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Abstract

Metabolomics is a powerful systems biology approach that monitors changes in biomolecule 

concentrations to diagnose and monitor health and disease. The leading metabolomics 

technologies, such as NMR and mass spectrometry (MS), currently access only a small portion of 

the metabolome, suggesting that new technologies with orthogonal and chemically specific 

capabilities can provide increased metabolome coverage and further advance the diagnostic power 

of metabolomics. Here we report a novel approach using the high sensitivity and chemical 

specificity of surface enhanced Raman scattering (SERS) for online detection of metabolites from 

tumor lysates following liquid chromatography (LC). Our results demonstrate that this LC-SERS 

approach has metabolite detection capabilities comparable to the state-of-art LC-MS but suggest a 

selectivity for the detection of a different subset of metabolites. Analysis of replicate LC-SERS 
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experiments exhibit reproducible metabolite patterns that we convert into barcodes, which can 

differentiate different tumor models. Our work demonstrates the potential of LC-SERS technology 

for metabolomics-based diagnosis and treatment of cancer.

Graphical Abstract

This is the first demonstration of surface-enhanced Raman scattering (SERS) for untargeted tumor 

metabolomics. Metabolic fingerprinting with SERS is a promising approach to capturing 

biological and metabolic information without the requirement of absolute metabolite 

identification, which can leverage the use of previously discarded data of unidentified metabolites 

for tumor metabolomics.
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For decades, cancer research has investigated effective screening methods for early cancer 

detection and treatment, identifying biomarker molecules representative of a cancer’s 

phenotype and possible therapeutic targets. Systems biology approaches, including 

genomics, transcriptomics, proteomics, and metabolomics, have emerged as promising 

routes to study their global profiles within cancer and other human diseases.[1–3] Among 

these “omics” techniques, metabolomics is becoming an increasingly popular tool for cancer 

diagnostic and biomarker discovery,[4, 5] since the metabolome is considered most 

representative of a specific disease phenotype. Despite the rapidly growing interest and 

promising potential of metabolomics in cancer biomarker discovery, the challenge of 

metabolite identification is tremendous. Less than 2% of the recorded mass spectra in 

metabolomics experiments can be attributed to specific known metabolites, with the 

remainder being unidentified.[6] Improved diagnostics in cancer metabolomics that quantify 

and distinguish these unidentified metabolites may result in significant indicators relevant to 

disease.
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The current state-of-the art technologies in metabolomics are nuclear magnetic resonance 

spectroscopy (NMR)[7–9] and mass spectrometry (MS).[10–12] NMR benefits from its superb 

deconvolution power that allows universal identification and quantification of individual 

metabolites in their native states. However, NMR suffers from low sensitivity and typically 

requires millimolar concentrations of an analyte and milliliter sample volumes for detection,
[13] which are difficult to obtain for many biological samples. MS, coupled with 

chromatography techniques (e.g. LC and GC), has achieved detection at concentrations as 

low as nanomolar.[14] In particular, the development of nanoflow LC systems has enabled 

MS investigations of high-value biological samples with nanoliter volumes.[15, 16] However, 

certain classes of molecules, such as structural isomers and poorly ionizing molecules, 

present challenges for MS-based metabolomics, which may comprise many of the 

unidentified metabolite features. Orthogonal and chemically specific detection methods with 

sensitivity comparable to MS would provide additional detection, characterization, and 

diagnostic power.

Surface-enhanced Raman scattering (SERS) is a promising technique for biomedical 

diagnostics because it produces chemically specific signals and can push the limit of 

detection down to the single-molecule level.[17] In SERS, plasmonic nanostructures are used 

as signal amplifiers to selectively enhance the weak Raman scattering of molecules when 

they are within a few nanometers of a plasmonic nanostructure. Nanoparticle colloids and 

nanostructured surfaces have been used to produce highly enhanced SERS signals for 

metabolite identification in solution.[18–20] However, effective transport of metabolites close 

to enhancing nanostructures is a challenge.[21] The observed spectra often vary, depending 

on the specific nanostructures that give rise to the enhanced Raman signal.[22] In addition, 

interactions with the surface often cause irreversible adsorption, or fouling. Our laboratory 

recently demonstrated the use of hydrodynamic focusing by a fast sheath flow to improve 

mass transport and the efficiency of SERS detection in solution on planar substrates.[23] By 

confining analyte molecules near the SERS substrate, the limit of detection was more than 

