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Summary

When animals interact with complex environments their neural circuits must separate overlapping
patterns of activity that represent sensory and motor information. Pattern separation is thought to
be a key function of several brain regions, including the cerebellar cortex, insect mushroom body
and dentate gyrus. However, recent findings have questioned long-held ideas on how these circuits
perform this fundamental computation. Here we re-evaluate the functional and structural
mechanisms underlying pattern separation. We argue that the dimensionality of the space available
for population codes representing sensory and motor information provides a common framework
for understanding pattern separation. We then discuss how these three circuits use different
strategies to separate activity patterns and facilitate associative learning in the presence of trial-to-
trial variability.
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Introduction

Imagine you are about to run an experiment in a laboratory, when the phone rings. You leave
the lab, and chat on the phone for a few minutes with your colleague. Upon re-entering the
lab you quickly realise that something has changed (spot the difference - Figure 1A).
Although the change in sensory inputs is small relative to the total sensory information
contained in each scene, the difference between the two conditions is immediately apparent.
This example illustrates the inherent ability of the brain to distinguish between subtle, but
important differences in the detail of the environment.

Sensory, proprioceptive, and motor information is represented by the spatiotemporal firing
patterns of populations of neurons. To identify subtle changes in the external world, the
brain must distinguish between similar patterns of neuronal activity. This can be facilitated
by ‘pattern separation’, a process in which neural circuits transform similar input activity
patterns into more distinct output patterns. Pattern separation in neural circuits was first
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formulated by David Marr (Marr, 1969), who was inspired by two generic features of the
circuitry of the cerebellar input layer: the extensive divergence from a smaller number of
mossy fibre inputs to a much larger number of granule cells, and widespread feedback
inhibition that regulates granule cell excitability. Based on these features, Marr hypothesized
that the cerebellar input layer projects mossy fibre activity patterns onto a much larger
population of sparsely active granule cells, thereby reducing the overlap between activated
neurons (Figure 1B).

James Albus independently developed a similar theory based on analogies between the
cerebellar cortex and supervised learning algorithms from early artificial intelligence
research (Albus, 1971). In this framework, each activity pattern can be considered as a point
in activity space, where each dimension corresponds to the activity of a different neuron.
Albus argued that the divergent architecture of the cerebellar input layer recodes input
patterns in an expanded activity space, thereby increasing their linear separability, (i.e., the
ability to separate different groups of input patterns in activity space via a hyperplane;
Figure 1C). This enables a downstream decoder, such as a perceptron (Rosenblatt, 1958) or
support vector machine (Cortes and Vapnik, 1995), to better classify input patterns into
arbitrary associations using supervised learning. In the cerebellar cortex such supervised
learning is thought to occur largely in Purkinje cells (Brunel et al., 2004; Ito, 2006; Gao et
al., 2012; Ohmae and Medina, 2015; Herzfeld et al, 2018; Raymond and Medina, 2018),
where precise sensorimotor associations are formed by learning rules with narrow temporal
windows (Suvrathan and Raymond, 2016). However, neural activity exhibits significant
trial-to-trial variability due to a variety of factors, including noise from inherently stochastic
processes (e.g. neurotransmitter release at synapses), fluctuations in the external stimulus,
and changes in the internal state of the animal (e.g. attention). Therefore, a key question for
pattern separation is how neural circuits separate overlapping representations in the presence
of unwanted variability (Laurent, 2002).

Despite the differing conceptual details between their theories, Marr and Albus both
predicted that the divergent feedforward excitation present in the cerebellar input layer
implements pattern separation. These concepts (often combined into “Marr-Albus theory”)
have been extended to other divergent circuits that are upstream from areas involved in
associative learning. But, fifty years later, it still remains unclear how different neural
circuits separate noisy activity patterns. Indeed, several mechanisms believed to be involved
in this fundamental computation have recently been called into question by new
experimental and theoretical studies in three brain regions proposed to perform pattern
separation: the cerebellar cortex, insect mushroom body, and dentate gyrus. In this review,
we re-evaluate classical concepts of Marr-Albus theory of pattern separation in light of these
new findings, and discuss recent challenges to how they may be implemented in these
circuits.

Three key circuits that perform pattern separation

Cerebellar cortex

The cerebellum is thought to use associative learning to coordinate movements and predict
the sensory consequences of active movement (Wolpert et al., 1998; Kennedy et al., 2014;
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Brooks et al., 2015; Singla et al., 2017). The evolutionarily conserved, highly regular
structure of the cerebellar cortex has encouraged much speculation as to how the
computations required for these functions are achieved (Figure 2A; Braitenberg, 1961;
Eccles et al., 1967; Marr, 1969; Albus, 1971; Fujita, 1982; Pellionisz and Llinas, 1982;
Kanerva, 1988; Tyrrell and Willshaw, 1992; Miall et al., 1993; Ito, 2006; Yamazaki and
Tanaka, 2007; Dean et al., 2010). Mossy fibres carry sensory and motor information (van
Kan et al., 1993; Arenz et al., 2008; Huang et al., 2013; Proville et al., 2014; Powell et al.,
2015) to the cerebellar input layer (or granule cell layer’), where they form multiple ‘en
passant’ presynaptic boutons. Each large bouton makes glutamatergic synapses onto the
short dendrites of multiple granule cells (Eccles et al 1967; Silver et al., 1992). Granule cell
axons ascend into the molecular layer, where they bifurcate to form long ‘parallel fibres’ that
synapse onto numerous Purkinje cells and interneurons. Granule cells also receive
feedforward and feedback inhibition from Golgi cells (Vos et al., 1999; Duguid et al., 2015),
which are driven by excitatory inputs from massy fibres through their basal dendrites
(Kanichay and Silver, 2008) and ascending granule cell axons and parallel fibres through
their apical dendrites (Dieudonné, 1998; Cesana et al., 2013). Golgi cells are sparsely
interconnected via chemical synapses (Hull and Regehr, 2012) and densely connected via
electrical synapses (Dugue et al., 2009; Szoboszlay et al., 2016), which enables them to
respond to excitatory input in a concerted (MVervaeke et al., 2012) or desynchronized manner
(\Vervaeke et al., 2010).

Two converging lines of thought have led to the hypothesis that the cerebellar input layer
separates overlapping input patterns. The first stems from the cerebellum’s role in associative
learning. Pattern separation is a useful pre-processing step for associative learning, so any
circuit that is involved in associative learning is also a key candidate for pattern separation.
A classic example is eyeblink conditioning, in which animals are trained to associate a
neutral sensory cue (e.g. auditory or visual) with a delayed presentation of an unconditional
stimulus (air puff or electric shock; Attwell et al., 2002). Pattern separation could facilitate
this form of associative learning by making neural representations of different sensory inputs
more distinct, ensuring that the unconditional stimulus is not mistakenly associated with
similar, but not identical, cues. This hypothesis is consistent with functional evidence of the
cerebellum’s involvement in sensory discrimination (Gao et al., 1996; Parsons et al., 1997;
Parsons et al., 2009), but most eyeblink conditioning studies have used a single sensory cue.
A recent study found that lesioning cerebellar nuclei affected the ability of mice to
discriminate between two tones in a delay eyeblink conditioning task (Sakamoto and Endo,
2013). But lesioned animals were still able to learn a simple eyeblink conditioning task,
suggesting that the task was not fully dependent on the cerebellum. Moreover, a patient with
cerebellar cortical atrophy was unable to learn to associate two tones with different delays
(Fortier et al., 2000). These studies are consistent with the idea that pattern separation plays
arole in cerebellar supervised learning by helping discrimination of sensory cues, but direct
experimental evidence of cerebellar pattern separation is lacking.

Second, substantial theoretical work based on Marr-Albus theory has shown that the

circuitry of the input layer of the cerebellar cortex is well suited for pattern separation (Marr,
1969; Albus, 1971; Kanerva, 1988; Tyrrell and Willshaw, 1992; Billings et al., 2014; Cayco-
Gajic et al., 2017; Litwin-Kumar et al., 2017). This relies on three main circuit mechanisms:
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a large divergence (or ‘expansion’), sparse synaptic connectivity, and broad feedback
inhibition. First, the projection from mossy fibres to granule cells is highly divergent, with
granule cells greatly outnumbering mossy fibres. Indeed, cerebellar granule cells are the
most abundant of all neurons in the vertebrate brain. Second, broad feedback inhibition is
provided by Golgi cells, which form electrically coupled syncytia, and have large axonal
arbours. Finally, the connectivity structure is sparse, with each granule cell receiving
synaptic input from only four mossy fibres on average. These circuit mechanisms are
conserved across different cerebellar regions and species (Wittenberg and Wang, 2007),
suggesting that the cerebellar cortical circuitry is important for survival.

