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Summary:

For the etiology, progression, and treatment of complex diseases, gene-environment (G-E) 

interactions have important implications beyond the main G and E effects. G-E interaction analysis 

can be more challenging with the higher dimensionality and need for accommodating the “main 

effects, interactions” hierarchy. In the recent literature, an array of novel methods, many of which 

are based on the penalization technique, have been developed. In most of these studies, however, 

the structures of G measurements, for example the adjacency structure of SNPs (attributable to 

their physical adjacency on the chromosomes) and network structure of gene expressions 

(attributable to their coordinated biological functions and correlated measurements), have not been 

well accommodated. In this study, we develop the structured G-E interaction analysis, where such 

structures are accommodated using penalization for both the main G effects and interactions. 

Penalization is also applied for regularized estimation and selection. The proposed structured 

interaction analysis can be effectively realized. It is shown to have the consistency properties 

under high dimensional settings. Simulations and the analysis of GENEVA diabetes data with SNP 

measurements and TCGA melanoma data with gene expression measurements demonstrate its 

competitive practical performance.
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1. Introduction

Beyond the main genetic (G) and environmental (E) effects, gene-environment (G-E) 

interactions have been shown to be fundamentally important for the etiology, progression, 

prognosis, and response to treatment of many complex diseases. In the past decade, a long 

array of statistical methods have been developed for G-E interaction analysis and can be 

roughly classified as marginal analysis (under which one G measurement is analyzed at a 

time) and joint analysis (under which a large number of G measurements are analyzed in a 
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single model). Compared to marginal analysis, joint analysis may better describe disease 

biology (that is, phenotypes and outcomes of complex diseases are associated with the 

combined effects of multiple genetic factors) and have attracted extensive attention in recent 

literature.

Joint G-E interaction analysis is challenging with the high data dimensionality. For 

estimation and also to screen out noises and identify important G-E interactions and main G 

effects, regularized estimation has been routinely conducted. Among the available 

techniques, penalization has been popular in recent studies. See Wu and Ma (2018) and 

references therein. Another challenge comes from the need to respect the “main effects, 

interactions” hierarchy (Bien et al., 2013; Hao et al., 2018). Under the context of G-E 

interaction analysis with low-dimensional E variables, this hierarchy postulates that an 

interaction term cannot be identified, if the corresponding main G effect is not identified. 

With this hierarchy, “straightforward” penalizations are insufficient. Several penalization 

techniques have been developed in recent literature to respect this hierarchy (Liu et al., 2013; 

Wu et al., 2018).

A common limitation shared by many of the existing G-E interaction studies is that the 

structures of G measurements have not been well accounted for. Consider for example single 

nucleotide polymorphism (SNP) data. When SNPs are densely measured, those physically 

close are often in high linkage disequilibrium (LD) and likely have similar biological 

functions or statistical effects (Reich et al., 2001). Here, there is an adjacency structure 

which arises from the physical adjacency of SNPs. As another example, consider gene 

expressions. Recent studies have shown that with coordinated biological functions and 

correlated measurements, gene expressions can be effectively described using a network 

structure (Barabasi et al., 2011). Note that for other types of omics measurements, there are 

also underlying structures, although the construction of such structures may vary across data 

types.

In the high-dimensional analysis of main G effects, a few structured analysis approaches 

have been developed to accommodate the underlying structures in estimation and selection. 

Consider the adjacency structure of SNPs (and other densely measured G factors). Available 

penalization approaches include the fused lasso (Tibshirani et al., 2005), smooth lasso 

(Hebiri and van de Geer, 2011), smoothed group lasso (Liu et al., 2012), spline lasso (Guo et 

al., 2016), and others. When gene expressions (and other G measurements) are described 

using network structures, network-constrained regularized estimation has been proposed. A 

popular approach is the network Laplacian-based penalization (Li and Li, 2008). Other 

network-structured penalization methods include the TLP-based penalty for groups of 

indicators (Kim et al., 2013), sparse regression incorporating graphical structures among 

predictors (SRIG) (Yu and Liu, 2016), and others. Extensive investigations have shown that 

structured analysis can lead to more accurate and more interpretable identification and 

estimation. It is noted that, with similar spirits, structured analysis can also be conducted 

based on techniques other than penalization. As penalization is adopted in this study, the 

above literature review has been focused on this specific technique.
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In this study, our goal is to conduct structured G-E interaction analysis, under which the 

structures of G measurements can be effectively accounted for. This has been well motivated 

by the success of structured analysis in the study of main G effects and a lack of such 

analysis in G-E interaction analysis. This study is much more than an extension of the main-

G-effect structured analysis. Specifically, in G-E interaction analysis, one G factor manifests 

multiple effects: its main effect as well as multiple E-interactions. The underlying structures 

need to be accounted for in the analysis of all these effects. This is further complicated by 

the “main effects, interactions” hierarchy. Thus, significant computational and statistical 

developments are needed. Also advancing from some of the existing studies, we 

accommodate multiple types of underlying structures, especially including the physical 

adjacency structure of SNPs and network structure of gene expressions, under one 

framework. This unity significantly benefits methodological and statistical developments. 

Another advancement is that statistical properties are carefully established, which can 

provide a more solid ground than some of the existing studies. Overall, this study can 

provide an alternative and more effective way for conducting G-E interaction analysis.