1000-fold improved. In proof-of-concept experiments, the detection and disappearance of 

rhodamine was observed, which indicates fouling is avoidable.[23] In addition, coupling the 

sheath-flow SERS approach with chromatography techniques (e.g. CZE and LC) allows for 

sequential detection of low concentration analytes, such as amino acids,[24] peptides,[25] b-

vitamins,[26] and phosphorylated sugars.[27] In our most recent work, phosphorylated sugars 

were identified and quantified in the presence of cell culture media, suggesting complex 

biological matrices are feasible to use as analytes.[27]

In this study, we demonstrate the use of LC-SERS with sheath flow confinement to detect 

distinct changes in metabolites from cell lysate samples of tumors. MMTV-Wnt1 and C3-

TAg mouse tumor models are used in this study due to their upregulated metabolite levels.
[28] We show SERS is comparable to MS for metabolite detection but has different 

sensitivity to certain metabolites. Furthermore, SERS has the potential to classify tumor and 

normal samples based on the detected metabolite patterns, also known as metabolic 

fingerprinting.[29] This approach is typically used as a preliminary measure before a more 

comprehensive analysis to find discriminatory patterns among groups of samples, which has 

been applied, in recent years, in NMR- and MS-based metabolomics studies for disease 
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diagnostics.[30–34] To our knowledge, this is the first report to use SERS for untargeted 

tumor metabolic fingerprinting.

In our experimental approach (Scheme 1), the sheath-flow SERS detector is connected to a 

nanoflow LC system with a flow rate of 300 nL/min. A faster moving sheath fluid (30 μL/

min) is introduced to the flow cell that confines the eluting molecules to the surface of the 

SERS active Ag nanostructured substrate. We previously found enhanced signal with the 

analyte confinement of sheath-flow.[23] For each LC-SERS run, a 1μL sample of metabolites 

extracted from primary tissue was injected and separated over a 20 min LC run monitored by 

the sequential acquisition of 6000 SERS spectra, acquired with a 0.2 second per spectrum. 

Details of the sample preparation are provided in the supplementary materials. Because of 

the signal enhancement from the SERS substrate, we were able to use small sample volumes 

and short acquisition times for high-throughput chemical analysis.

LC-SERS analysis of a MMTV-Wnt1 tumor sample demonstrate the detection of 

metabolites within the complex tumor samples (Figure 1). The SERS chromatogram shows 

sharp peaks at different separation times, with each peak representing a spectrum detected at 

different elution times from the chromatography. The raw SERS chromatogram shows high 

and variable background signal (Figure 1a), which causes issues in signal identification. 

Data comparison algorithms recognize changes in the background over the lower intensity 

signal from the eluting analytes. We developed an algorithm that corrects the background 

and facilitates spectral identification (see supporting information). This algorithm assumes 

that SERS signals from analytes are spectral features with sharp peaks (peak width < 50 cm
−1), which are typical for a SERS spectrum, and appear transiently (time duration < 10 

seconds) in the SERS chromatogram, consistent with previous work.[27] The background-

removed SERS chromatogram includes numerous spiked features that are reflective of the 

high intensity SERS signals being detected (Figure 1b). Distinct spectra are observed at 

different elution times as shown in Figure 1c, indicating that different molecules are detected 

throughout the LC separation. The Pearson correlation coefficient is used as a similarity 

metric to compare different spectra and to identify the unique signals within a SERS dataset. 

Given that SERS signals arise from the brief time period (less than 10 seconds) when 

metabolites interact with the substrate, consecutive highly similar spectra (Corr. Coef. > 0.5) 

are considered to originate from the same analyte, which we called a “unique” signal. The 

cross-correlation diagram (Figure 1d) of the raw SERS data (from Figure 1a) shows an ultra-

high similarity (Corr. Coef. > 0.9) in most of the 6000 spectra due to the significant 

similarity between the high intensity background signals. However, by counting the slowly 

changing spectral features as background to identify the more quickly changing short Raman 

signals, the cross-correlation diagram of the background-removed data shows high 

correlation coefficients only on the main diagonal (Figure 1e), indicating unique spectra at 

each elution time. Comparing Figs. 1d and 1e clearly demonstrates the necessity of 

background removal in signal identification. The absence of off-diagonal peaks 

demonstrates that the SERS signature of each detected analyte is unique.

To compare SERS and MS signals, we next analyzed the signals detected by MS from the 

same MMTV-Wnt1 tumor sample lysates and compared them to SERS. MS and SERS 

chromatograms show different patterns of detected signals (Figure S1) due to the different 
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analyte selection rules of the respective techniques. A total number of 139 metabolites are 

identified from the LC-MS detection by matching the detected signals with the MS database. 

