated in healthy subjects that the BOLD signal
exhibits highly reproducible temporal lag patterns; some
regions are early, that is, “sources” of propagated BOLD
activity, with respect to the rest of the brain, while other
regions are systematically late, that is, “destinations” of
propagated BOLD activity [Mitra, Snyder, Blazey, et al.,
2015; Mitra et al., 2014]. It has also been shown that the

lag pattern of rs-fMRI is composed of multiple temporal
sequences [Mitra, Snyder, Blazey, et al., 2015] and that
experimental manipulations of behavioral state can
focally alter the lag structure [Mitra, Snyder, Tagliazucchi,
Laufs, & Raichle, 2015]. Mitra and co-workers [Mitra,
Snyder, Constantino, & Raichle, 2015] have also shown
that the lag structure of intrinsic activity is focally altered
in high functioning adults with autism, and the degree of
abnormality in individuals was highly correlated with
behavioral measures relevant to the diagnosis of ASD.
However, there has been one technical limitation in the
above-mentioned studies complicating the accurate lag
structure estimation of resting state BOLD signals: the rel-
atively low temporal sampling resolution of fMRI. Fur-
thermore, there have been theoretical questions
regarding whether the ultra-fast technology below
500 msec repetition time (TR) can benefit the lag and
connectivity estimation due to regional lag variability
and slow temporal response of the hemodynamic
response to neuronal activity. Recently, it has been
shown that cardiac power distributions start to overlap
on top of respiratory frequency maps as TR is increased
>0.5 sec, indicating aliasing [Huotari et al., 2019].

Over the years, ultra-fast MRI technology has started to
brake the technological barrier of estimating lag structure
accurately; sequences such as inverse imaging (INI), gen-
eralized inverse imaging, and magnetic resonance
encephalography (MREG) enable three dimensional
(3D) whole brain scanning <150 msec, even down to
25 msec [Asslander et al., 2013; Boyacioglu, Beckmann, &
Barth, 2013; Lin et al., 2010; Posse et al., 2013]. Task acti-
vation results of 100 msec INI have repeatedly shown
temporally accurate hemodynamic responses that line-
arly correlate with magnetoencephalography responses
[Lin et al., 2014]. Importantly, the ultrafast whole brain
data indicate that the variability of the relative latency is
only 0.03 sec between left and right visual cortices [Lin
et al.,, 2018]. Resting state in vivo multiphoton micro-
scopical imaging results also indicate a hemodynamic
response peak variability of 0.03-0.05 sec after a lag of
0.86 sec from excitatory neuronal GCaMP6f auto-
fluorescence signal activation to [HbT] hemodynamic sig-
nal response in mice [Ma et al., 2016]. In our previous
studies, we have also found evidence of precise mapping
of individual resting state coactivation patterns using a
whole brain MREG sequence with TR of 100 msec
[Raatikainen et al., 2017; Rajna, Kananen, Keskinarkaus,
Seppdnen, & Kiviniemi, 2015]. Thus, the latest findings
of neuroimaging data sampled at 10 Hz both at cellular
and macroscopic levels indicate minimal variability of
hemodynamic response, and strongly support the idea of
lag analytics of individual resting state peak data.

In our previous study, we found a consistent temporal
lag pattern across individuals by deriving the lag using
lagged cross-correlation function for full time series
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[Raatikainen et al., 2017]. However, there were lag values
exceeding the threshold of significance when the lag
values were computed for multiple time windows using a
sliding-window approach, suggesting that there might be
biologically meaningful variation in the dynamic lag
structure between functionally connected areas. In other
words, the lag structure enables one to follow the BOLD
signal propagation between networks based on the tem-
poral order of succeeding activation peaks detected in the
resting-state networks (RSNs). With the novel ultrafast
imaging techniques without cardiorespiratory aliasing,
one can estimate resting-state metrics and lag structure
more precisely [Huotari et al.,, 2019; Raatikainen et al.,
2017; Raitamaa et al., 2018; Rajna et al., 2015]. No previ-
ous investigations of autism have concentrated on
dynamic lag pattern variations in individuals with the
disorder compared with NT individuals.

In this study, we introduce a novel analysis technique
called dynamic lag analysis (DLA) to detect whole-brain
dynamic lag pattern variations between NT individuals
and individuals with ASD using an ultra-fast MREG
sequence. First, this method utilizes sICA to define RSNs.
Second, all peaks of RSN time signals are detected.
Finally, lag values are dynamically measured by calculat-
ing the time lag values between RSNs for each peak. Our
aim was to measure the lag variations between each RSN
and to statistically define how the lag pattern of the brain
is altered between ASD and NT groups.