Together, these studies have built an anatomical and theoretical foundation for cerebellar
pattern separation based on Marr-Albus theory. However, direct experimental evidence in the
cerebellum is still lacking, due to the technical difficulty of studying populations of densely
packed cells in awake animals with conventional multi-unit electrophysiological recordings.
Several groups have recently overcome the technical hurdles of recording granule cell
population activity by using two-photon imaging and genetically encoded calcium indicators
(Giovannucci et al., 2017; Knogler et al., 2017; Wagner et al., 2017; see also Ozden et al.,
2012). These studies have challenged several long-held assumptions about the properties of
granule cell activity, suggesting that traditional concepts underlying cerebellar function
should be re-evaluated (discussed in detail below).

Mushroom body

Early lesion and ablation experiments identified the mushroom body as a centre for olfactory
memory and associative learning in insects (de Belle and Heisenberg, 1994; Connolly et al.,
1996). The axons of olfactory receptor neurons expressing the same olfactory receptor
converge onto specific glomeruli in the antennal lobes, forming a spatial odourant map
(Fishilevich and Vosshall, 2005). Projection neurons integrate signals from stereotyped sets
of glomeruli, which form random synaptic connections onto Kenyon cells in the mushroom
body calyx (Figure 2B) (Masuda-Nakagawa et al., 2005; Murthy et al., 2008; Caron et al.,
2013; but see Eichler et al., 2017; Zheng et al., 2018). Like the cerebellar input layer, the
mushroom body circuitry is highly divergent, with the number of Kenyon cells far exceeding
the number of projection neurons. In Drosophila, the synaptic connectivity is also sparse:
Kenyon cells have an average of seven dendritic claws, each of which is innervated by a
single projection neuron (Butcher et al., 2012; Caron et al., 2013; Gruntmann and Turner,
2013; but, see Jortner et al., 2007 for a denser connectivity scheme in locust). Global
feedback inhibition is provided by a single GABAergic neuron, called the anterior paired
lateral (APL) neuron in Drosophila, which is both presynaptic and postsynaptic to virtually
all Kenyon cells (Leitch and Laurent, 1996; Liu and Davis, 2009; Papadopoulou et al.,
2011), although recent evidence suggests that the APL neuron may also mediate local lateral
inhibition (Inada et al., 2017). Kenyon cell axons project out from the calyx to form the
lobes, where they converge onto a smaller number of mushroom body output neurons.

The role of the mushroom body in associative olfactory learning, and its broad similarities
with the divergent circuitry of the cerebellar cortex (Farris, 2011), led to the idea that the
mushroom body performs pattern separation (Laurent, 2002). This concept was directly
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tested by a study that used whole-cell recordings to determine that average odour-evoked
Kenyon cell responses were indeed more separated than those of olfactory receptor neurons
(Turner et al., 2008). More recent work has taken advantage of genetically encoded calcium
indicators to image populations of Kenyon cells during an olfactory learning task, verifying
that the ability of flies to generalise aversive associations to novel odours depends on the
level of overlap between the odour-evoked Kenyon cell activity patterns (Campbell et al.,
2013). Conversely, the overlap between projection neuron activity patterns could not predict
learned discrimination performance in flies (Parnas et al., 2013). In a separate experiment,
disruption of the mushroom body circuitry by silencing feedback inhibition resulted in
Kenyon cell activity patterns becoming more similar, and flies were unable to learn to
distinguish similar odours (Lin et al., 2014). These experimental results suggest that the
mushroom body separates odour-evoked activity patterns, and that this function is critical for
associative learning and behavioural discrimination of odours.

Dentate gyrus

The overall structure of the hippocampus is classically described as a “trisynaptic’ circuit,
with information flowing from the entorhinal cortex to the dentate gyrus, followed by areas
CA3 and CAL. As the first stage in this pathway, the dentate gyrus is thought to separate
entorhinal input patterns prior to memory storage in the hippocampus (Marr, 1971;
McNaughton and Morris, 1987; Yassa and Stark, 2011; Schmidt et al., 2012; Knierim and
Neunuebel, 2016; Rolls, 2016). Like the cerebellar cortex, the dentate gyrus has a trilaminar
structure that is characterised by divergent projections onto a larger population of granule
cells, and convergence onto a smaller number of CA3 pyramidal cells (Figure 2C). However,
there are substantial differences between these circuits. First, dentate granule cells only
modestly outnumber their inputs, whereas in the cerebellum the expansion is much larger.
Dentate granule cells also receive thousands of excitatory synaptic inputs from perforant
path axons originating in the entorhinal cortex (McNaughton et al., 1991). Another key
difference is that dentate granule cells form recurrent loops with a second excitatory cell
type: the mossy cells. Granule cell axons descend through the hilus and form boutons that
make excitatory synapses on mossy cells, hilar interneurons, CA3 pyramidal cells and CA3
interneurons (Henze et al., 2000). Ascending mossy cell axons project to the molecular layer
where they contact granule cell dendrites, while collaterals are thought to innervate local
inhibitory interneurons in the hilus (Scharfman, 2016).

While in general cerebellar granule cells only receive inhibition from Golgi cells - with the
exception of recently discovered inhibitory feedback (Ankri et al., 2015; Guo et al., 2016)
and external broad inhibition (Jaarsma et al., 2018) in specific regions - dentate granule cells
are interconnected with multiple inhibitory interneuron subtypes, which are likely to be
specialized for distinct functions (Halasy and Somogyi, 1993; Sik et al., 2006; Hosp et al.,
2014; Savanthrapadian et al., 2014; Szabo et al., 2017). Of these, one of the most widely
studied are basket cells, which receive synaptic input from granule cell axon collaterals, and
deliver feedback inhibition to the perisomatic regions of granule cells via their extensive
axonal plexus (Ribak, 1992). Granule cells also receive feedforward perisomatic inhibition
from basket cells (Ribak, 1992), as well as feedforward dendritic inhibition from molecular
layer perforant path associated cells (Han et al., 1993; Li et al., 2013). In addition, recent
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work has found that parvalbumin-expressing interneurons (which includes some basket cells
as well as axo-axonic cells; Hu et al., 2014) establish powerful lateral inhibition between
granule cells (Espinoza et al., 2018). Therefore, the general circuit mechanisms of
feedforward, feedback, and strong lateral inhibition are present within the complex dentate
inhibitory interneuron network.

Direct evidence of pattern separation in the dentate gyrus comes from recent work
performing extracellular hippocampal recordings from rats during free exploration. Slight
alterations in environmental cues resulted in dentate activity patterns that were less
correlated than those in the entorhinal cortex (Neunuebel et al., 2013; Neunuebel and
Knierim, 2014). Dentate recordings during exploration of similar environments have also
been shown to be less correlated than in CA3 (Leutgeb et al., 2007; Neunuebel and Knierim,
2014) consistent with the hypothesis that the dentate gyrus acts as a pattern separator prior to
memory storage in the hippocampus. In humans, a high-resolution functional imaging study
found that similar scenes could be decoded with a linear classifier more accurately based on
multivoxel patterns in the dentate gyrus than in other hippocampal subfields or the
entorhinal cortex (Berron et al., 2016).

Behavioural discrimination tasks are often used as a proxy for pattern separation in the
hippocampus. For example, lesion and genetic deletion studies have shown that the dentate
gyrus is necessary for the discrimination of similar contexts (Gilbert et al., 2001; McHugh et
al., 2007; Hunsaker et al., 2008). Adult-born granule cells have also been implicated in
contextual discrimination (Sahay et al., 2011; Nakashiba et al., 2012; Danielson et al.,
2016), a result that parallels recent findings that suggest that adult neurogenesis facilitates
pattern decorrelation in the olfactory bulb (Li et al., 2018). However, the impact of adult
neurogenesis in the hippocampus may be species dependent (Sorrells et al., 2018). Such
behavioural assays of pattern separation (sometimes called ‘behavioural pattern separation”)
are not necessarily equivalent to the computational process of separating input patterns
(Figure 1B) (Santoro, 2013). In this review, we focus on ‘computational’ pattern separation
rather than behavioural pattern separation (which has recently been reviewed; Leal and
Yassa, 2018). Nevertheless, these behavioural discrimination studies, in combination with
electrophysiological and theoretical work, provide strong evidence for pattern separation in
the dentate gyrus.