2. Methods

Consider a dataset with n iid subjects. For the ith subject, let Yi be the response of interest, 

and Zi· = (Zi1; … , Ziq) and Xi· = (Xi1; … , Xip) be the q- and p-dimensional vectors of E and 

G measurements. First, consider the scenario with a continuous outcome and a linear 

regression model with the joint effects of all E and G effects and their interactions:

Y i = ∑
k = 1

q
Zikαk + ∑

j = 1

p
Xijβj + ∑

k = 1

q
∑
j = 1

p
ZikXijηkj + εi, (1)

where αk’s, βj’s, and ηkj’s are the regression coefficients for the main E, main G, and their 

interactions, respectively, and εi’s are the random errors. We omit intercept to simplify 

notation. To respect the “main effects, interactions” hierarchical constraint, we conduct the 

decomposition of ηkj as ηkj = βjγkj. Then model (1) can be rewritten as

Yi = ∑
k = 1

q
Zikαk + ∑

j = 1

p
Xijβj + ∑

k = 1

q
∑

j = 1

p
ZikXijβjγkj + εi = Zi . α + Xi . β + ∑

k = 1

q
W i .

(k) β ⊙ γk + εi,

where α = α1, ⋯, αq ′, β = β1, ⋯, βp ′, γk = γk1, ⋯, γkp ′, W i ⋅
(k) = ZikXi1, ⋯, ZikXip , and ⊙ is 

the component-wise product. Denote Y as the length-n vector composed of Yi’s, and Z, X, 

and W(k) as the n × q, n × p and n × p design matrices composed of Xi·’s, Zi·’s, and Wi
(k), s, 

respectively.

Consider the penalized objective function
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Qn(θ) = 1
2n Y − Zα − Xβ − ∑

k = 1

q
W (k) β ⊙ γk

2

2
+ ∑

j = 1

p
ρ βj ; λ1, r

+ ∑
j = 1

p
∑

k = 1

q
ρ γkj ; λ1, r + 1

2λ2β′Jβ + 1
2λ2 ∑

k = 1

q
γk′ Jγk,

(2)

where θ = (α′, β′, γ′)′ = (α′, β′, γ′1, … , γ′q)′, ν 2 is the L2 norm of vector 

ν, ρ |ν | ; λ1, r = λ1∫0
|ν| 1 − x

λ1r +
dx is the minimax concave penalty (MCP), λ1 ≥ 0 and λ2 ≥ 0 

are the tuning parameters, and r > 0 is the regularization parameter. J is the p × p matrix that 

accommodates the structure of G measurements (more details below). The proposed 

estimate is defined as the minimizer of (2). The nonzero components of β and β ⊙ γk 

correspond to the important main G effects and interactions that are associated with the 

response.

In the objective function, the first term is the lack-of-fit. For each of the G factors, penalties 

are imposed on its main effect as well as interactions. With the decomposition (βjγjk), the 

proposed penalties guarantee that a G-E interaction is not identified if the corresponding 

main G effect is not identified. Note that here the setting and hence strategy differ from the 

pairwise interaction analysis studies such as Choi et al. (2010) and Hao et al. (2018). 

Specifically, in most G-E interaction analysis, for example as considered in our data 

examples, the E factors are manually selected based on extensive prior knowledge and have 

a low dimensionality. As such, there is no need to conduct selection with E effects. In the 

literature, there are other ways of achieving the hierarchy, for example, the sparse group 

MCP (Liu et al., 2013). Our exploration suggests that the proposed approach has 

computational advantages. Accommodating the structures of G measurements In (2), the 

underlying structures of G measurements are accommodated using the last two penalty 

terms. Here for interactions, instead of β ⊙ γk, we consider the structures of γk which can 

significantly facilitate theoretical and numerical analysis. Our numerical investigation 

suggests that the two approaches lead to similar results (details omitted). Consider the 

following two specific examples.

Consider SNP data. Assume that densely measured SNPs have been sorted according to their 

physical locations. Consider the spline type penalty Σj = 2
p − 1 βj + 1 − βj − βj − βj − 1

2 and 

Σj = 2
p − 1 γk(j + 1) − γkj − γkj − γk(j − 1)

2 Then, we have J = H′(p−2)×pH(p−2)×p with Hjj = 

Hj(j+2) = 1; Hj(j+1) = −2, and 0 otherwise. For SNPs as well as their interactions with a 

specific E factor, this penalty promotes smoothness in a similar way as penalizing second 

order derivatives in spline-based nonparametric estimation. As a result, adjacent SNPs are 

promoted to have similar main effects (interactions) associated with the response. With main 

G effects, some alternatives, such as the fused lasso and smooth lasso, promote first-order 

smoothness, while this penalty promotes second-order smoothness. Guo et al. (2016) shows 

that the spline type penalty can outperform these alternatives. Another advantage of the 

spline type penalty is that the quadratic form is computationally more manageable than, for 

example, the absolute-value-based.
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Consider gene expression data. We first construct the adjacency matrix A = (ajl)p×p, where 

ajl = rjl
PcorrI rjl

Pcorr > cPcorr  with rjl
Pcorr being the Pearson correlation coefficient between 

gene expressions j and l and cPcorr being the cutoff calculated from the Fisher transformation 

(details in Web Appendix B). We also examine performance of the proposed approach with 

various values of cPcorr in Web Appendix B. It is observed from Web Table 1 that results are 

similar for cPcorr values in a sensible range and the value calculated from the Fisher 

transformation leads to satisfactory results. Consider J = I − D−1/2AD−1/2, where I is the p×p 

identity matrix and D = diag Σl = 1
p a1l , ⋯, Σl = 1

p apl . With the cutoff cPcorr, J is usually a 

sparse matrix. This penalty encourages the effects of correlated gene expressions to be 

similar. Several recent studies have established the effectiveness of this Laplacian 

penalization strategy for the analysis of main G effects. However, its adoption in the context 

of G-E interaction analysis is still lacking.