Materials and Methods
Subjects

Twenty young adults with childhood diagnosed ASD
(age = 23.7 £ 3.2 years; five females) and 20 NT individ-
uals (age = 25.3 & 6.2 years; four females) participated in
the study. Individuals with ASD originally participated in
a longitudinal clinical ASD study conducted at Oulu Uni-
versity Hospital [Kuusikko et al., 2008, 2009; Weiss et al.,
2009], or an epidemiological study in the Northern
Ostrobothnia Hospital District [Mattila et al., 2007, 2011]
between the years 2000 and 2003. NT individuals were
randomly selected from the epidemiological study
[Mattila et al., 2007, 2011], or randomly selected

[Kuusikko et al., 2008, 2009] or recruited [Jansson-
Verkasalo et al., 2005] from mainstream schools in Oulu.

During the original recruiting processes between the
years 2000 and 2003, ASD diagnoses were determined by
a trained clinical psychologist, a pediatrician and a child
psychiatrist using the Autism Diagnostic Interview
Revised (ADI-R) [Lord, Rutter, & LeCouteur, 1999] and
the Autism Diagnostic Observation Schedule (ADOS)
Module 3 or Module 4 [Lord, Rutter, Dilavore, & Risi,
2008] to obtain structured information from parents and
for semistructured observation of individuals with ASD as
well as clinical information [Kuusikko et al., 2008, 2009;
Mattila et al., 2007, 2011]. The ADI-R and ADOS were not
used to make diagnostic classifications, that is, the diag-
nostic algorithms were not used. The diagnoses were clin-
ical best estimates made according to the International
Classification of Diseases-10th Revision criteria [World
Health Organization, 1993]. For the present study, con-
ducted between the years 2014 and 2015, participants
completed the Autism-Spectrum Quotient (AQ) [Baron-
Cohen, Wheelwright, Skinner, Martin, & Clubley, 2001]
as an online questionnaire and the Wechsler Adult
Intelligence-IV (WAIS-1V, producing a General Ability
Index [GAI]) [Wechsler, 1955] in a live situation. Three of
the ASD participants and one NT participant were on cur-
rent psychotropic medication. Those three ASD partici-
pants used mood stabilizers and one of them had also
methylphenidate and antipsychotic drugs, and that one
NT participant used mood stabilizers.

MRI data were not available (no flip angle [FA] 5§ MREG
data) in 3 of the 20 NT subjects. Therefore, three additional
NT individuals were selected for this study. These subjects
did not have AQ and Wechsler Adult Intelligence-IV test
results available. All the available participant characteristics
and test results are shown in Table 1. In addition, P-values
between groups (age, AQ, GAI) were calculated using two-
sided unpaired t-tests. In general, individuals with ASD had
deficits in social behaviors and often with language expres-
sion and reception. All individuals with ASD had an IQ in
the normal range and all were fluent speakers. None of the
participants had any problems with vision or hearing, or
any motor problems.

The study was approved by the Regional Ethics Com-
mittee of the Northern Ostrobothnia Hospital District

Table 1. Participant Characteristics
ASD group NT group
S s ASD vs. NT
Characteristics n u c n u c P-value
Age in years 20 23.7 3.2 20 25.3 6.2 0.317
AQ 18 20.3 9.1 12 10.5 5.1 0.002
GAI 20 110.7 13.1 16 107.7 10.5 0.462

Abbreviations: 4, mean; o, standard deviation; ASD, autism spectrum disorder; AQ, autism-spectrum quotient; GAI, General Ability Index; n, number of

participants.
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and was conducted in accordance with the Declaration of
Helsinki (53/2012). Participants gave their written
informed consent to participating in the study.