Three circuits, one computation?

We have discussed theoretical, anatomical, functional and behavioural evidence that a key
role of the cerebellar input layer, insect mushroom body, and dentate gyrus is to separate
activity patterns as a pre-processing step for downstream associative learning and memory
formation. These regions share the divergent excitatory projection and feedback inhibition
that have been identified by Marr-Albus theory as being beneficial for pattern separation
(Figure 2D-F). However, there are significant structural differences between these three
circuits, raising the question of how they can each implement pattern separation. We will
argue that these circuits use distinct strategies to achieve the same function. To understand
how this could be achieved, we will first address the key concepts underlying pattern
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separation - expansion recoding, sparse coding, decorrelation and dimensionality - and
discuss how they are interrelated.

Updating classical concepts of pattern separation

Expansion recoding

A key tenet of Marr-Albus theory is ‘expansion recoding’, in which neural activity space is
increased through a random projection of mossy fibre inputs onto a significantly larger
population of granule cells (Figure 3A). Expansion recoding is thought to play a key role in
pattern separation prior to associative learning. Consistent with this, a study that specifically
silenced the synaptic outputs of the majority of cerebellar granule cells found that this
intervention affected the acquisition and consolidation of skilled behaviours but not normal
motor performance (but concomitant changes in long term plasticity could also contribute to
these effects; Galliano et al., 2013). Expansion can be quantified by the ratio of the size of
the input population to the expanded layer population. In the cerebellum, individual mossy
fibre axons form up to 200 ‘en passant’ boutons (Wu et al., 1999) and the ratio of mossy
fibre boutons to cerebellar granule cells is 1:2.9 in rats (Billings et al., 2014), giving an
expansion ratio of roughly 1:600 (Eccles et al., 1967). Anatomical estimates of the ratio of
projection neurons to Kenyon cells in the mushroom body are roughly 1:40 (Laurent, 2002;
Litwin-Kumar et al., 2017). Dentate granule cells also outnumber pyramidal cells in
entorhinal cortex, but here the expansion ratio is an order of magnitude smaller
(approximately 1:5; Leutgeb et al., 2007). This suggests a divergent architecture of varying
degrees in each of these three circuits.

While divergent circuits are ubiquitous throughout the brain, expansion recoding in Marr-
Albus theory is distinguished by the concept of randomly mixing different input channels
(Figure 3B). Nonlinear mixing (i.e., combining mixing with a nonlinearity such as a spike
threshold) increases the linear separability of activity patterns (Rigotti et al., 2013; Figure
3C). Mixing through random projections has recently been observed in the mushroom body;,
where anatomical tracing has found that Kenyon cells integrate sensory information from
largely random sets of glomeruli (Caron et al., 2013; but recent studies show these
projections may not be fully random, see Eichler et al., 2017; Zheng et al., 2018). This
includes mixing of glomeruli with different odour tuning (Gruntman and Turner, 2013) or
sensory modalities (Yagi et al., 2016; Eichler et al., 2017). This contrasts with other theories
that may feature a highly divergent architecture for a different computational role. For
example, compressed sensing theories of circuit function feature a similar expansion and
sparsening, but the divergent synaptic projection is structured so as to demix specific sparse
stimulus features that have been densely encoded in the input population (Ganguli and
Sompolinsky, 2012).

In general, however, even Marr-Albus type neural circuits are unlikely to be fully random
due to morphological constraints such as dendritic length (Gilmer and Person, 2017).
Structured connectivity may also be used to increase the signal-to-noise ratio (SNR) of the
circuit, in order to separate activity patterns while constraining noise (Babadi and
Sompolinsky, 2014). Nevertheless, for expansion recoding, single neurons in the expanded
population should integrate combinations of stimuli across different sources and modalities.
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In the cerebellar cortex, early studies using whole-cell patch clamp recordings from granule
cells suggested that they average inputs with similar receptive field properties (Bengtsson
and Jorntell, 2009). But, in the past decade, anatomical (Huang et al., 2013) and
physiological evidence (Proville et al., 2014) has accumulated for mixed representations
generated through multimodal integration in single granule cells of the cerebellar cortex
(Arenz et al., 2008; Chabrol et al., 2015; Ishikawa et al., 2015). Multimodal integration has
also been observed in granule cells of the mammalian auditory system (Wigderson et al.,
2016) and electrosensory system of weakly electric fish (Sawtell, 2010), which have a
‘cerebellar-like’ circuitry (Oertel and Young, 2004; Bell et al., 2008; Kennedy et al., 2014;
Singla et al., 2017). Mixed representations in the dentate gyrus are harder to ascertain,
because entorhinal cortical neurons already integrate multisensory cues to generate spatial
representations (Campbell et al., 2018). It has been shown that hippocampal projecting
neurons in the medial entorhinal cortex are functionally diverse, combining grid cells, head
direction cells, and border cells, as well as non-spatial cells (Zhang et al., 2013). In contrast,
lateral entorhinal cortex may also encode non-spatial features such as object identity
(Deshmukh and Knierim, 2011) and time (Tsao et al., 2018). However, it is not known but
seems likely that these functionally distinct sources are integrated in single dentate granule
cells.

Sparse coding

Traditional theories of how pattern separation is functionally implemented in neural circuits
have often centred on the sparseness of population activity. Neuronal population activity is
generally considered to be sparse if few neurons are active within a relevant time window.
Population sparseness and expansion recoding are independent properties, as neural
populations can be expanded into either a sparse or dense code just by changing the intrinsic
excitability of the neurons in the expanded layer. However, these two properties have often
been linked through theories of pattern separation, as Marr-Albus theory hypothesized that
the cerebellar cortex reduces the overlap between densely coded mossy fibre activity through
a combination of expansion recoding and sparsening of activity.

Based on arguments of efficient Purkinje cell learning, Marr originally predicted that <5% of
cerebellar granule cells are active at any one time (Marr, 1969). As Marr-Albus theory was
extended to other brain regions, such ‘ultra-sparse’ population coding formed the core of our
current understanding of pattern separation, associative learning, and memory storage (Marr,
1971; Kanerva, 1988; Tsodyks et al., 1988; Rolls and Treves, 1990; Tyrrell and Willshaw,
1992; Schweighofer et al. 2001; Féldiak, 2002; Laurent, 2002). However, it was technically
difficult to determine the population sparseness of codes within neuronal circuits until the
advent of multisite extracellular electrodes, as it requires recordings from populations of
cells simultaneously (in contrast to temporal or lifetime sparseness, a separate property that
characterizes the temporal pattern of spiking activity in a single neuron; Willmore and
Tolhurst, 2001). Considerable evidence has now accumulated that the mushroom body
employs ultra-sparse coding, as studies using a variety of methods, including whole-cell
recordings, tetrode recordings, and calcium imaging, all found that only around 5-10% of
Kenyon cells were active upon odour presentation (Figure 3D) (Perez-Orive et al., 2002;
Wang et al., 2004; Turner et al., 2008; Honegger et al., 2011; Lin et al., 2014). In
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comparison, odours evoked activity in up to 70% of upstream projection neurons (Perez-
Orive et al. 2002; Wilson et al., 2004).

In the dentate gyrus, ultra-sparse granule cell population activity (2-5%) over long
timescales was originally inferred from immediate-early gene expression (Chawla et al.,
2005; Tashiro et al., 2007; Alme et al., 2010). Tetrode recordings revealed denser activation
levels, with reports varying from 12% (Jung and McNaughton, 1993) to over 50% (Shen et
al., 1998; Leutgeb et al., 2007). Several studies additionally reported that putative granule
cells often had multiple place fields (Jung and McNaughton, 1993; Leutgeb et al., 2007;
Alme et al., 2010; Park et al., 2011), further confounding the concept of sparse granule cell
coding. One caveat of these studies is that, due to the extremely low firing rates of granule
cells during wakefulness (O’Keefe, 1976; Jung and McNaughton, 1993; Neunuebel and
Knierim, 2012; Diamantaki et al., 2016), extracellular recordings may underestimate the
fraction of “silent” cells. Moreover, histological localisation can be insufficient to identify
granule cells, as electrodes in the granule cell layer may pick up signals from large mossy
cells in the hilus (Neunuebel and Knierim, 2012). Recently, three studies addressed these
limitations by developing classification methods for electrophysiological recordings
(GoodSmith et al., 2017; Senzai and Buzsaki, 2017) or using calcium imaging (Danielson et
al., 2017) to identify granule cells and mossy cells in awake mice. They found that granule
cell activitiy is much sparser than mossy cell activity during behaviour, and that they
typically have single (if any) place fields. Therefore, these new studies confirm that dentate
granule cells utilize ultra-sparse coding.