The construction of J needs to be adapted to specific settings and may vary across data 

types. On the other hand, the above definitions can be extended and applied to quite a few 

other dense and “non-dense” cases, making the proposed analysis broadly applicable. The 

proposed approach can be extended to other response types/models. For example, in our 

numerical study, we consider the censored survival outcome and accelerated failure time 

(AFT) model. Details on this setting are provided in Web Appendix A.

2.1 Computation

With fixed tuning parameters, optimization of (2) can be conducted using an iterative 

coordinate descent (CD) algorithm. In Web Appendix A, we provide details on the proposed 

algorithm, a proof of its convergence properties, and the time and space complexity. For the 

selection of tuning parameters, we set r as 3 to reduce computational cost and choose the 

values of (λ1,λ2) using BIC. Examinations on various values of r and discussions on the 

approach to produce a parameter path are provided in Web Appendices B and A, 

respectively. We also examine the values of BIC as a function of λ1 and λ2 and parameter 

paths in Web Figures 1 and 2. Sensible findings are observed.

2.2 Statistical properties

Consider the scenario where the number of G factors increases and the number of E factors 

is finite as the sample size increases. Let θ0 = α0 ′, β0 ′, γ1
0 ′, ⋯, γq0 ′ ′ be the true parameter 

values, and Θ0 = α0 ′, β0 ′, η1
0 ′, ⋯, ηq0 ′ ′ Let A1 = j:βj

0 ≠ 0 , A2
k = j:γkj

0 ≠ 0 and βj
0 ≠ 0 , 

and A2 = A2
1 ∪ ⋯ ∪ A2

q. Note that all αk
0, s are nonzero, and the corresponding parameters are 

not subject to penalization. With the hierarchical constraint, in A2
k, we are only interested in 

nonzero γkj’s for which the corresponding βj’s are also nonzero. We have j ∈ A1 if for some 

k, j ∈ A2
k. Denote |A| as the cardinality of set A. Let s = A1 + A2

1 + ⋯ + A2
q . For a vector v 

and index set S, let vS be the components of v indexed by S. For a matrix M and two index 

sets S1 and S2, denote MS1 and MS1. as the columns and rows of M indexed by S1, and 

MS1, S2 as the submatrix of M indexed by S1 and S2.
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Denote θA* = α* ′, βA1
* ′, γ1, A2

1* ′, ⋯, γq, A2
q* ′ ′ as the minimizer of 

Qn θA = 1
2n Y − Zα − XA1βA1 − ∑k = 1

q W A2
k

(k)
βA2

k ⊙ γk, A2
k

2

2

+ 1
2λ2 βA1′ JA1, A1βA1 + ∑k = 1

q γk, A2
k′ JA2

k, A2
kγk, A2

k

. In Web Appendix A, we 

describe the assumed conditions, which are on the property of residual, size of the smallest 

signal, characteristics of the predictor matrix and J, and orders of λ1, λ2, and p. Comparable 

conditions have been assumed in the literature (Fan and Lv, 2011; Huang et al., 2017). We 

refer to Web Appendix A for more detailed discussions.

Theorem 1: Under Conditions (C1)-(C5), there exists a local minimizer θA*  of Qn θA  such 

that for any constant E > 0,

P θA* − θA
0

2 ⩽ δn > 1 − ξ,

where δn =
4λ2 JA, AθA

0
2

c + E s/n and ξ = exp −
4 n/sλ2 JA, AθA

0
2 + Ec

2

32σ2c
 with the 

definitions of σ˙, c, c, and JA, A provided in Web Appendix A.

Proof is provided in Web Appendix A. With Theorem 1, we have θA* − θA
0

2 = Op( s/n) and 

ΘA* − ΘA
0

2 = Op( s/n), as λ2 = O( 1/n)(C4) and JA, AθA
0

2 = O( s)(C5). This theorem 

establishes estimation consistency when the true sparsity structure is known. For the 

estimation error provided in Theorem 1, we establish the L2 loss of the oracle estimator. It 

achieves the order of s/n, which does not depend on log(p) and differs from some existing 

studies with biased penalties such as lasso (Zhang and Zhang, 2012).

Let A1
c = j:βj

0 = 0  and A2
k c

= j:γkj
0 = 0 and βj

0 ≠ 0 . Then A2
k c

∪ A1
c = j:ηkj

0 = 0 .

Theorem 2: Define θ as θA = θA* , βA1
c = 0, γk, A2

k c = 0, and γk, A1
c being the minimizer of 

Qn(θ) with the other parameters fixed at the values defined above. Then under Conditions 

(C1)-(C9), with probability tending to 1, θ is a strict local minimizer of Qn(θ).

Proof is provided in Web Appendix A. With Theorem 2, we have ηk, A1
c = 0 with βA1

c = 0, 

and ηk, A2
k c = 0 with γk, A2

k c = 0. Theorem 2 establishes the selection and estimation 

consistency properties under high-dimensional settings. The definition of θ is based on the 

concept of “oracle” (Fan and Lv, 2011; Huang et al., 2017). That is, if there is an oracle 

informing the true sparsity structure, then the proposed estimator based on (2) would 

become that in Qn θA  by using this information. Theorem 2 demonstrates that the proposed 

estimator θ performs as well as the oracle estimator θA* , and the estimation consistency of 

the oracle estimator has been established in Theorem 1.
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3. Simulation

We simulate densely positioned SNP data with an adjacency structure. Specifically, (a) 

under all scenarios, q = 5 and p = 5; 000. Thus, there are a total of 5,005 main effects and 

25,000 interactions. (b) Two approaches, A1 and A2, are adopted to simulate G factors 

which mimic SNP data coded with three categories (0, 1, 2) for genotypes (aa, Aa, AA). 