Measurements

All subjects were scanned using a Siemens MAGNETOM
Skyra 3T MRI scanner (Siemens Healthcare GmbH,
Germany) with a 32-channel head coil. We utilized an
MREG sequence obtained from Freiburg University.
MREG is a single-shot three-dimensional sequence that
utilizes spherical stack of spirals and undersamples 3D k-
space trajectory [Assldnder et al., 2013; Lee, Zahneisen,
Hugger, LeVan, & Hennig, 2013; Zahneisen et al.,
2012]. We used the following sequence parameters: repe-
tition time (TR) = 100 msec, echo time (TE) = 36 msec,
field of view (FOV) = (192 mm)3, voxel size = (3 mm)>
and flip angle (FA) = 5°. MREG data were reconstructed
by L2-Tikhonov regularization with lambda = 0.1, with
the latter regularization parameter determined by the L-
curve method [Hugger et al., 2011]; the resulting effective
spatial resolution was 4.5 mm. MREG includes a dynamic
off-resonance in k-space (DORK) method which corrects
the respiration induced dynamic field-map changes in
fMRI using 3D single shot techniques [Zahneisen et al.,
2014]. High-resolution T1-weighted Magnetization Pre-
pared Rapid Acquisition with Gradient Echo (MPRAGE)
(TR = 1900 msec, TE = 2.49 msec, inversion time
(TD) = 900 msec, FA 9°, FOV = 240, and slice thickness
0.9 mm) images were obtained for coregistration of the
MREG data into subject’s own anatomy during the
preprocessing. During the 5 min (2961 volumes) MREG
resting state study, subjects were instructed to lie still in
the scanner with their eyes open fixating a cross on the
screen. Soft pads were fitted over the study subjects’ ears
to protect hearing and to minimize motion.

Preprocessing

MREG data were preprocessed with a Oxford Centre for
Functional MRI of the Brain (FMRIB) software library (FSL)
pipeline [Jenkinson, Beckmann, Behrens, Woolrich, &
Smith, 2012] prior to single-session ICAs. The data were
high-pass filtered with cut-off frequency of 0.0025 Hz
(400 sec) and 80 time points (8 sec) were removed from
the beginning of the data to minimize T1-relaxation
effects. Motion correction was performed using FSL
MCEFLIRT [Jenkinson, Bannister, Brady, & Smith, 2002].
Brain extraction for 3D MPRAGE volumes was carried out
with FSL Brain Extraction Tool (BET) using the following
parameters; fractional intensity = 0.25, threshold gradi-
ent = 0.22 with neck and bias-field correction option
[Smith, 2002]. Spatial smoothing was carried out using
Smm full width at half maximum (FWHM) Gaussian
Kernel. MREG images were aligned to three-dimensional

(MPRAGE) anatomical images (full-search, 12 degree of
freedom (DOF)) and to Montreal Neurologic Institute
(MNI 152) 4 mm? standard space (full-search, 12 DOF) as a
preprocessing step in FSL Multivariate Exploratory Linear
Optimized Decomposition into Indepent Components
(MELODIC) tool. Finally, the advanced ICA FIX (FMRIBs
ICA-based X-noisifier) method [Griffanti et al., 2014;
Salimi-Khorshidi et al., 2014] was used for secondary arti-
fact removal from the preprocessed MREG (single-session
ICA) data. FIX was trained with previously collected con-
trol MREG data. The applied FIX threshold was 10. The
same FIX method was used for each subject.

DLA Workflow

A group level spatial ICA (multisession temporal concate-
nation in FSL) was performed for the FIX-cleaned data
with a model order of 40 (z-threshold = 2.3), separately
for NT and ASD data. Next, cross-correlations (cc) were
calculated between every spatials ICs of NT and ASD
group using FSL’s fslcc function. Those RSNs whose spa-
tial correlation between two groups exceeded the cc
threshold of 0.60 were chosen for DLA. The identification
of the selected RSNs was based on FSL model order
40 ICA component templates from a previous research
article on RSN model order [Abou Elseoud et al., 2011].
The DLA procedure is based on the following steps
(Fig. 1). (1) Pairs of RSNs were selected from the NT and
ASD data. (2) As cardiorespiratory signal peaks will intro-
duce artificial peak timings, the data were low-pass fil-
tered (0.01-0.1 Hz frequency range) and detrended. The
time locations of the local BOLD signal maximum of
each peak of the time signals were determined individu-
ally from the time concatenated melodic_mix in FSL. The
timing of BOLD signal activation was located with
findpeaks in Matlab. No peak thresholding was applied.
(3) The time lags of all peaks of the signals are calculated
between each pair of the selected RSNs, that is, for each
peak, the time lag between the nearest peak of the other
signal is selected. Each lag value <45.0 sec is assembled
into a lag vector, similarly for both NT and ASD data.
(4a) The Kolmogorov-Smirnov (kstest2 in Matlab) test is
calculated between the NT and ASD lag vectors to deter-
mine which RSN pairs have statistically significant differ-
ences in the lag patterns between NT and ASD groups.
The output value is assembled into a P-value matrix.
(4b) The mean (median respectively) value of the lag vec-
tors is assembled into lag matrices. The source/destina-
tion relationship is marked with negative/positive values
in the matrices, that is, the blue hues indicate networks
(labeled in the y-axis) that are on average early, that is,
“sources” of propagated BOLD activity and red hues indi-
cate networks that are late, that is, “destinations” of prop-
agated BOLD activity. All these steps (1-4) are done for
each selected RSN pair separately to construct the final
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Dynamic lag analysis
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General workflow of dynamic lag analysis. (1) A given pair of resting-state networks (RSNs) from the 16 RSNs is selected and