In the cerebellum, granule cell activity was long assumed to be ultra-sparse because of
predictions from Marr-Albus theory. But this concept has been challenged based on the
temporally dense activity of single granule cells recorded in vivo (Chadderton et al., 2004;
Jorntell and Ekerot, 2006; Spanne and Jorntell, 2015; Chen et al., 2017). Indeed, granule
cells fire in bursts with spontaneous rates of >100 Hz during locomotion and in response to
sensory stimuli (Van Beugen et al., 2013; Powell et al., 2015). As a result, the question of
sparse coding in the cerebellar cortex has been controversial. Selective expression of high
sensitivity genetically encoded calcium indicators has recently made it possible to record
from large populations of granule cells in awake animals. Using this approach (or a related
approach using a synthetic calcium indicator), several recent studies have reported that
granule cell population activity is far denser than had previously been believed, with more
than two thirds of imaged granule cells being active concurrently in some cases (Figure 3E)
(Ozden et al., 2012; Giovannucci et al., 2017; Knogler et al., 2017; Sylvester et al., 2017).
But, there are several caveats of these findings. First, two of these studies were done in larval
zebrafish, which may have different circuit dynamics from the adult animal (Knogler et al.,
2017; Sylvester et al., 2017). Moreover, calcium imaging can detect subthreshold dendritic
events, such as calcium influx though synaptic receptors, as well as spike-generated calcium
transients, which may decrease the apparent sparseness observed in imaging studies. Finally,
measuring population sparseness requires defining a physiologically relevant timescale for
signal integration. Population activity that is sparse on short timescales could appear denser
on larger timescales. The kinetics of the calcium indicator used in these studies is slow with
a decay of hundreds of milliseconds, an order of magnitude larger than the timescale for
synaptic integration of granule cells (D’Angelo et al., 1995; Schwartz et al., 2012; Rothman
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et al., 2009; Billings et al 2014). Nevertheless, these recent findings cast doubt on ultra-
sparse population coding in the cerebellar cortex.

It is puzzling that cerebellar granule cell activation may be denser than the ultra-sparse
coding observed in the mushroom body and dentate gyrus. If these three regions all perform
the same function, why do they maintain such different activation levels? One possibility is
that the cerebellar cortex may use a different strategy for pattern separation that does not rely
on ultra-sparse coding. This hypothesis is supported by recent modelling of the cerebellar
granule cell layer which found that pattern separation could occur both in sparse and in
dense regimes of granule cell activity (Cayco-Gajic et al., 2017). Instead, expansion and
decorrelation (discussed in the following section) were more predictive of pattern separation
performance than sparseness alone.

One reason for the different levels of population activity exhibited by these circuits could be
the trade-off between sparseness and conservation of information (Billings et al., 2014).
Overly sparse representations limit the amount of information that can be transmitted.
Consistent with this, decreasing the excitability of cerebellar granule cells by increasing
inhibition is associated with ataxia in GABA transporter 1 knockout mice (Chiu et al.,
2005). The cerebellum may simply need to encode a large amount of information in a short
period of time, due to its constant monitoring of sensory, motor, and proprioceptive
information for estimation of errors in movements (Ohmae and Medina, 2015; Herzfeld et
al., 2018) and in sensory prediction (Wolpert et al., 1998; Roth et al., 2013; Brooks et al.,
2015). Indeed, a recent theoretical study has revealed a trade-off between stimulus
prediction and sparseness (Chalk et al., 2018). The authors found that model neural
ensembles that were trained to predict future stimulus information were significantly less
sparse than those that had been trained to recover past information. Thus, the denser
activation levels seen in the granule cell layer of the cerebellar cortex may be due to a need
for higher throughput for real time motor control and predictive coding. By contrast, the
mushroom body and the dentate gyrus may be able to maintain sparser representations,
which are more energetically efficient (Attwell and Laughlin, 2001). Several theoretical
studies have also shown that the sparseness of output representations controls a precise
trade-off between generalization and discrimination of associative learning (Barak et al.,
2013). Therefore, differences in sparseness in these regions could reflect differences in
coding strategy. These recent studies together offer an intriguing potential explanation for
why the cerebellar cortex, whose roles in motor control and sensorimotor prediction are well
established, may utilise denser representations than the mushroom body and the dentate

gyrus.

Decorrelation

Theoretical work has highlighted the strong impact that correlations in neural activity can
have on information processing and population coding in neural circuits (Averbeck et al.,
2006; Kohn et al., 2016). Correlated variability can corrupt encoded information, and unlike
independent noise, cannot be mitigated by spatial or temporal averaging (Figure 4A). Signal
correlations (i.e., correlations reflecting similar stimulus tuning) impede pattern separation
by limiting the range of possible neuronal activity patterns. Decorrelation is crucial for
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associative learning, as correlated input sources can counteract the benefits of sparse coding
and expansion recoding (Cayco-Gajic et al., 2017). How then can neural circuits transform
activity patterns to form decorrelated population activity?

One strategy for counteracting such correlations is to limit common input through sparse
synaptic connectivity (Cayco-Gajic et al., 2017; Litwin-Kumar et al., 2017), as observed
anatomically in the cerebellar cortex and Drosophila mushroom body. Dense synaptic
connectivity increases the amount of shared presynaptic partners, and in the limiting case of
all-to-all feedforward connectivity, forms a fully redundant code. Another strategy is to
actively decorrelate synaptic inputs through neuronal or circuit mechanisms. For example,
thresholding nonlinearities tend to decorrelate input patterns by eliminating correlated
subthreshold fluctuations (Figure 4B; de la Rocha et al., 2007; but note that this may not be
true for highly non-Gaussian synaptic input). This could explain the low intrinsic excitability
of dentate granule cells (Gonzalez et al., 2018). Similarly, the large tonic GABA receptor
inhibitory conductance present in cerebellar granule cells (Brickley et al., 1996) ensures a
high spike threshold (Hamann et al., 2002) that typically requires activation of three of the
four mossy fibre inputs (D’Angelo et al., 1995; Jorntell and Ekerot, 2006; Rothman et al.,
2009; but see Rancz et al., 2007). Raising the intrinsic excitability of cerebellar granule cells
has been shown to impair the consolidation of learning (Seja et al., 2012), consistent with
the idea that thresholding nonlinearities play an important role in pattern separation and
associative learning.

A similar decorrelating effect can be obtained by broad feedback inhibition, which has been
observed in the cerebellar cortex and the mushroom body. A recent study in fly found that
blocking feedback inhibition increased correlations between Kenyon cell patterns to distinct
odours (Figure 4C), illustrating the importance of feedback inhibition for pattern
decorrelation (Lin et al., 2014). Moreover, blocking feedback inhibition significantly
impaired the discrimination of similar, but not dissimilar, odours in a fear conditioning task
(Lin et al., 2014). Lateral inhibition, as observed in the dentate gyrus, can also decorrelate
neural activity by introducing competition between granule cell activity (Giridhar et al.,
2011). In practice, it is often difficult to tease apart the effects of decorrelation from
sparseness. Inhibition and thresholding, which decorrelate activity patterns, also play key
roles in controlling sparseness. Feedback inhibition adaptively regulates excitability
(Hamann et al., 2002; Papadopoulou et al., 2011; Gupta and Stopfer 2012; Lin et al., 2014;
Temprana et al., 2014; Kee et al., 2015), in part by matching spike threshold to the overall
activity level (Mitchell and Silver, 2003; Billings et al. 2014; Tabuchi et al., 2018). However,
sparse population activity is not necessarily decorrelated (and vice versa). But because they
are linked by common neuronal and circuit mechanisms, sparseness and decorrelation often
co-occur despite being distinct properties. Therefore, to comprehensively understand the
effects of sparse coding, decorrelation, and expansion on pattern separation, a framework is
needed to combine these different factors.