95 unique SERS spectra, distinct spectra at non-consecutive time points, are identified from 

the SERS data. These unique SERS signals can be attributed to different metabolites 

detected by SERS as discussed above (Figure 1). Our previous report has demonstrated that 

only molecules that at least temporarily adsorbed to the SERS substrate would be detected in 

solution.[35] In the case of co-eluting metabolites, composite SERS spectra may present due 

to the competition of adsorption of metabolites to the SERS substrate.

Identification of the metabolites detected by SERS will require development of a reference 

spectral library database that is currently unavailable. Towards this goal, we cross-examined 

the SERS data with MS-identified metabolites to assess whether MS and SERS detect the 

same or different subsets of metabolites. A list of five MS-identified metabolites with unique 

elution times are shown in Table S1. Among these identified metabolites, 2-amino-3-

hydroxypyridine (AHP) gives a strong and consistent SERS signal (Figure S3), while 1-(1,3-

benzodioxol-5-yl)ethanamine, for example, did not produce consistent signals detected by 

our sheath-flow SERS detector (Figure S2). Of the few commercially available, non-

coeluting metabolites tested, only AHP was readily detected by SERS, which suggests that 

SERS may be selective for a different subset of metabolites.

The reference spectrum of AHP acquired under LC-SERS experimental conditions (Figure 

S3) can be used to identify signal from SERS chromatograms, like the chromatogram shown 

in Figure 1b. Figure 2a shows the Pearson correlation coefficients between AHP reference 

spectrum and each spectrum in the SERS chromatogram. The highest correlation is observed 

at spectrum index = 5393 (t = 17.977 min), with a correlation coefficient calculated to be 

0.7242. AHP was detected at similarly late retention times in both MS and SERS 

experiments (Figure S1). The absolute differences in retention time are expected due to the 

different columns and LC-equipment used in our lab compared to the MS core facility. 

Figure 2b plots the highest correlation spectrum along with the AHP reference spectrum. 

The two spectra are similar, suggesting the detected SERS spectrum from the tumor sample 

may be associated with the metabolite AHP. However, some variations in peaks may be 

caused by the low concentration of AHP in the tumor sample or by co-eluting metabolites 

that affect the spectrum. Prior work indicates the observed spectra originate from a small 

number of molecules, possibly 1, interacting at hotspots;[35, 36] however, to populate these 

hotspots generally requires many molecules in the sample. The successful recovery of AHP 

signal in the tumor sample demonstrates the potential use of SERS in targeted metabolomics 

of known metabolites.

While the SERS substrate is not readily fouled by the analytes at low concentrations, it 

gradually degrades under long laser exposure, which can cause signal variations between 

multiple repeated LC-SERS runs. Previously, addition of a self-assembled monolayer 

(SAM) improved analyte interactions with the substrate that significantly improved 

detection.[27, 37, 38] In our experiment, a self-assembled monolayer (SAM) of 6-mercapto-1-

hexanol is assembled on the SERS substrate to improve its stability throughout multiple LC-

SERS runs, as is evidenced by the relatively conserved background spectra after multiple 

LC-SERS runs (Figure S4).
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Signal fluctuation is observed in the SERS chromatograms of two replicate LC-SERS 

measurements of a MMTV-Wnt1 tumor sample (Figure 3a). The number of unique signals 

detected in each replicate are calculated to be 192 and 171, respectively. The differences in 

both the number of detected signals and signal intensities can be attributed to both a 

relatively low number of metabolites injected as well as short signal acquisition time in this 

experiment, which lead to only a few molecules being detected in each spectral acquisition. 

To find the signals that are reproducibly detected in both replicates, we calculate the Pearson 

correlation coefficients between all spectra in each replicate. The matched signals are 

detected in both replicates (Figure 3b), which are determined by two criteria: (1) correlation 

coefficient > 0.5 and (2) elution time difference < 10 seconds. Multiple matched signals are 

detected throughout the LC separation. Representative spectra of the matched signals are 

shown (Figure S5).

The ability to use small sample volumes for metabolomics is important, since many 

biological samples, including patient samples collected from biopsies, are difficult to obtain. 

The development of nanoflow LC system has enabled ultra-small-volume MS-based 

metabolomics studies.[16, 39] Our results demonstrate that SERS can detect reproducible 

metabolite signals, even with small sample volume and nanoflow LC separation, and suggest 

SERS can be utilized as a technique that is complementary to MS for global metabolic 

profiling. To more easily represent the metabolite signals, the reproducible signals can be 

converted into a barcode, where the location of a bar represents a pair of matched SERS 

spectra between different LC-SERS runs at the same elution time (Figure 3b).