Approach A1 includes two steps, under which we first generate p continuous variables from 

a multivariate Normal distribution, and then dichotomize the continuous variables at the q1 

and q2 percentiles to generate 3-level G measurements. In the first step, two correlation 

structures are considered with different parameters, referred to as AR(0.3), AR(0.5), Band1, 

and Band2, where AR and Band stand for auto-regressive and banded, respectively. In the 

second step, q1 and q2 are adjusted to generate G factors with different minor allele 

frequency (MAF) values, referred to as M1 and M2. Under A2, we simulate G factors with 

the pairwise LD structure. Two pairwise correlations 0.3 and 0.5 are considered, referred to 

as LD(0.3) and LD(0.5). For MAF, two scenarios similar to those in Step 2 of A1 are 

considered. We refer to Web Appendix B for details. (c) For E factors, we first generate five 

continuous variables from a multivariate Normal distribution with marginal mean 0, 

marginal variance 1, and correlation structure AR(0.3), and then dichotomize two of them at 

0 to create two binary variables. There are thus three continuous and two binary E factors. 

(d) For E factors, their coefficients αk’s are generated from Uniform (0.8, 1.2). There are 20 

main G effects and 40 G-E interactions with nonzero coefficients. Two structures, the “main 

effects, interactions” hierarchial structure and smoothness structure of SNP effects, are 

satisfied. A graphical presentation is provided in Figure 1. Detailed values are provided in 

Web Appendix B. (e) Consider two types of response. The first is a continuous response 

under model (1). The second is a censored survival response under the AFT model, where 

the censoring times are generated from an exponential distribution with parameter adjusted 

to achieve ~ 20% censoring. The random error εi follows a standard Normal distribution. (f) 

Set n = 250 and n = 350 for the continuous and survival settings, respectively. There are a 

total of 24 scenarios, comprehensively covering a wide spectrum with different types of 

responses and correlation structures among G factors, and various levels of MAF.

We consider the proposed approach with the spline type penalty and the following 

alternatives. MA, which is a marginal analysis approach that analyzes one G factor along 

with all E factors and corresponding interactions at a time. P-values of the G factors and 

interactions are adjusted using the false discovery rate (FDR) approach. This approach has 

been commonly adopted in published studies. HierMCP, which is the non-structured 

counterpart of the proposed approach, where the MCP penalty is applied for estimation and 

selection. Comparing with this approach can reveal the value of incorporating the two 

structures. SMCP, which is based on model (1) and imposes the MCP and structured 

penalties on βj and ηkj without respecting the “main effects, interactions” hierarchy. 

Comparing with this approach can reveal the value of the special consideration on 

interactions.

In identification evaluation, measures include the number of true positives and false positives 

for main effects (M:TP and M:FP) and interactions (I:TP and I:FP), respectively. Estimation 
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performance is assessed using the root sum of squared errors (RSSE) defined as Θ − Θ0
2, 

where Θ and Θ0 are the estimated and true values of Θ = α′, β′, η1′ , ⋯, ηq′ ′. We also take the 

underlying structure of SNPs into consideration and compute the root structured error (RSE) 

Θ − Θ0 ′J Θ − Θ0 , where J = diag 0q × q, J , ⋯, J . For evaluating prediction performance, 

an independent testing set with 100 subjects is generated. We adopt the prediction mean 

squared error (PMSE) for continuous outcomes and C-statistic (Cstat) for censored survival 

outcomes. C-statistic is the time-integrated area under the time-dependent ROC framework 

and measures the overall adequacy of risk prediction for censored survival data, with a larger 

value indicating better prediction (Uno et al., 2011).

Summary results over 500 replicates under the linear model with M1 and M2 are shown in 

Tables 1 and 2, respectively. The rest of the results are shown in Web Tables 3 and 4. Across 

all simulation scenarios, the proposed approach is observed to have superior or similar 

performance compared to the alternatives. Specifically, it can more accurately identify both 

the true main effects and interactions while having a small number of false positives. For 

example in Table 1 with AR(0.3), the proposed approach has 

(M:TP,M:FP,I:TP,I:FP)=(19.7,0.0,33.8,4.1), compared to (0.1,11.2,2.2,77.9) for MA, 

(11.7,68.5,3.4,4.2) for HierMCP, and (17.4,2.7,23.4,19.7) for SMCP. Compared to MA and 

HierMCP, the proposed approach has much better identification performance, which 

provides a strong support to the structured analysis strategy. It also outperforms SMCP, 

which suggests the effectiveness of the proposed decomposition strategy for respecting the 

interaction hierarchy. The advantage of the proposed approach gets more prominent under 

MAF setting M2. For example in Table 2 with Band1, the proposed approach has 

(M:TP,M:FP,I:TP,I:FP)=(19.7,1.0,33.3,5.1), compared to (0.1,6.7,1.6,53.6) for MA, (11.7, 

64.7,3.9,5.2) for HierMCP, and (16.1,7.0,11.3,74.1) for SMCP. We also observe the 

superiority of the proposed approach in estimation. For example in Table 1 with LD(0.5), the 

proposed approach has RSSE=2.95, compared to 16.15 (MA), 17.76 (HierMCP), and 4.93 

(SMCP). It also has smaller structured errors. In addition, the proposed approach has 

satisfactory prediction performance. For example in Table 2 with Band2, the PMSEs are 

29.94 (MA), 23.04 (HierMCP), 4.18 (SMCP), and 1.59 (proposed). The observed patterns 

for data with survival outcomes (Web Tables 3 and 4) are similar.