(2) each peak of the time-concatenated signals is determined with findpeaks function in MATLAB. (3) Next, the lag vector is formed by
calculating the time lag values between each peak (between resting-state networks) in the nearest neighbor principle (<£5.0 sec lags).
(4a) The Kolmogorov-Smirnov test is calculated between lag vectors of neurotypical and autism spectrum disorder to determine whether
the lag variations are statistically different. (4b) The mean value of the lag vectors is calculated and assembled into a lag matrix. Steps
1-4 are applied to each selected resting-state network pair separately to construct the final P-value and mean lag matrices. Sections 4a

and 4b are independent analysis phases.

P-value and mean lag matrices. Sections 4a and 4b are
independent analysis phases.

Statistical Analysis

Surrogate data were created to evaluate the possibility of
false positives in the P-value matrix values. Data consisted
of two groups, both including 16 surrogate time signals
(59,220 samples, i.e., the length of concatenated 5 min sig-
nals of 20 subjects) created with “randi” function in Matlab.
The same DLA workflow steps 1-4, as presented in Figure 1,
were applied to surrogate data (two-sided, two-sample

Kolmogorov Smirnov test). Benjamini-Hochberg false dis-
covery rate (FDR) adjustment was used to correct for multi-
ple comparisons. The smaller threshold, that is, either
smallest P-value in the P-value matrix of surrogate data or
Benjamin-Hochberg correction cut-off, was selected as a P-
value threshold for significant network pairs.

Results

There were 16 RSNs whose spatial cross-correlation
exceeded the threshold of 0.60: precuneus, precuneus
left (precuneus_left), posterior cingulate cortex default-
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mode network (DMNpcc), ventromedial default-mode
network (DMNvmpf,) salience network, executive net-
work, central executive network, dorsal attention net-
work right (DAN_right), memory/attention, language
network, language network right, primary visual cortex

(V1), secondary visual cortex (V2), primary auditory cor-
tex (A1), primary motor cortex left (M1_left), secondary
somatosensory network (82; Fig. 2).

The smallest P-value in the surrogate P-value matrix
was found to be 0.003, which was selected as a threshold

Group-level IC maps

Precuneus

Precuneus
left

DMNpce

DMNvmpf

Salience

Executive

ICs

Memory/
attention

Language
network %
R

Language
right °

Figure 2. Group-level IC maps for the 16 functional brain networks whose spatial cross-correlation exceeded the threshold of 0.6
between neurotypical and autism spectrum disorder groups. Note: c.c., cross-correlation; Z-value in the IC-maps is 2.3.
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p-values of time lag values between NT and ASD
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Figure 3. p-value matrix between neurotypical (NT) and autism spectrum disorder groups. Red p-values indicate that there are signifi-
cant lag pattern variations (significance threshold of 0.003) between NT and autism spectrum disorder subjects that survived both
Benjamini-Hochberg procedure and surrogate network data corrections.

to reject the possibility of false positives and to declare
statistically highly significant network combinations (P-
value <0.003; Supplementary Fig. S1).This threshold was
smaller than the P-value calculated by the Benjamini-
Hochberg procedure, that is, 0.007.