A unique metabolic fingerprint for a tumor can be detected without knowing the identity of 

the component metabolites. We performed multiple replicate LC-SERS experiments to find 

the spectra that are reproducibly detected from a specific biological sample. Greyscale 

barcodes were generated from the reproducible signals from three or more replicate LC-

SERS runs from MMTV-Wnt1 and MMTV-Neu tumor samples, and from a healthy 

mammary gland sample (Figure 4). The color intensity of each bar represents the 

reproducibility of the detected signals as determined by the cumulative pairwise correlation 

coefficients normalized between 0 and 1, with a higher value indicating a higher 

reproducibility of the detected signals at certain time points in the LC-separation (denoted 

by spectrum # in the chromatogram). The lower number of detected signals within the 

normal sample is attributed to the lower metabolite concentration in normal tissue compared 

to their cancerous counterparts. Interestingly, the barcodes of the three samples show 

strikingly clear differences. The reproducible detection of metabolite signals, even without 

knowing the identities of the metabolites, demonstrates the potential use of LC-SERS as a 

metabolic fingerprinting approach to classify samples based on the detected metabolite 

patterns. The distinct barcode patterns for each sample shown in Figure 4 demonstrate that 

our LC-SERS approach has the potential not only to classify tumor and normal samples, but 

also to differentiate between different tumor types. Further investigation will assess how the 

biological heterogeneity within tumors affects this analysis.[40, 41] Future investigation will 

also define specific metabolite fingerprints that can be used not only to differentiate between 

tumor and normal samples, but also to assess potential metabolite profiles that can be used to 

diagnose and guide cancer treatment.
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In summary, we demonstrated that SERS is capable of detecting metabolites, sequentially 

eluted after a LC separation, in complex tumor lysate samples. Our results showed that LC-

SERS has comparable capability to LC-MS in terms of metabolite detection. A model 

metabolite, AHP, which was identified by MS, was also successfully detected by SERS. 

While global metabolite identification by SERS would require the annotation of a reference 

library of metabolites, here we demonstrate that metabolic fingerprinting with SERS is a 

promising approach to capturing biological and metabolic information without the 

requirement of absolute metabolite identification. This approach can leverage the use of 

previously discarded data of unidentified metabolites detected by metabolomics. Our LC-

SERS approach provides a complementary characterization that would increase the coverage 

of the metabolome and promote the use of metabolomics as a tool for biomarker discovery 

and clinical diagnostics.
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Fig 1. 
Total photon LC-SERS chromatograms of (a) raw and (b) background-removed SERS 

signals for a 20-min (6000-spectra) LC-SERS run of a MMTV-Wnt1 sample using gradient 

mobile phase (method I, supplementary materials). Each peak in the LC-SERS 

chromatogram corresponds to a Raman spectrum. (c) Examples of the high-intensity SERS 

spectra at different elution times during the LC separation are shown. (d, e) Cross correlation 

diagrams of the (d) raw and (e) background-removed SERS spectra in the same LC-SERS 

run. Color scale represents the Pearson correlation coefficients. The high correlations along 

the background corrected spectra and the absence of cross-peaks indicates unique analytes 

are detected.
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Figure 2. 
(a) Pearson correlation coefficients between AHP reference spectrum and each spectrum in 

the SERS chromatogram shown in Figure 1b. The spectrum that exceeds the threshold 

(dashed line: Corr. Coef. = 0.5) is shown in (b). (b) The reference SERS spectra of AHP 

(blue) and the highest correlation spectrum (Red) from the LC-SERS experiment in (a) show 

strong agreement.
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Figure 3. 
(a) SERS chromatograms of 2 replicate LC-SERS runs of a MMTV-Wnt1 sample (CN466) 

using isocratic mobile phase (method II, supplementary materials). (b) A Pearson’s cross-

correlation was used to determine matched signals in both replicate SERS chromatogram. 

The signals were considered to match when spectra in each replicate satisfied the following 

constraints: (1) Corr. Coef. > 0.5; (2) elution time difference < 10 seconds (spectral index 

difference < 50). The gray bars highlight matched signals.
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Figure 4. 
Bar code plots of tumors MMTV-Wnt1 (blue, n=4), MMTV-Neu (brown, n=4) and normal 

mammary gland sample (orange, n=4). Bar codes represent the reproducible SERS signals 

from at least 3 replicate LC-SERS runs. Color scales represent cumulative pairwise 

correlation coefficients normalized between 0 and 1.
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Scheme 1. 
Schematic illustration of the LC-SERS based metabolic fingerprinting. Metabolites extracted 

from mouse tumors are separated by HPLC and detected using sheath-flow SERS. A series 

of SERS spectra at each retention time are used to generate a barcode indicative of a tumor 

or normal tissue.
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