For the linear model with MAF setting M1, we simulate three additional scenarios with 

highly correlated predictors and provide the summary results in Web Table 5. Compared to 

those in Table 1, the three alternatives identify more true positives but also more false 

positives. The proposed approach still has favorable performance. For SNP data, we have 

also examined a few other simulation scenarios, and the observed patterns are similar 

(details omitted). We have also experimented with continuously distributed G measurements, 

which mimic gene expression data, and applied the Laplacian type penalty function. Similar 

superiority of the proposed approach is observed (details omitted).
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4. Data analysis

4.1 GENEVA diabetes data (NHS/HPFS)

The Gene Environment Association Studies (GENEVA) consortium is part of the Genes, 

Environment and Health Initiative (GEI) organized by the NIH. We analyze the GENEVA 

Type 2 Diabetes data, where the goal is to identify genetic factors that are associated with 

type 2 diabetes phenotypes, biomarkers, and others. In our analysis, data are downloaded 

from dbGaP (accession number phs000091.v2.p1). The response variable of interest is body 

mass index (BMI), which is continuously distributed. BMI level is one of the most important 

risk factors for type 2 diabetes. Following recent published studies, we take a “loose” 

definition of E factors. Specifically, E factors considered include age, family history of 

diabetes among first degree relatives (famdb), total physical activity (act), trans fat intake 

(trans), cereal fiber intake (ceraf), and heme iron intake (heme), all of which have been 

suggested to be potentially associated with BMI and diabetes. For G factors, we analyze 

SNPs on chromosome 4, which plays an important role in many disorders, such as 

Parkinson’s disease, Huntington’s disease, and others. Preprocessing similar to that in Wu et 

al. (2014) is conducted, which includes matching subjects, removing SNPs with MAF< 0.05 

or deviation from the Hardy-Weinberg equilibrium, and imputing missing data using 

fastPHASE. Data are available on 2,558 subjects and 40,568 SNPs. As the number of 

relevant SNPs is not expected to be large, to improve stability, we conduct a marginal 

screening as follows. First, a p-value is computed for each SNP based on a marginal linear 

model. With the physical adjacency structure in mind, we select a region as opposed to 

individual SNPs. Specifically, for each region with 10,000 consecutive SNPs whose physical 

locations are adjacent to each other, the sum of the p-values is computed. The region 

including 10,000 consecutive SNPs with the smallest sum is selected for downstream 

analysis.

We adopt the linear regression model and spline type penalty. The proposed approach 

identifies 71 main SNP effects and 128 G-E interactions. The detailed estimation results are 

provided in Web Table 6 and also presented in Figure 2, where SNPs are sorted according to 

their physical locations on the chromosome. In terms of main effects, three E factors, age, 

act, and ceraf, have negative coefficients, and the other three, famdb, trans, and heme, have 

positive coefficients, which are consistent with findings in the literature. Figure 2 shows that 

the estimated effects demonstrate a certain degree of smoothness, which fits the design of 

the proposed approach. Genes that the identified SNPs belong to or are the closest to are also 

provided in Web Table 6. Literature search suggests that these genes and interactions may 

have important implications, which may provide support to the validity of the proposed 

approach. Discussions on biological functionalities are provided in Web Appendix B.

Beyond the proposed approach, we also conduct analysis using the alternatives. Detailed 

estimation results are provided in Web Appendix B. In Table 3, we provide the numbers of 

main G effects and interactions identified by different approaches and their overlaps as well 

as the RV coefficients. The RV coefficient measures the degree of overlapping information 

in two data matrices, with a larger value indicating a higher degree of similarity. It is 

observed that the proposed approach identifies different main G effects and more 
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significantly different interactions from those with the alternatives. Without reinforcing the 

interaction hierarchical structure, SMCP identifies the smallest number of main effects but 

the second largest number of interactions. Both the proposed approach and HierMCP 

identify a moderate number of main effects and interactions. Measured using the RV 

coefficients, different sets of identified main effects have relatively high levels of 

overlapping information, while those of interactions have moderate overlapping information. 

We also examine the biological similarity of the identified genes based on the Gene 

Ontology (GO) analysis. Moderate similarity is observed. We refer to Web Appendix B and 

Web Figure 3 for details.

With real data, it is difficult to objectively evaluate identification accuracy. To provide 

support to the identification results, we examine prediction performance and selection 

stability using a resampling-based approach. Specifically, subjects are randomly split into a 

training and a testing set. We then estimate parameters using the training set and make 

prediction for the testing set subjects. With 500 resamplings, we compute the mean PMSEs, 

which are 15.38 (MA), 17.47 (HierMCP), 13.11 (SMCP), and 13.06 (proposed). The 

proposed approach has prediction performance comparable to SMCP and better than MA 

and HierMCP. We further compute the observed occurrence index (OOI) to measure 

selection stability. It is the probability of a specific main effect or interaction identified in the 

500 resamplings. The mean OOI values for the identified main G effects and interactions 

using the proposed approach is 0.69, compared to 0.47 (MA), 0.39 (HierMCP), and 0.21 

(SMCP). The proposed approach has prominent superiority in selection stability.

4.2 TCGA skin cutaneous melanoma data

We consider The Cancer Genome Atlas (TCGA) skin cutaneous melanoma (SKCM) data. 