10.8% (13/120) of the RSN pairs had significant (P-
value <0.003) dynamic lag pattern that survived both
Benjamini-Hochberg and surrogated network data correc-
tions (Fig. 3). Altered lag pattern in ASD were concen-
trated especially in mutual connections of salience,
executive, visual and default-mode network pairs. Lag
histograms of significant RSN pairs were formed for lag
variability inspection (Fig. 4). In general, the lag pattern
was more Gaussianic and skewed to the other side in
NTs, referring to structured propagation patterns. In ASD,
the time lag histograms were more symmetric or multi-
modal. Detailed lag characteristics of significant RSN
pairs (%-ratio, 4 [mean lag value], X [median lag value], o
[standard deviation of lag values]) are shown in Table 2.
Percentage of lags demonstrating preceding (—) versus
lagging (+) values is reflected by a %-ratio. In other words,
the first value is the percentage of how many times the
first mentioned network in the network pair has been the
preceding network, that is, negative lag values, whereas
the second value in the %-ratio reflects the percentage of
how many times it has been the lagging network, that is,
positive lag values. In NT individuals, the ratio of preced-
ing network (%-ratio) in all 13/13 highly significant RSN
pairs was observationally larger than 45/55, while in ASD

the %-ratio was in general close to a 50/50 ratio. Notably,
the salience network was a source of activity to V1, V2,
executive, precuneus, and DMNpcc networks in NT con-
trols. In ASD, the source/relationship was nearly equivo-
cal. Moreover, the results suggest that in ASD, the source/
destination relationship is inversed in many RSN pairs
compared with relationships observed in NTs. 92.3%
(12/13 x 100%) and 84.6% (11/13 x 100%) of the signifi-
cant RSN pairs revealed shorter mean and median tempo-
ral lags in ASD versus NT, respectively.

Supplementary Figure S2 shows mean lag value matrices
between network pairs in NT (Supplementary Fig. S2A)
and ASD groups (Supplementary Fig. S2B). In the lag
matrices, the blue hues indicate networks (labeled in the y-
axis) that were on average early, that is, “sources” of prop-
agated BOLD activity and red hues indicate networks that
were late, that is, “destinations” of propagated BOLD activ-
ity. Although both groups had mean lag values ranging
from -1 sec to 1 sec, NTs exhibited more structured lag
pattern between RSN pairs, that is, RSN networks
exhibited either preceding or lagging activity with respect
to the other (cf. Table 2). Individuals with ASD had mean/
median lag values close to zero, suggesting not so clear
source/destination relationships between network pairs.
Source/destination relationships seen in the real data were
not present in the surrogate data (Supplementary Fig. S3).

Number of lag values (lags <5.0 sec) between each net-
work were listed to explore whether the statistical signifi-
cance could be explained by lag count variations between
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Figure 4. Lag histograms of 13 significant resting-state network pairs. Neurotypical lag values are shown in dark gray bins, whereas
autism spectrum disorder lag values are shown with bins filled with diagonal lines.

Table 2. Detailed Lag Characteristics of Significant Resting-State Network Pairs

NT ASD
% u u c % u u c
DMNpcc-Salience 40/59 0.50 0.65 2.72 55/45 -0.29 —-0.80 3.08
DMNpcc-V1 37/61 0.41 0.60 2.04 57/42 —-0.36 —-0.50 2.57
Precuneus-Salience 38/60 0.56 0.60 2.47 48/51 0.18 0.15 2.70
Precuneus-A1l 36/61 0.89 0.90 2.54 43/55 0.15 0.40 2.74
DMNvmpf-Language 33/66 0.71 1.10 2.66 48/50 0.05 0.00 2.61
DMNvmpf-Executive 41/57 0.23 0.30 2.12 41/57 0.33 0.70 2.71
Salience-V1 61/38 —0.53 —-0.50 2.16 48/50 —0.05 0.10 2.70
Salience-V2 61/38 —0.47 —-0.60 2.36 48/50 0.02 0.15 2.90
Salience-Executive 63/36 —0.66 -1.00 2.59 51/47 —0.09 -0.10 2.28
Memory/attention-Language 43/56 0.34 0.80 2.81 53/45 —-0.15 —-0.20 2.55
DAN_right-M1_left 58/41 —0.50 -0.70 3.05 45/53 0.10 0.25 2.59
Executive-V2 40/58 0.39 0.70 2.59 55/44 -0.31 —0.40 2.65
V1-Al 36/64 0.75 1.00 2.57 49/49 —0.00 0.00 2.76

Note. %-symbol reflects the percentage of lags demonstrating preceding (—) versus lagging (+) values, y is the

value, and o is the standard deviation of the lag values.

NT and ASD groups (Supplementary Fig. S4). The P-value
of the lag counts between NT and ASD groups was 0.94
(two-sided Wilcoxon rank sum test), demonstrating that
there were no significant variations in the lag counts,

mean lag value, 7 is the median lag

that is, in number of brain activation cycles between NT

and ASD groups.