Dimensionality

The dimensionality of a system refers to the number of independent variables that are
needed to describe all of its states. For neural circuits, each state is described by the activity
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of all neurons in the population. The potential number of activity patterns is determined by
both the size of the neuronal population, and the dynamic range of the firing rate of each
neuron. The maximum dimensionality of a neural circuit is the size of the neural population,
because it can be fully described by the activity of each neuron. However, the dimensionality
is limited by the fact that many of the vast number of potential activity patterns never occur
because of redundancies and dependencies between neurons. For example, a microcircuit of
two perfectly anti-correlated neurons is one-dimensional, because the activity of one neuron
is sufficient to describe the activity of the full circuit. As a result of these factors, fewer
independent variables than the number of neurons in the circuit will typically be needed to
describe neural activity.

To understand the link between pattern separation and dimensionality, it is useful to separate
the concept of the spatiotemporal activity patterns that represents a single or a few stimuli or
tasks (sometimes called a ‘neural manifold’; Gallego et al., 2017) from its ‘coding
subspace’, which comprises the full set of population representations of all possible stimuli,
behaviours, and internal states of the animal, (Figure 5A). The coding subspace is a subset of
activity space, which represents all possible neural activity patterns, including “non-coding’
subspaces that are observed but that do not represent changes in stimuli or behaviour
(Druckmann and Chklovskii, 2012), as well as neural states that never occur. Higher
dimensional coding subspaces facilitate the separation of overlapping activity patterns by
providing a larger activity space in which those representations are embedded, thereby
increasing their linear separability (Cover, 1965; Figure 1C). In contrast, low-dimensional
coding subspaces limit the extent of potential representations that can be generated by a
neural circuit.

An advantage of focusing on the dimensionality of the coding subspace is that it can
integrate multiple interrelated factors into the same conceptual framework. Expansion, when
combined with nonlinear mixing, increases the dimensionality of the coding subspace
(Rigotti et al., 2013; Fusi et al., 2016). In contrast, signal correlations reduce the
dimensionality of the coding subspace (as in the two-neuron microcircuit example above)
highlighting the need to minimize correlations through sparse synaptic connectivity and
decorrelation (Figure 5B; Cayco-Gajic et al., 2017; Litwin-Kumar et al., 2017).
Thresholding nonlinearities can increase the dimensionality of the coding subspace by
decorrelating activity, but excessive sparsening can ultimately limit the extent of the coding
subspace (Barak et al., 2013; Babadi et al., 2014; Billings et al., 2014; Cayco-Gajic et al.,
2017; Litwin-Kumar et al., 2017). Importantly, dimensionality is a better indicator of how
constrained neural activity is than the average pairwise correlation coefficient because it
takes into account the activity of the full population (Recanatesi et al., 2018). Within this
framework, trade-offs between different structural and functional properties can be viewed
as competing factors controlling dimensionality. Therefore, rather than individually
quantifying the impact of expansion, mixed representations, sparse coding, and
decorrelation, these interdependent properties can be understood in terms of the
dimensionality of coding subspace, providing a more unified view of several determinants of
pattern separation.
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While high dimensional coding subspaces endow neural circuits with a greater potential
capacity for distinct representations, trial-to-trial variability of neuronal responses consumes
coding subspace, and in the limiting case could fill it entirely. The presence of variability
therefore increases the overlap between activity patterns (Figure 5A). Thus to perform
pattern separation neural circuits must increase the effective SNR of their coding subspace
(Babadi et al., 2014; Litwin-Kumar et al., 2017). This could be accomplished by either
increasing the separation between the mean activity patterns or by reducing their trial-to-trial
variability. It is likely that a combination of these strategies is used, but different circuits
may be biased towards either strategy depending on the SNR or the correlation structure of
trial-to-trial variability in the input population. Thus, even different functional zones or
modules within the same brain region may be biased towards either increasing
dimensionality of their coding subspace, or noise reduction, to implement pattern separation.
This may explain, for example, why some studies of cerebellar granule cells have concluded
that they increase the SNR of their inputs by averaging similarly tuned mossy fibres (Ekerot,
and Jorntell, 2008; Bengtsson and Jorntell, 2009), while other studies have found evidence
of multimodal integration (Arenz et al., 2008; Huang et al., 2013; Chabrol et al., 2015;
Ishikawa et al., 2015).

In this view, neural circuits must learn to encode distinct stimuli with separated trajectories
with minimal overlap due to noise or variability (Friedrich and Laurent, 2001; Stopfer et al.,
2003; Broome et al., 2006; Shen et al., 2013; Zylberberg et al., 2016; Remington et al.,
2018). Even within a high-dimensional coding subspace, linear separability depends on the
geometry of the variability of neural representations (Chung et al., 2018). In the dentate
gyrus, a recent study tested the relationship between signal and noise by intracellularly
recording from triplets of mossy cells /n vitro while stimulating the perforant path in
different locations (Zylberberg et al., 2016). Despite considerable fluctuations in the mossy
cell representations, the authors found that this variability was constrained to be near the
average trajectory in activity space, so that the representations of different perforant path
inputs remained separated (Figure 5C). Shuffling the statistics of the noise reduced the
accuracy of a decoder trained to classify the location of stimulation (Zylberberg et al., 2016).
This illustrates the importance of characterizing both the coding subspace and the properties
of the noise, to determine whether neural circuits use high-dimensional activity to separate
activity patterns.

One disadvantage of using dimensionality is that it can be difficult to determine. In
principle, measuring dimensionality is as straightforward as recording a population of
neurons and using principal component analysis (or a nonlinear dimensionality reduction
method) to determine how many components are necessary to capture the majority of the
variance (Cunningham and Yu, 2016). However, subsampling of neuronal populations and
limited recording times can lead to severe underestimates (Gao and Ganguli, 2015), while
measurement noise and nonlinear dynamics can inflate the apparent dimensionality
(Cunningham and Yu, 2016). Moreover, recent theoretical work has also demonstrated that
the dimensionality of neural representations is necessarily limited by the complexity of the
task involved (Gao et al., 2017). Recent imaging of cerebellar granule cell responses to
simple visual stimuli and electric shocks in larval zebrafish, which have roughly 6000
granule cells, found only seven-dimensional representations of these stimuli (Knogler et al.,
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2017). Similarly, a recent study in mice has found low-dimensional granule cell
representations during a simple forelimb-movement task (Wagner et al., 2018). Whether
these results represent the full extent of the coding subspace, or whether these trajectories
are embedded within a higher-dimensional repertoire of potential representations of more
complex stimuli and behaviours, is yet to be established. Quantification of the
dimensionality of the coding subspace and the representations of different behaviours
requires recordings from large numbers of neurons across a very large behavioural
repertoire. Towards this end, new high-density electrophysiological probes, such as
Neuropixels, have enabled simultaneous large-scale extracellular recordings of spikes from
multiple regions (Jun et al., 2017). Several promising new imaging technologies that can
record intracellular calcium from large numbers of identified cells have also been recently
developed (Grewe et al., 2011; Katona et al., 2011; Froudarakis et al., 2014; Nadella et al.,
2016; Sofroniew et al., 2016; Yang et al., 2016; Stringer et al., 2017). Moreover, recent
theoretical advances may help estimate the dimensionality from noisy neural data (Machens
et al., 2010; Stringer et al., 2018), or based on the local connectivity motifs of neural circuits
(Recanatesi et al., 2018). These new techniques will enable us to better quantify the
dimensionality of the coding subspace, and characterise the statistical structure of the trial-
to-trial variability of the sensory and motor representations embedded within it.

Challenges to traditional circuit mechanisms

So far, we have discussed recent findings that update our understanding of pattern separation
in the cerebellar cortex, mushroom body, and dentate gyrus. However, Marr-Albus theory
predicts certain circuit properties that have been challenged by recent findings in these
circuits. Here we address these challenges to traditional circuit mechanisms underlying
pattern separation, and discuss potential solutions.