TCGA is a collective effort organized by NIH and has published high quality clinical, 

environmental, and genetic data. We focus on the processed level 3 data, which are 

downloaded from TCGA Provisional using the R package cgdsr. As in several recent 

studies, we analyze the (censored) overall survival. The analyzed E factors include age, 

AJCC nodes pathologic stage (PN), gender, Breslow’s depth, and Clark level, all of which 

have been extensively studied in the literature. For G factors, we consider the mRNA gene 

expressions. In TCGA, gene expression measurements are the z-scores, which have been 

lowess-normalized, log-transformed, and median-centered, and quantify the relative 

expressions of tumor samples with respect to normals. Data are available on 298 subjects 

and 18,934 gene expressions. Among the subjects, 152 died during followup. Marginal 

screening is also conducted, and the 10,000 genes with the smallest p-values are selected for 

downstream analysis. Here, the distances between genes are not as easy to quantify as for 

SNPs, and some genes can be far away from each other. As such, the physical location-based 

region screening in Section 4.1 may not be appropriate. If one wants to accommodate 

network-based distance, subnetwork detection methods may be needed, which have been 

demonstrated to be quite complicated and warrant a separate investigation. To avoid 

excessive complexity, and noting that prescreening is not essential for the proposed analysis, 

we conduct screening based on p-values directly and select individual genes.
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With a censored survival outcome, we adopt the AFT model. Examining the estimation 

procedure described in Web Appendix A suggests that the proposed computational 

algorithm can be directly applied. With gene expression measurements, we adopt the 

Laplacian type penalty. The proposed analysis identifies 50 main G effects and 44 

interactions. The detailed estimation results are provided in Web Table 7. All five E factors 

except for gender have negative coefficients, which match observations in the literature. The 

identified genes are also presented in Figure 3, where two genes are connected if they have a 

nonzero adjacency value. For the identified genes, published studies provide independent 

evidences of their associations with cutaneous melanoma. We refer to Web Appendix B for 

relevant discussions.

Analysis is further conducted using the three alternatives, and the summary comparison 

results are presented in Table 3. Detailed estimation results are provided in Web Appendix 

B. As for the previous dataset, the proposed approach identifies different sets of main effects 

and interactions, and the RV coefficients and GO analysis (Web Appendix B) suggest 

moderate similarity. We also evaluate prediction performance and selection stability. In 

prediction evaluation, the mean C-statistics are 0.54 (MA), 0.59 (HierMCP), 0.64 (SMCP), 

and 0.65 (Proposed). In addition, the average OOI of the proposed approach is 0.87, 

compared to 0.53 (MA), 0.55 (HierMCP), and 0.77 (SMCP). The proposed approach again 

has better prediction performance and stability.

5. Discussion

For G-E interaction analysis, in this article, we have developed a new approach which shares 

similar desirable properties as the existing ones but also advances from them by 

accommodating the underlying structures of G factors. Although structured analysis has 

been conducted for main G effects in some recent publications, this study is among the first 

to conduct structured analysis in the context of G-E interaction analysis. Significant 

complexity is brought by the multiple effects (coefficients) that correspond to one G factor 

and the need to respect the “main effects, interactions” hierarchy. We note that in practical 

data analysis, gene-environment interaction patterns may be more complicated than can be 

described using the proposed model with hierarchy. For example, pure gene-environment 

interactions without corresponding main effects have also been suggested in a handful of 

studies, such as Aschard (2016), Zhou et al. (2019), and others. It has been discussed in 

Cordell (2009) that whether there are scenarios with interactions but not corresponding main 

effects is still open to debate and it is also unclear how often they are if they do exist. 

However, in terms of statistical modeling, statisticians have suggested that models violating 

the hierarchy may be not sensible, for example, for considering statistical power or 

postulating a special position for the origin (Bien et al., 2013). Following such studies (Bien 

et al., 2013; Liu et al., 2013; Wu et al., 2018), we have designed the approach to respect the 

interaction hierarchy. The proposed approach belongs to the well-established penalization 

paradigm and has an intuitive definition. Although it has multiple penalty terms, it is 

computationally much manageable. BIC has been adopted for tuning parameter selection. 

Besides BIC, cross validation is perhaps also viable. It has been demonstrated that each 

approach has its shortcomings and cannot perform universally better than the other (Breheny 

and Huang, 2011). In the interaction analysis conducted by Choi et al. (2010), it has been 
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shown that cross validation performs better in prediction accuracy, whereas BIC outperforms 

cross validation in variable identification. In this study, it is not our goal to compare and 

draw conclusions on the relative performance of different tuning parameter selection 

approaches. We adopt BIC as it has satisfactory performance and lower computational cost. 

The proposed approach is proved to have the consistency properties, which have not been 

established for most alternatives and provide a uniquely strong ground for the proposed 

approach. Extensive numerical studies show the practical superiority. Overall, this study 

provides a practically useful new way for analyzing G-E interactions.

Although described using the linear regression model for a continuous response as an 

example, the proposed approach can be extended to other data settings/models. For gene 

expression data, we have adopted the data-dependent adjacency matrix. We acknowledge 

that the analysis results may be more dependent on analyzed data compared to those based 

on data-independent networks, for example, biological networks (protein-protein network, 

gene regulatory network, etc.). In addition, there may be other adjacency measures. In this 

study, our goal is to incorporate G factor structures, not compare different adjacency 

measures. We adopt the proposed one, as it has been a popular choice in the literature 

(Huang et al., 2011; Shi et al., 2015) and leads to satisfactory numerical performance. It is 

straightforward to couple with other adjacency measures. The proposed approach can 

accommodate multiple types of structures, as long as the J matrix satisfies certain mild 

conditions. We leave it to future research to study the definition and properties of J for other 

types of omics data. For high dimensional penalization studies, it has been demonstrated in 

Fan and Lv (2011) that when p > n, it is hard to establish the global optimality for a local 

solution. In addition, Breheny and Huang (2011) have demonstrated that in high-

dimensional settings, global convexity is neither possible nor relevant, and providing that the 

objective function is convex in a local region that contains the sparse solution is sufficient to 

a certain extent. The framework of establishing consistency properties based on the local 

solution is common in published studies, such as Fan and Lv (2011) and Huang et al. (2017). 