Finally, relative and absolute movement mean values
were taken from FSL MCFLIRT to explore whether the lag
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differences between ASD and NT could be inferred by
motion. However, no significant differences (absolute
motion, P = 0.13; relative motion, P = 0.60) in motion
values were seen between two groups (Fig. 5A). Further-
more, temporal signal-to-noise ratios (tSNR) were calcu-
lated before and after FIX denoising (Fig. 5B). No
significant differences (tSNR before FIX, P = 0.11; tSNR
after FIX, P = 0.10) in tSNR values were seen between two
groups.

Discussion

Here we describe relationships between functional brain
networks in ASD at a high level of temporal and spatial res-
olution. We used ultra-fast MREG data (TR = 100 msec)
and, a novel DLA method to reveal dynamic lag pattern
variations between individuals with ASD and NT individ-
uals. Sixteen out 40 RSNs examined showed adequate spa-
tial similarity between ASD and NT groups. 10.8% of the
possible 120 RSN pairs had significant dynamic lag pattern
variations that survived both Benjamini-Hochberg FDR
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Absolute and relative movement mean values between autism spectrum disorder and controls in mm (A). Temporal signal-to-

adjustment and surrogate network data corrections. 92.3%
and 84.6% of the significant RSN pairs revealed shorter
mean and median temporal lags in ASD versus NT, respec-
tively. This is partly caused by the fact that NT individuals
had more structured dynamic lag patterns, exhibiting a
more distinct source/destination relationship of propagated
BOLD activity between significantly connected networks.
Spatially, the altered lag patterns were concentrated espe-
cially in mutual connections of salience, executive, visual,
and default-mode network nodes. Other highly significant
lag pattern variations were seen in primary visual cortex
(V1)-primary auditory cortex (Al), primary auditory cortex-
precuneus, primary motor cortex (M1) left-dorsal attention
network (DAN) right and language network-memory/atten-
tion RSN pairs.

Mitra and coworkers have recently introduced the con-
cept of “one-way streets” (or lag thread motifs), rep-
resenting conserved regions of unidirectional propagation
across distinct propagation sequences [Mitra, Snyder,
Blazey, et al., 2015]. The lag thread motifs were shown to
match the topographies of RSNs. Interestingly, they found
that voxel-wise propagation sequence correlation matrices
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also exhibit anticorrelations. These anticorrelations refer
to “two-way streets” demonstrating reciprocal bidirec-
tional signaling between networks. Our results therefore
suggest that this two-way street activity could be more
dominant in ASD. Moreover, in a conventional TR BOLD
(2200 msec) study, Mitra and co-workers [Mitra, Snyder,
Constantino, et al., 2015] suggested that alterations in
propagated intrinsic activity in ASD are more robust than
alterations in static resting-state functional connectivity.
Group comparisons revealed focally altered lag differences
in occipital cortex, frontopolar cortex and putamen,
which strongly correlated with behavioral measures rele-
vant to the diagnosis of ASD [Mitra, Snyder, Constantino,
etal., 2015].

There are also other recent papers reporting variations
in time-varying patterns in autism. King et al. found
increased durations of functional connections in both
individual brain regions and distributed networks in
autism, which were associated with metrics of disease
severity [King et al., 2018]. They used a complementary
method of analysis by introducing the width of cross-
correlation curves between resting-state fMRI time series
as a metric of relative duration of synchronous activity
between brain regions (“sustained connectivity”) [King &
Anderson, 2018]. The persistence of brain connectivity in
autism may limit the ability to rapidly shift from one
brain state to another [King et al., 2018]. Moreover, it has
been also shown that there exists a negative correlation
between processing speed and sustained connectivity
[King & Anderson, 2018]. Processing speed is one aspect
of cognition that is impaired in ASD compared with typi-
cal development [Haigh, Walsh, Mazefsky, Minshew, &
Eack, 2018; Travers et al., 2014]. Interestingly, Watanabe
and Rees studied brain network dynamics using an
energy-landscape analysis, and reported that high-
functioning adults with ASD show fewer neural transi-
tions due to an unstable intermediate state [Watanabe &
Rees, 2017]. Similar aberrant temporal dynamics were
reported by the study by Rashid et al., who found longer
dwell times related to a globally disconnected state in
youth with higher autistic traits [Rashid et al., 2018]. The
authors take these findings of impairment in processing
speed and transitions between brain states in autism as
an evidence that is in-line with our results indicating
diminished dynamic lag patterns between RSNs in indi-
viduals with ASD.

