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Abstract

Machine learning has become ubiquitous and a key technology on mining electronic health 

records (EHRs) for facilitating clinical research and practice. Unsupervised machine learning, as 

opposed to supervised learning, has shown promise in identifying novel patterns and relations 

from EHRs without using human created labels. In this paper, we investigate the application of 

unsupervised machine learning models in discovering latent disease clusters and patient subgroups 

based on EHRs. We utilized Latent Dirichlet Allocation (LDA), a generative probabilistic model, 

and proposed a novel model named Poisson Dirichlet Model (PDM), which extends the LDA 

approach using a Poisson distribution to model patients’ disease diagnoses and to alleviate age and 

sex factors by considering both observed and expected observations. In the empirical experiments, 

we evaluated LDA and PDM on three patient cohorts, namely Osteoporosis, Delirium/Dementia, 

and Chronic Obstructive Pulmonary Disease (COPD)/Bronchiectasis Cohorts, with EHR data 

retrieved from the Rochester Epidemiology Project (REP) medical records linkage system, for the 
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discovery of latent disease clusters and patient subgroups. We compared the effectiveness of LDA 

and PDM in identifying latent disease clusters through the visualization of disease representations 

learned by two approaches. We also tested the performance of LDA and PDM in differentiating 

patient subgroups through survival analysis, as well as statistical analysis of demographics and 

Elixhauser Comorbidity Index (ECI) scores in those subgroups. The experimental results show 

that the proposed PDM could effectively identify distinguished disease clusters based on the latent 

patterns hidden in the EHR data by alleviating the impact of age and sex, and that LDA could 

stratify patients into more differentiable subgroups than PDM in terms of p-values. However, the 

subgroups discovered by PDM might imply the underlying patterns of diseases of greater interest 

in epidemiology research due to the alleviation of age and sex. Both unsupervised machine 

learning approaches could be leveraged to discover patient subgroups using EHRs but with 

different foci.
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unsupervised machine learning; artificial intelligence; electronic health records; epidemiology; 
aging

1. Introduction

The rapid adoption of electronic health records (EHRs) has enabled the use of the EHR data 

for primary and secondary purposes, such as clinical process optimization, clinical decision 

support, treatment outcome improvement, clinical research, and epidemiological monitoring 

of the nation’s health [1]. An emerging use on the EHR data is to develop advanced machine 

learning models, primarily supervised learning, to discover new interconnections between 

diseases, facilitate precise prediction of health status, and help effectively prevent diseases or 

disabilities [2, 3, 4, 5]. As opposed to supervised learning, unsupervised machine learning 

has been introduced to identify new patterns and relations in the irregularly-sampled data 

without using human created labels [6, 7], mostly for predictive modeling, such as the 

prediction of patient health status [3], disease progression trajectory prediction [8], or 

phenotypes prediction [9, 10]. In this paper, we investigate the use of unsupervised machine 

learning in the discovery of latent disease clusters and patient subgroups using EHRs.

The problem of discovering potential disease clusters and patient subgroups is extremely 

important for the study of aging. According to the United Nations Population Division, the 

global share of older people (⩾ 60-year-old) increased from 8% in 1950 and 9% in 1990 to 

12 % in 2013, and will continue to grow to an estimated 21% in 2050 [11]. The development 

of chronic illness plays an important role in this demographic shift. The older people who 

survive with chronic illnesses are more likely to develop additional chronic illnesses [12]. 

Traditionally, most comorbidities have been studied separately [13], however, it is common 

for most older people to have two or more chronic morbidities. Therefore, discovering 

disease clusters will help in the systematic examination of all comorbidities for associations 

with a specific condition and improve risk assessment and future prediction. Moreover, 

identifying new disease clusters that may reflect underlying mechanisms (“latent traits”) 

would help define new domains of risk in a population. Discovering patient subgroups with 
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the similar underlying disease patterns could facilitate diagnosis and treatment decision 

making, and epidemiological analysis and research [14].