We have studied the local convexity of the objective function on the coordinate subspaces in 

Web Appendix A. The global optimality can be even more challenging for interaction 

analysis and is deferred to future investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Simulation: true coefficient values for the main G effects and interactions. To improve 

presentation, only the first 100 effects are presented. The rest are zero.
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Figure 2. 
Analysis of the GENEVA diabetes data (NHS/HPFS) using the proposed approach: 

identified main G effects and interactions.
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Figure 3. 
Analysis of the TCGA SKCM data using the proposed approach: identified main G effects. 

The edges between genes are defined based on the values of ajl’s of the adjacency matrix A 
= (ajl)p×p. Positive and negative connections are represented with red and green, respectively. 

The thickness (strength) of an edge is proportional to |ajl|. This figure appears in color in the 

electronic version of this article, and any mention of color refers to that version.
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Table 1

Simulation results under the linear model with MAF setting M1. In each cell, mean (sd) based on 500 

replicates.

M:TP M:FP I:TP I:FP RSSE RSE PMSE

AR(0.3)

MA 0.1(0.5) 11.2(15.9) 2.2(2.2) 77.9(79.0) 15.03(5.07) 30.32(17.12) 28.36(8.80)

HierMCP 11.7(1.7) 68.5(11.4) 3.4(1.6) 4.2(2.0) 13.29(1.04) 26.48(2.53) 20.45(4.49)

SMCP 17.4(4.1) 2.7(5.2) 23.4(4.8) 19.7(14.3) 5.35(0.94) 2.65(0.67) 2.05(0.39)

Proposed 19.7(0.7) 0.0(0.1) 33.8(3.3) 4.1(2.5) 3.09(0.82) 2.32(0.66) 1.47(0.31)

AR(0.5)

MA 0.4(1.0) 15.0(18.0) 4.8(3.7) 106.9(79.7) 20.15(8.82) 44.63(27.13) 40.81(16.31)

HierMCP 12.5(1.5) 78.1(13.7) 4.1(1.8) 5.3(2.5) 14.54(1.30) 30.51(3.10) 25.42(6.31)

SMCP 19.0(1.4) 3.0(5.2) 23.6(4.7) 20.4(16.5) 5.15(0.88) 2.71(0.67) 2.28(0.70)

Proposed 19.7(0.6) 0.0(0.3) 34.8(2.8) 3.1(2.0) 2.67(0.75) 2.39(0.69) 1.47(0.37)

Band1

MA 0.2(0.8) 10.4(17.0) 1.9(2.3) 75.7(81.1) 13.42(3.38) 24.02(13.53) 24.63(6.17)

HierMCP 11.6(1.6) 70.3(10.5) 3.0(1.8) 4.0(2.0) 13.36(0.97) 26.30(2.41) 20.91(4.06)

SMCP 17.7(3.1) 3.5(5.8) 22.0(4.2) 20.8(15.3) 5.48(0.92) 2.71(0.60) 2.19(0.55)

Proposed 19.6(0.8) 0.0(0.4) 33.4(3.5) 4.3(2.9) 3.24(0.99) 2.40(0.72) 1.55(0.40)

Band2

MA 0.2(0.5) 9.2(14.6) 3.1(3.1) 79.2(80.3) 15.09(4.99) 29.89(17.11) 34.68(10.47)

HierMCP 12.4(1.7) 76.1(14.2) 3.9(1.9) 5.4(2.9) 14.22(1.39) 29.54(3.48) 24.11(6.01)

SMCP 18.8(1.7) 2.2(3.8) 24.4(4.8) 18.8(14.1) 4.93(1.00) 2.72(0.60) 2.17(0.53)

Proposed 19.6(0.6) 0.0(0.0) 34.2(3.6) 3.4(2.2) 2.74(0.92) 2.40(0.77) 1.49(0.41)

LD(0.3)

MA 0.2(0.7) 8.5(13.8) 3.0(2.8) 70.6(75.7) 14.40(4.10) 27.57(13.99) 27.24(7.68)

HierMCP 11.9(1.7) 93.7(10.8) 1.6(1.2) 1.6(1.3) 15.52(1.15) 32.24(2.91) 25.96(5.44)

SMCP 17.3(4.1) 3.0(4.7) 22.9(4.7) 15.4(12.1) 5.42(0.97) 2.68(0.59) 2.23(0.65)

Proposed 19.3(1.0) 0.0(0.1) 33.2(3.8) 3.5(2.6) 3.10(0.98) 2.44(0.73) 1.60(0.44)

LD(0.5)

MA 0.4(1.1) 9.5(16.3) 5.0(3.9) 77.8(73.9) 16.15(5.37) 34.21(16.84) 33.86(10.10)

HierMCP 12.3(1.6) 109.5(14.8) 1.6(1.1) 2.1(1.4) 17.76(1.62) 38.96(4.07) 35.11(9.11)

SMCP 18.6(2.3) 2.4(3.6) 25.3(4.9) 15.7(14.0) 4.93(1.16) 2.61(0.59) 2.20(0.62)

Proposed 19.2(1.1) 0.1(0.4) 33.7(3.8) 2.7(2.6) 2.95(1.10) 2.60(0.89) 1.60(0.50)
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Table 2

Simulation results under the linear model with MAF setting M2. In each cell, mean (sd) based on 500 

replicates.