Instead of inspecting lag structure using lagged cross-
correlation (or covariance), between time series as in
recent lag pattern analyses [Mitra, Snyder, Blazey, et al,,
2015; Mitra, Snyder, Constantino, et al., 2015; Mitra et al.,
2014; Raatikainen et al.,, 2017], we aimed to investigate
dynamic lag pattern variations by taking into account
each peak of the time signals. Lagged cross-correlation
using a sliding window approach can be used to explore
lag dynamics [Raatikainen et al., 2017]. However, this

approach requires that the minimum window length to
avoid spurious fluctuations arising due to sliding window
correlation itself should be at least equal to 1/fmin, where
fmin is the minimum frequency in the simplified correlat-
ing signal [Leonardi & Van De Ville, 2015; Shakil,
Keilholz, & Lee, 2015]. By using the frequency band of
0.01-0.1 Hz, the minimum window length should be
100 sec, which enables only few dynamic windows to be
used in traditional 5-10 min BOLD studies. Therefore, as
DLA approach determines lag separately for each peak, it
offers more dynamic lag information compared with the
lagged cross-correlation approach that assumes the exis-
tence of a single temporal lag between brain regions over a
wide time epoch.

The current results offer a new viewpoint based on
dynamic lag pattern alterations in ASD. Our work sug-
gests that some networks are early with respect to the rest
of the brain while others are late, and this distinction is
diminished between some functional brain networks in
ASD. In other words, the dynamic lag structure between
functional networks is less controlled in ASD, which can
be observed in mutual connections between the salience
network and other networks such as visual, executive and
default-mode networks. The salience network is thought
to be involved in switching between the default mode
network and central executive network [Goulden et al.,
2014], and salience network dysfunction has been linked
to autism [Uddin & Menon, 2009; Uddin et al., 2013;
Uddin et al., 2014; Uddin, 2015]. The preliminary finding
that atypical timing of salience network activity may be
observed in autism is in line with these earlier empirical
and theoretical accounts.

Strengths and Limitations

It has been shown that interregional lags are reproducibly
present in resting-state fMRI data and these time lags are
not attributable to hemodynamic factors [Mitra et al.,
2014]. However, a recent study by Yan et al., suggests that
hemodynamic response function (HRF) parameters have
been shown to vary in individuals with autism, specifi-
cally in the precuneus [Yan, Rangaprakash, & Deshpande,
2018]. Nevertheless, exact time-to-peak value differences
in HRF still remain unclear [Yan et al., 2018]. Further-
more, like Yan et al. state, the number of methods capa-
ble of deconvolving resting state data is small. Therefore,
a deeper understanding of potential HRF confounds to
dynamic lag structure analysis would require complemen-
tary methods that take into account individual HRF
response times, dynamically, for every peak of each RSN
time signal in resting-state time series. Although we
strongly believe that potential HRF contribution to our
between-group findings is negligible, the potential con-
founding effects of HRF to lag structure analysis should
be kept in mind in the future fMRI studies.
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There has been a concern that head motion leads to
systematic biases in functional connectivity analyses of
fMRI data [Power, Barnes, Snyder, Schlaggar, & Petersen,
2012; Satterthwaite et al., 2012; Van Dijk, Sabuncu, &
Buckner, 2012]. In this study, no significant differences
in relative and absolute motion, and in tSNR values were
seen between ASD and controls (Fig. 5.). Moreover,
MREG sampled critically at 10 Hz enables accurate
removal of cardiorespiratory signals by band-pass filtering
from data [Huotari et al., 2019]. This is an important step
for the activation peak based lag pattern estimation, since
it removes variance from the peak timings that are
induced by cardiac and respiratory peaks from the data.