Feedforward excitation

Marr-Albus theory posits that neural circuits separate overlapping activity patterns through a
divergent excitatory feedforward projection (Figure 3A). Local circuits that perform pattern
separation have generally been assumed to lack recurrent excitatory connections between
neurons in the expanded population, since dense recurrent connections are expected to mix
distinct signals and complete similar patterns, rather than separate them (Rolls, 2016). In the
cerebellum, the excitatory projection from mossy fibres to granule cells is purely
feedforward, and granule cells do not synapse onto each other. However, indirect excitatory
feedback could occur through the inhibition of Golgi cells via metabotropic glutamate
receptor activated G-protein-coupled inwardly-rectifying potassium (GIRK) channels
(Watanabe and Nakanishi, 2003). The presence of such mechanisms could contribute to
separating neural trajectories by exploiting the rich dynamics of edge-of-chaos networks
(Rossert et al., 2015), in analogy with reservoir computing (Yamazaki and Tanaka, 2007;
Buonomano and Maass, 2009; Sussillo and Abbott, 2009). Recent studies have also
discovered evidence of long-range sparse feedback projections from deep cerebellar nuclei
to the cerebellar input layer (Houck and Person 2014; Ankri et al., 2015; Houck and Person
2015; Gao et al., 2016; Low et al., 2018). These projections could provide feedback
excitation or a combination of feedback excitation and inhibition depending on the target

Neuron. Author manuscript; available in PMC 2020 February 18.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Cayco Gajic and Silver Page 15

cell(s), but it is not clear how such long-range feedback affects pattern separation. One
possibility is that feedback projections may have no role in pattern separation, and may
simply extend the timescale over which sequences of movements can be learned (Khilkevich
et al., 2018). Alternatively, feedback may be beneficial for pattern separation if it is
sufficiently sparse (Wiechert et al., 2010). Indeed, recent work in the vertebrate olfactory
system has found that removing long-range cortical feedback by inactivating piriform cortex
increases the correlation between odour responses in the olfactory bulb (Otazu et al., 2015).

In the mushroom body, the possibility of dense recurrent connections has been raised by the
existence of synapses between fibres in the peduncle (Schurmann, 2016). Recent
reconstruction of the mushroom body of larval stage Drosophila has found frequent axo-
axonic connections between Kenyon cells, which reduce the dimensionality of the coding
subspace in a model of the mushroom body circuit (Eichler et al., 2017). However, it is not
clear if these recurrent connections occur in the adult animal. These findings highlight the
need to better characterise the local microcircuitry of the mushroom body calyx and lobes to
determine how the connectivity structure may affect the coding subspace.

Also complicating the feedforward view of pattern separation is the recurrent circuitry
within the dentate gyrus. Although dentate granule cells do not synapse onto other granule
cells under normal conditions, they synapse onto and receive feedback excitation from
mossy cells in the hilus. But the net effect of mossy cells on granule cell excitability has
been unclear, as they also recruit hilar interneurons that inhibit granule cells (Scharfman,
2016). Mossy cell deletion studies have also found mixed effects on granule cell activity
(Ratzliff et al., 2004; Jinde et al., 2012). A new study using closed-loop optogenetics to
selectively modulate mossy cell populations found that mossy cells have a protective,
regulatory effect on granule cell excitability, albeit in epileptic mice (Bui et al., 2018).
Moreover, recent modelling found that deleting mossy cells in a computational model of the
dentate gyrus increased pattern overlap because of the reduced disynaptic feedback
inhibition (Chavlis et al., 2017; Danielson et al. 2017). Therefore, rather than contributing to
runaway excitation, these studies suggest that mossy cells support feedback inhibition and
help to maintain sparse, decorrelated granule cell activity.

Sparse synaptic connectivity

Several recent theoretical studies have shown that sparse synaptic connectivity is optimal for
associative learning because it reduces correlations, maximises the dimensionality of the
activity patterns, and allows for lossless information transfer (Billings et al., 2014; Cayco-
Gajic et al., 2017; Litwin-Kumar et al., 2017). This circuit property is found in the cerebellar
input layer, where granule cells receive a narrow range of 2-7 mossy fibre inputs (with an
average of four; Eccles et al., 1967), a level of connectivity that has been evolutionarily
conserved in the cerebellum since the appearance of fish (Wittenberg and Wang, 2007).
Similarly sparse connectivity is also observed in cerebellar-like circuits such as the dorsal
cochlear nucleus in the mammalian auditory system (Mugnaini et al., 1980) and the
electrosensory system of weakly electric fish (Kennedy et al., 2014). Moreover, in
Drosophila mushroom body, each Kenyon cell has only 2-11 dendritic claws (with an
average of seven; Butcher et al., 2012; Caron et al., 2013). These results suggest that sparse
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synaptic connectivity plays a key role in pattern separation in the cerebellar cortex and
Drosophila mushroom body.

Unlike their counterparts in fly, Kenyon cells in locust are much more densely innervated,
indicating that sparse connectivity is not the only solution for counteracting correlations.
Each Kenyon cell is contacted by 400 projection neurons, roughly half of the population
(Jortner et al., 2007). How, then, can the locust mushroom body maintain a sparse,
decorrelated coding subspace? One possibility is that strong sparsening of activity by high
thresholds in locust Kenyon cells may help to compensate for correlations introduced by the
dense connectivity (Masse et al., 2009). Another possibility is that odour-evoked oscillations
in Kenyon cells, which are present in the locust (Laurent, 2002) but weak in Drosophila
(Turner et al., 2008; Masse et al., 2009), play a greater role in pattern separation in these
species. Upon odour stimulation, locust projection neurons form transiently synchronized
ensembles, creating short integration windows for Kenyon cells and causing them to act as
coincidence detectors (Perez-Orive et al., 2002; Gupta et al., 2016). The sparsening
conferred by such coincidence detection, in combination with decorrelation of temporally
evolving trajectories, can help to separate activity patterns (Laurent, 2002). Pharmacological
block of oscillations (but not odour selectivity) in the projection neurons of honey bees
impaired discrimination of molecularly similar odours, but did not affect the performance for
dissimilar odourants (Stopfer et al., 1997). This suggests that oscillatory synchronization of
projection neurons contributes to pattern separation by adding a temporal dimension to
encoding, a strategy that is also employed in the mammalian olfactory processing (Friedrich
and Laurent, 2001; Margrie and Schaefer, 2003; Poo and Isaacson, 2009). Therefore, a
potential explanation for the difference in synaptic connectivity is that the dense innervation
observed in locust may be overcome by high thresholding and coincidence detection during
oscillatory input activity.

Dense innervation is also observed in the dentate gyrus, where thousands of perforant path
inputs converge onto single granule cells (McNaughton et al., 1991). The sheer number of
synaptic inputs are likely to convey significant input correlations, which could limit the
dimensionality of granule cell responses. Strong lateral inhibition (Espinoza et al., 2018)
could compensate for denser synaptic connectivity by implementing winner-takes-all
competition between granule cells. The diversity of dentate interneurons is also likely to
enable them to closely match excitation and spike threshold and confer precise control over
granule cell firing (Halasy and Somogyi, 1993; Sik et al., 2006; Hosp et al., 2014). By
adaptively modulating granule cell excitability, dentate circuits may therefore be able to
control the trade-off between sparsening activity and conserving information (Billings et al.,
2014), maintaining ultra-sparse firing (Dieni et al, 2013), which is effective at decorrelating
their inputs. Consistent with this view, immature adult-born granule cells, which receive
significantly fewer perforant path inputs (Dieni et al., 2016) receive reduced synaptic
inhibition (Li et al., 2012; Marin-Burgin et al., 2012; Dieni et al., 2013). In addition to
adaptive inhibition, recent work also suggests that nonlinear dendritic processing contributes
to sparse granule cell activity and pattern separation by nonlinear thresholding (Chavlis et
al., 2017). Interestingly, dentate granule cells receive bursts of EPSCs and IPSCs, that
exhibit coherence in theta and gamma frequency bands, respectively (Pernia-Andrade and
Jonas, 2014), raising the possibility that they use synchronous oscillatory activity and
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coincidence detection to generate sparse decorrelated codes, as in the locust mushroom
body. The dentate gyrus may therefore combine dendritic processing, strong inhibition,
adaptive control of granule cell excitability, and oscillatory temporal coding to decorrelate
their inputs and maintain an ultra-sparse code despite the large convergence of entorhinal
inputs on granule cells.