M:TP M:FP I:TP LFP RSSE RSE PMSE

AR(0.3)

MA 0.1(0.5) 7.1(14.4) 2.0(2.1) 53.9(70.5) 11.20(1.62) 17.58(8.90) 23.30(5.04)

HierMCP 11.9(1.7) 64.4(11.0) 4.2(2.1) 5.7(2.3) 13.09(1.00) 26.28(2.37) 19.38(4.95)

SMCP 16.5(3.3) 6.5(9.9) 12.3(8.3) 68.7(25.9) 7.06(1.51) 3.56(1.05) 5.53(3.43)

Proposed 19.7(0.6) 0.0(0.1) 34.2(3.3) 4.0(2.2) 3.04(0.86) 2.26(0.53) 1.45(0.29)

AR(0.5)

MA 0.3(0.9) 10.3(15.7) 4.0(3.6) 80.0(79.4) 14.89(4.30) 30.05(15.14) 36.06(12.01)

HierMCP 12.5(1.4) 70.2(14.1) 5.0(2.4) 7.3(3.5) 14.02(1.58) 29.43(3.89) 23.00(6.29)

SMCP 17.7(3.1) 4.9(8.1) 17.8(5.9) 54.8(26.8) 6.10(1.12) 3.06(0.83) 4.09(3.23)

Proposed 19.7(0.6) 0.4(2.8) 34.7(2.9) 3.5(2.5) 2.72(0.77) 2.45(0.78) 1.50(0.40)

Band1

MA 0.1(0.8) 6.7(13.3) 1.6(2.1) 53.6(69.2) 10.56(1.14) 14.71(8.46) 22.79(4.91)

HierMCP 11.7(1.5) 64.7(10.1) 3.9(2.2) 5.2(2.7) 13.12(0.96) 25.96(2.44) 19.76(4.25)

SMCP 16.1(3.4) 7.0(10.8) 11.3(7.7) 74.1(23.7) 7.19(1.35) 3.59(0.92) 5.95(3.14)

Proposed 19.7(0.8) 1.0(4.3) 33.3(3.5) 5.1(4.7) 3.24(1.02) 2.51(0.83) 1.58(0.45)

Band2

MA 0.1(0.5) 6.2(13.2) 2.6(2.8) 55.1(70.7) 11.86(2.08) 19.93(10.16) 29.94(7.08)

HierMCP 12.6(1.6) 69.6(17.0) 4.9(2.4) 6.8(2.9) 13.84(1.62) 28.73(3.97) 23.04(6.61)

SMCP 16.9(3.8) 5.2(8.8) 17.8(7.2) 59.3(24.8) 6.18(1.22) 3.09(0.83) 4.18(2.65)

Proposed 19.6(0.7) 1.2(5.7) 33.8(3.6) 4.1(4.0) 2.82(1.02) 2.55(0.92) 1.59(0.57)

LD(0.3)

MA 0.2(0.7) 4.6(11.2) 2.8(2.6) 47.5(65.5) 11.05(1.25) 16.55(7.35) 23.79(5.17)

HierMCP 12.1(1.6) 88.9(10.4) 2.5(1.6) 3.0(1.8) 15.30(1.12) 31.97(2.85) 24.85(5.77)

SMCP 16.1(3.8) 6.7(9.6) 12.0(8.2) 66.5(22.1) 7.13(1.47) 3.58(0.94) 5.85(3.46)

Proposed 19.4(1.0) 0.5(2.0) 33.4(3.8) 3.8(3.4) 3.08(1.02) 2.46(0.72) 1.60(0.45)

LD(0.5)

MA 0.3(1.1) 5.7(14.4) 4.3(3.7) 52.3(69.0) 11.90(1.65) 21.94(7.37) 29.12(6.25)

HierMCP 12.4(1.5) 102.3(16.4) 2.6(1.6) 3.8(1.9) 17.31(1.88) 38.02(4.71) 33.36(9.40)

SMCP 17.0(4.2) 4.8(7.6) 19.1(6.7) 53.2(24.5) 6.03(1.39) 2.97(0.78) 4.11(2.95)

Proposed 19.2(1.2) 0.9(4.5) 33.5(3.8) 3.2(3.8) 3.02(1.16) 2.70(1.01) 1.66(0.60)
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Table 3

Data analysis: numbers of main G effects and interactions (diagonal elements) identified by different 

approaches and their overlaps and RV coefficients (off-diagonal elements).

GENEVA Main G effects Interactions

MA HierMCP SMCP Proposed MA HierMCP SMCP Proposed

MA 51 10 (0.794) 33 (0.874) 32 (0.851) 57 0 (0.364) 31 (0.514) 0 (0.295)

HierMCP 67 8 (0.786) 6 (0.805) 158 0 (0.615) 5 (0.638)

SMCP 41 30 (0.850) 156 0 (0.527)

Proposed 71 128

SKCM Main G effects Interactions

MA HierMCP SMCP Proposed MA HierMCP SMCP Proposed

MA 27 3 (0.810) 0 (0.781) 0 (0.792) 21 0 (0.292) 0 (0.274) 0 (0.276)

HierMCP 130 1 (0.815) 1 (0.831) 78 0 (0.442) 0 (0.477)

SMCP 39 15 (0.836) 34 5 (0.477)

Proposed 50 44
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