The modest sample size of the present study limits our
power to detect differences between individuals with ASD
and NT individuals. This could have been countered by col-
lecting 10 min scans instead of 5 min scans, or by recruiting
more subjects. However, it has been shown that drowsiness
can affect dynamic BOLD-correlations [Laumann et al.,
2016] and that slow-wave sleep alters intrinsic brain propa-
gation [Mitra, Snyder, Tagliazucchi, et al., 2015]. Therefore,
we wanted to ensure that the subjects stayed as vigilant as
possible by keeping the resting-state scanning time moder-
ate and by checking the vigilance of the subjects verbally
between each scan. Furthermore, MREG offers 3000 brain
volumes for each 5 min scan, and this increases the power
for statistical inferences in addition to permitting more
accurate physiological signal analysis [Huotari et al.,
2019]. We believe that the number of peaks (~230-330) in
the analysis between each RSN pair in the low frequency
band is enough for statistical lag variation analysis given
the statistical power of MREG results that survived com-
bined surrogate data and Benjamini-Hochberg procedure
corrections. In addition, even though our study included
individuals that were well matched on age and gender
between NT and ASD groups, we cannot demonstrate the
effects of gender and age on the lag structure with the cur-
rent dataset. Furthermore, since only three of the ASD par-
ticipants and one NT participant used psychotropic
medication, we did not consider the effects of medication
on our analyses, although it has been shown that
psychostimulants can cause enhanced activation in bilat-
eral inferior frontal cortex (IFC)/insula [Rubia et al., 2014].

It would be interesting to further investigate why there
were only 16 RSNs with at least moderate (>0.6) spatial
correlation between group ICA components of NT and
ASD groups. One explanation could be altered structural
brain network organization in autism, such as that
suggested by Rudie and coworkers [Rudie et al.,
2013]. Another potential explanation could be the utili-
zation of temporally higher resolution data. In MREG
(TR = 100 msec), our 5 min long data includes 2961 brain
volumes compared with a traditional BOLD sequence
with a TR that is typically between 2 sec and 3 sec (equiv-
alent to 100-150 brain volumes). With ultra-fast MREG,

we have thus 20-30 times higher temporal resolution,
which prevents aliasing of cardiac and respiratory signals.
As the spatial ICA algorithm attempts to find spatially
independent components with associated time courses, it
is therefore likely that temporally more accurate data
could further contribute to the minor variations of spatial
topographies. It remains speculative if these minor spatial
IC alterations could influence the lag results. Another
approach would have been to use spatial regions of inter-
ests (ROIs) or ICA templates, or to do group ICA of the
entire dataset rather than separately for each group. In
these cases, however, factors like brain plasticity and indi-
vidual differences in network organization could have
interfered with the analysis. Also, the joined ICA analysis
of both groups averages out the underlying group differ-
ences, reducing sensitivity to the deviant time lag
structure.

These findings raise the question of whether brain
dynamics should be studied in a more detailed manner,
such as by utilizing every peak of the time signal in the
analysis. One could argue whether each activation cycle
of the network is of interest, or whether an approach
such as thresholding of activity level might be preferable.
An important outstanding question is how large activa-
tion lags should be interpreted; are they sharing mutual
functional information with direct neuronal connectivity
or are they influenced by joint information processing
from several networks? How much are random intrinsic
fluctuations of the neurovascular system also influencing
the indirect BOLD signal? In this work, all positive signal
peaks were used for between-network comparison. In the
future, we will explore lag variations between negative
and positive signal peaks between temporally negatively
correlated networks.

Conclusions

Significant dynamic lag pattern variations were found
between individuals with ASD and NT individuals using
novel fast fMRI analytics that can accurately be used for
lag pattern analytics. We found that altered lag patterns
were concentrated particularly in the mutual connections
between salience, executive, visual, and default-mode
networks. NT individuals exhibited a more structured
dynamic time lag pattern between network pairs com-
pared with individuals with ASD. Understanding such
propagation patterns will likely yield deeper insights into
the role of spontaneous activity in brain function in
health and disease.
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Supporting Information

Additional supporting information may be found online
in the Supporting Information section at the end of the
article.

Supplementary Fig. S1. P-value matrix between NT
and ASD groups. Small P-values indicate that there are

statistically significant lag pattern variations between NT
and ASD subjects.

Supplementary Fig. $2. Lag value matrices of A) NT
and B) ASD subjects. The blue hues indicate networks
(labeled in the y-axis) that are on average early,
i.e. “sources” of propagated BOLD activity and red hues
indicate networks that are late, i.e. “destinations” of
propagated BOLD activity.

Supplementary Fig. $3. Lag value matrices of A) surro-
gate data 1 and B) surrogate data 2. The negative lag values
indicate that the RSN labeled in the y-axis is preceding.
Supplementary Fig. S4. Number of lag values between
each RSN pair. The values above the bolded black line
refer to the number of lag values in RSN pairs in ASD
data, while the values below the bolded black line refer to
values in NT data.
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