Together, these results suggest different strategies to increase the dimensionality of coding
subspace in neural circuits. On one hand, the cerebellar cortex and Drosophila mushroom
body use sparse synaptic connectivity to limit the corrupting influence of correlations.
However, locust (and possibly honey bee) mushroom body and mammalian dentate gyrus
may compensate for their denser synaptic connectivity with increased thresholding and
oscillatory coding to maintain sparse representations. Another interesting possibility is that
plasticity may compensate for denser innervation levels, as recent theoretical work has
shown that dense synaptic connectivity can be advantageous for associative learning if
supervised learning extends to the input layer (i.e., the synapses between projection neurons
and Kenyon cells; Litwin-Kumar et al., 2017). But whether this mechanism is utilized by the
locust mushroom body or the dentate gyrus remains to be seen. Nevertheless, these studies
together indicate that, rather than relying on a single solution, these neural circuits appear to
utilise several distinct strategies to generate higher-dimensional coding subspaces for pattern
separation and associative learning.

Alternative mechanisms for pattern separation

Pattern decorrelation is thought to occur in a wide range of circuits, including those with
recurrent synaptic connectivity that are not classically thought to perform pattern separation.
Theoretical work has shown that adding random sparse recurrent excitatory or inhibitory
connections can amplify threshold-mediated decorrelation by adding high-variance synaptic
input that makes neural responses more distinct (Wiechert et al., 2010). Unlike Marr-Albus
theory, this recurrent mechanism does not require a large expansion, explaining how pattern
decorrelation could occur in regions that lack a divergent feedforward architecture, such as
the vertebrate olfactory system (Wiechert et al., 2010).

In the olfactory bulb, mitral cell odour representations have been shown to be more
discriminable than those of olfactory sensory neurons (Friedrich and Laurent, 2004), and
become increasingly separated over time (Friedrich and Laurent, 2001). In vivo recordings
have recently shown that the responses of mitral and tufted cells to different odour mixtures
tend to be less correlated than the responses of their inputs (Gschwend et al., 2015). Diverse
inhibitory interneurons also mediate a large range of inhibitory mechanisms on mitral cells
(Burton, 2017). The most abundant of these are granule cells, which are thought to enhance
odour tuning through lateral inhibition (Yokoi et al., 1995; Arevian et al., 2008; Giridhar et
al., 2011). But more recent work suggests granule cell inhibition is involved in spike timing
(Fukunaga et al., 2014), and feedforward inhibition within the glomerulus regulates slower
sniff-coupled odour-evoked inhibition (Fukunaga et al., 2014). Broadly tuned inhibition
from parvalbumin-expressing interneurons could also mediate gain control of mitral cell
responses (Kato et al., 2013). This overall arrangement of inhibition is consistent with the
theory of non-topographical contrast enhancement (Cleland and Sethupathy, 2006), which
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implements a weak version of a winner-take-all algorithm that is well suited for high
dimensional representations that cannot be represented in a smooth topography. Therefore
the lack of expansion and mixing in mitral cells within the olfactory bulb circuit represents
an alternative strategy to traditional Marr-Albus feedforward networks for decorrelating high
dimensional input patterns. Interestingly, mitral cells project to a much larger population of
pyramidal cells in piriform cortex (Shepherd, 2004). Moreover, broad inhibition in the
piriform cortex (Poo and Isaacson, 2009) contributes to sparsening and decorrelation that is
thought to further contribute to separating overlapping odour representations (Stettler and
Axel, 2009; Miura et al., 2012). These aspects of the piriform circuit suggest that it may fit
better with the Marr-Albus framework of pattern separation, following more targeted
decorrelation mechanisms within the olfactory bulb.

The visual system is characterised by a highly divergent projection from lateral geniculate
nucleus to primary visual cortex (Stevens, 2001), and this is accompanied by considerable
sparsening and decorrelation of activity (Olshausen and Field, 1996; Vinje and Gallant,
2000; Froudarakis et al., 2014). Furthermore, recent evidence from large scale calcium
imaging indicates that the V1 coding subspace is as high-dimensional as mathematically
possible, while still retaining smooth representations (Stringer et al., 2018). This expansion
and sparsening of visual information is consistent with the theory that the successive stages
of the visual pathway increase the separability of cortical representations of object identity
(DiCarlo et al., 2012). However, rather than the random expansion predicted by Marr-Albus
theory, visual cortical neurons receive specific geniculate inputs that contribute to their
direction selectivity (Reid and Alonso, 1995; Sun et al., 2016; Lien and Scanziani, 2018).
Therefore, the expansion observed in visual cortex appears specialised for feature selection,
rather than for general purpose pattern separation.

Conclusion

Pattern separation is a fundamental computation by which neural circuits separate
overlapping activity patterns in preparation for downstream associative learning and memory
storage. Marr and Albus pioneered the first theories of this circuit computation with their
widely influential work on the cerebellar cortex. Marr-Albus theory proposed that neural
circuits perform pattern separation by projecting them onto a much larger population of
sparsely active neurons. Towards this end, several structural properties and functional
mechanisms have been identified that are thought to underlie pattern separation: divergent
feedforward excitatory connectivity, sparse random synaptic connectivity, feedback
inhibition and sparse population coding. Here, we re-evaluated these mechanisms in light of
recent advances in three canonical brain regions widely thought to perform this function: the
cerebellar cortex, the mushroom body, and the dentate gyrus.

To address recent challenges to Marr-Albus theory, we argue that the dimensionality of the
coding subspace provides a useful way to understand pattern separation in these circuits, as
it unifies sparse coding, expansion, mixing and decorrelation into the same conceptual
framework. Moreover, we discussed how different circuit mechanisms can be understood as
different approaches to projecting neural population representations of stimuli and motor
tasks into a higher dimensional coding subspace. For example, pattern separation in the
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dentate gyrus and mushroom body may be achieved by a combination of expansion, strong
thresholding, lateral inhibition and coincidence detection to generate an ultra-sparse,
decorrelated coding subspace. However, we propose that the cerebellum requires higher
information throughput because of its role in coordinating movements and predicting the
sensory consequences of movement. Therefore, rather than utilizing ultra-sparse activity
patterns that can limit information content (Billings et al., 2014), it may rely more on
expansion and sparse synaptic connectivity to reduce the impact of input correlations
(Cayco-Gajic et al., 2017; Litwin-Kumar et al., 2017) and generates a higher-dimensional
coding subspace in which activity patterns can be separated effectively.

The trade-offs implicit in these strategies means that quantifying population sparseness,
expansion, or the correlation between neurons in isolation may not be sufficient to determine
whether a neural circuit performs pattern separation. On the other hand, dimensionality can
unify many of the concepts underlying pattern separation, but it can be difficult to quantify,
in practice (Gao and Ganguli, 2015). Moreover, pattern separation cannot easily be predicted
from neural circuitry without knowing the specific wiring. For example, divergent neural
circuits may not necessarily separate patterns (e.g., compressed sensing), and pattern
separation may not require divergent circuits (e.g. olfactory bulb or edge-of-chaos recurrent
networks). Directly testing pattern separation is challenging because it requires
simultaneously measuring the input and expanded layer populations of a circuit, and
comparing the activity patterns representing distinct stimuli or tasks within each population.
While increasing the dimensionality of the coding subspace allows for a greater capacity for
distinct representations, trial-to-trial variability in representations within the coding subspace
can increase pattern overlap. It is likely that neural circuits combine an increase in the
dimensionality of their coding subspace with noise reduction strategies that are matched to
the properties of their inputs. Indeed, the precise statistical structure of correlated neural
variability can have a strong impact on the overlap of distinct neural representations
(Averbeck et al., 2006; Moreno-Bote et al., 2014). Therefore characterising the
dimensionality of the coding subspace and the structure of noise are both needed for a
comprehensive picture of pattern separation.

The characteristic properties of the cerebellar input layer, consisting of a sparse synaptic
connectivity, large expansion, spike thresholding, multimodal integration, and broad
feedback inhibition, suggests that this prototypical Marr-Albus circuit acts as a flexible
general-purpose pattern separator. Similarly, the mushroom body, with its large expansion,
random synaptic connectivity and global inhibition, appears to utilise a similar mechanism,
although different species (i.e., fly vs. locust) seems to rely on different mechanisms to
sparsen and decorrelate Kenyon cell activity. In contrast, the rules that govern the well
documented pattern separation in the dentate circuit are more enigmatic. The modest
expansion, high spike threshold and strong lateral inhibition suggest that the dentate gyrus
may use ultra-sparse coding and winner-takes-all competition to make granule cell
representations more distinct. It is tempting to speculate that these mechanisms, together
with the non-random, specialized subnetworks of inhibitory interneurons, enable the dentate
gyrus to separate specific contexts, rather than acting as a generic Marr-Albus pattern
separator.
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In addition to Marr-Albus theory, Marr is also remembered for his influential proposal that
neural systems should be studied at three levels of analysis: computational, algorithmic, and
implementational (Marr and Poggio, 1977). At the computational level, the cerebellar input
layer, insect mushroom body, and dentate gyrus have been identified as having key roles in
pattern separation and associative learning. At the algorithmic level, we have argued that
different functional determinants of pattern separation can be unified under the conceptual
framework of dimensionality. Finally, at the implementational level, we propose that these
regions use distinct structural mechanisms and functional properties to increase the
dimensionality of their neural coding subspaces to facilitate pattern separation and
associative learning.
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Figure 1. Pattern separation isafundamental circuit computation.
A Spot the difference. This classic children’s puzzle requires the reader to hunt for small

differences between two near-identical images. But in this example, the relocation of the
escaped mouse is immediately clear. This demonstrates the brain’s ability to recognize small
differences between similar scenes. Illustration by Matteo Farinella.

B Marr hypothesized that neural circuits separate overlapping neural activity patterns by
activating distinct ensembles of neurons (Marr, 1969). Neurons that are active under context
1 are shown in blue, and those active under context 2 are shown in red. Grey represents
neurons that are silent in both contexts.

C Albus argued that the cerebellar cortex separates patterns in neural activity space by
expanding the dimensionality, enabling a downstream decoder neuron to linearly classify
them (Albus, 1971). Blue/red represents neural activity patterns in different trials during
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context 1 or 2. Grey inclined plane indicates hyperplane in activity space that separates the
two contexts.
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Figure 2. Threecircuitsthat perform pattern separation.
Circuit-level (A-C) and systems-level (D-F) diagrams of the cerebellar cortex, mushroom

body, and dentate gyrus. Colour key for all panels: red, excitatory afferents; dark blue,
excitatory interneurons (here called the ‘expanded’ population); green, inhibitory
interneurons; and black, output neurons. Size of boxes indicates relative expansion.

A,D Cerebellar cortex: Mossy fibres (MF) carry sensorimotor information to the granule
cells (GrC), whose axons ascend to the molecular layer and bifurcate, eventually contacting
Purkinje cells (PC). Inhhibitory Golgi cells (GoC) receive input from both mossy fibres and
parallel fibres and project to granule cells in the granule cell layer, thereby delivering a
combination of feedforward and feedback inhibition.

B,E Mushroom body: Projection neurons (PN) in the antennal lobe project to Kenyon cell
(KC) dendrites in the mushroom body calyx. Kenyon cell axons extend, forming the
peduncle, and bifurcate into the lobes where they contact mushroom body output neurons
(MBON). A single GABAergic neuron, called the anterior paired lateral neuron (APL) in
flies, receives input from almost all Kenyon cells in the lobes and inhibits almost all Kenyon
cells in the calyx.

C,F Dentate gyrus: Perforant path (PP) fibres, originating from entorhinal cortex, project to
the distal dendrites of granule cells (GrC). Granule cell axons extend through the hilus,
where they contact hilar interneurons, and ultimately project to CA3 pyramidal cells (PyC).
Granule cells are embedded in a complex network of multiple inhibitory interneuron
subtypes. This includes feedforward and feedback inhibition from molecular layer perforant
path interneurons (MOPP), hilar perforant path interneurons (HIPP) and basket cells (BC).
A second excitatory dentate cell type, mossy cells (MC), are recurrently connected with both
granule cells and local hilar inhibitory neurons such as basket cells.
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A Schematic diagram of expansion recoding and sparsening in feedforward network. Dense,
overlapping activity patterns in the input population are projected onto a much larger

population of more sparsely active neurons.

B Randomly mixing inputs of different sensory modalities (indicated by different colours) in
the expanded population gives rise to a large population of neurons that represent arbitrary

input combinations, which can be useful for associative learning.
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C Hlustration of how expansion and nonlinear mixing increases the linear separability of
activity patterns. Left, top: Circuit diagram of two input neurons diverging onto three
neurons in the expanded layer. In this example, in the expanded layer, neurons 1 and 3 are
selective to single inputs, while neuron 2 mixes both input channels. Left, bottom: Example
of input activity patterns representing different contexts (red, blue), which cannot be linearly
separated. Middle: If the expanded layer neurons are linear, the activity patterns are still not
linearly separable because they fall on the same plane. Right: By adding a thresholding
nonlinearity, neuron 2 becomes a coincidence detector for the two input channels. Now as a
result of this nonlinear mixing, the activity patterns are linearly separable (demonstrated by
the grey hyperplane). Figure inspired by Rigotti et al., 2013.

D Heatmap of Kenyon cell activity for two different odours, overlaid on an anatomical map
of mean dF/F activity (colour scale as in E). The few active cells indicates Kenyon cell
population coding is sparse. Scale bar, 10 um. Adapted from Lin et al., 2014 with
permission.

E Top: Anatomical map of cerebellar granule cell somata of the larval zebrafish. Bottom:
Heatmap of peak dF/F over the same field of view. The large fraction of cells active suggests
dense granule cell population activity. Scale bar, 50 pm Adapted from Knogler et al., 2017
with permission.
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Figure 4. Decorrelation.
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A lllustration of the harmful effects that correlated noise can have on information. Left:
original image of grass and shrubs. Centre: Image with independent Gaussian noise added to
each pixel. Right: Image with spatially-correlated noise added to each pixel, keeping the

same variance as used for the independent noise. The addition of spatial correlations

destroys fine-resolution information in the image.
B Thresholding can reduce correlations in synaptic input. Top: Schematic of two neurons
with correlated subthreshold membrane potentials (left; scale bar indicates 50 ms, 2 mV).
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Thresholding nonlinearities reduce their output correlations by removing correlated
fluctuations in subthreshold membrane potential. As a result, spiking output is less
correlated (right; scale bar indicates 50 ms, 10 mV). Bottom: Distribution of correlated
subthreshold membrane potentials for two neurons (left). Colour represents the joint
probability density of the inputs, and grey lines represent each neuron’s intrinsic threshold.
After thresholding, the firing rates of the two neurons are significantly less correlated,
because co-varying subthreshold inputs are quenched (right). Figure inspired by de la Rocha
etal., 2007.

C Feedback inhibition sparsens and decorrelates population activity patterns. Left: Top,
schematic of feedback inhibition onto mushroom body Kenyon cells (KC) via the anterior
paired lateral (APL) neuron. Bottom, with feedback inhibition blocked. Centre: Heat map of
average Kenyon cell responses to two different odours (cf. Figure 3D). Note the denser
activation profiles when feedback inhibition is blocked. Right: Correlation matrices of
Kenyon cell activity patterns for seven different odours. Note the stronger cross-correlations
between activity patterns representing distinct odours when feedback inhibition is blocked.
Adapted from Lin et al., 2014 with permission.
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Figure 5. Dimensionality of the coding subspace.
A The coding subspace (grey plane) is the subset of neural activity space in which neural

representations (coloured lines) are embedded. Trial-to-trial variability (lighter shaded
regions) consumes the space available for distinct neural representations.

B Correlations reduce the dimensionality of the coding subspace. Correlated (red shading)
and independent (grey shading) coding subspaces plotted in activity space. Each point
represents the neural representation of a distinct stimulus or task.

C Example of spatiotemporal pattern separation in the dentate gyrus. Left: Average EPSP
rate trajectories from 3 mossy cells during perforant path stimulation at four different
locations. Note that the trajectories remain separated in activity space over time. Right:
Average distance of a single-trial EPSP pattern to the correct (black) or incorrect (grey)
neural representations (average trajectories), plotted over time. Despite variability between
trials, the activity patterns remain closer to their average neural trajectories than to other
trajectories. This means the trial-to-trial variability is constrained to limit the overlap
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between neural representations of different perforant path stimulations. Adapted from
Zylberberg et al., 2016 with permission.
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