In this study, we utilized Latent Dirichlet Allocation (LDA), an unsupervised generative 

probabilistic model, and proposed a novel model named Poisson Dirichlet Model (PDM), 

which extends the LDA approach for the EHR data. The proposed PDM uses a Poisson 

distribution to model patients’ disease diagnoses by considering both observed and expected 

observations that could alleviate the impact of age and sex on identifying differentiated 

patient subgroups. In the experiments, we evaluated LDA and PDM on the EHR data of 

three patient cohorts, namely Osteoporosis, Delirium/Dementia, and Chronic Obstructive 

Pulmonary Disease (COPD)/Bronchiectasis Cohorts, retrieved from the Rochester 

Epidemiology Project (REP) medical records linkage system, for the discovery of latent 

disease clusters and patient subgroups. We compared the effectiveness of LDA and PDM in 

identifying latent disease clusters through the visualization of disease representations 

learned by two approaches. We also tested the performance of LDA and PDM in 

differentiating patient subgroups through survival analysis, as well as statistical analysis of 

demographics and Elixhauser Comorbidity Index (ECI) scores in those subgroups. The 

experimental results show that the proposed PDM could effectively identify distinguished 

disease clusters based on the latent patterns hidden in the EHR data by alleviating the impact 

of age and sex, and that LDA could stratify patients into more differentiable subgroups than 

PDM in terms of p-values. However, the subgroups discovered by PDM might imply the 

underlying patterns of diseases of greater interest in epidemiology research due to the 

alleviation of age and sex. Therefore, both unsupervised machine learning approaches could 

be leveraged to discover patient subgroups using EHRs but with different foci.

2. Background

The creation of medical record linkage systems that connect EHR data from multiple 

institutions could capture the entire health care experience of a geographically defined 

population. The REP is a pioneer linkage system developed through a collaboration between 

health care providers in southeastern Minnesota, and involves Olmsted Medical Center, 

Mayo Clinic, Rochester Family Medicine Clinic and other medical care providers in 

southeastern Minnesota [15, 16, 17]. It is a unique infrastructure for epidemiology and 

outcomes research that links the medical records of local health care providers to community 

residents. Enabled by the REP, previous studies evaluated morbidity occurrences one 

diagnosis at a time [18] and used traditional analytic techniques (e.g., tree models/recursive 

partitioning) to define disease clusters [19]. However, these approaches do not adequately 

address the co-occurrence of multiple disease states within an individual.

A set of methods relevant to studying multimorbidities has arisen in the field of document 

processing under the rubric of “topic models”. Latent Dirichlet Allocation (LDA) is a widely 

used topic modeling method proposed by Blei et al. [20]. LDA categorizes all words in a 

collection of textual documents into a set of distinct “topics”, while simultaneously 

classifying each document by the topics it contains [21]. A given word may be associated 

with multiple topics, and multiple topics may appear in a given document. Since a patient 

could also be represented by a set of diagnosed diseases that share similar undiscovered 
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interrelations, we simply used the analogy “words”=“diseases”, “documents”=“patients”, 

“topics”=“disease topics”, and applied LDA to discover disease clusters in our previous 

work [22]. Although our previous study showed the potential of LDA in leveraging hidden 

pattern information from EHR data, we failed to observe dichotomized disease clusters from 

the results of LDA. Moreover, another shortcoming of LDA, especially in a cohort that spans 

a large age range, is that it will identify clusters that are due primarily to age and/or sex, 

disease associations that are already known and thus not very interesting. Examples would 

be athletic injuries or vaccinations in the young and joint ailments in the old. LDA uses a 

Multinomial distribution to simulate the generative process of each single disease, which 

leads LDA to focus on the proportions of various diseases in the cohort. Of greater interest 

in epidemiology research is the prediction or clustering of excess risk, event rates that are 

over and above what would be expected for a given age and sex. Furthermore, we didn’t 

investigate the potential of topic models in discovering patient subgroups for a defined 

cohort. Stratifying patients into subgroups with similar characteristics and risks will not only 

facilitate epidemiological analysis and research, but enable personalized care that will 

improve the efficiency and effectiveness of disease prevention, diagnosis, and treatment.

3. Methods

3.1. Mathematical Modeling

Suppose D denotes a disease diagnosis code set D = {d1, d2, …, dV} with size V, a cohort C 
is represented as a group of M patients C = {w1, w2, …, wM}, and a patient wm is 

represented as a sequence of N disease diagnoses wm = (wm,1, wm,2, …, wm,N) where wm,n 

∈ D, n = 1, 2, …, N is a disease diagnosis code from D for patient wm. Given these 

notations, we describe LDA and the proposed PDM in this subsection.

Let z denote the disease topics, which is akin to topics in LDA. Suppose K denotes the 

dimensionality of z, θ a K-dimensional Dirichlet random variable, α a K-dimensional 

parameter with αi > 0, and a β a K × V matrix parameter, we can define LDA as the 

following generative process for each patient w in a cohort C:

1. For each of K disease topics:

a. Choose ϕk ~ Dirichlet(β)

2. For each of M patients in C:

a. Choose θm ~ Dirichlet(α).

b. For each of N diseases that patient wm has been diagnosed:

i. Choose a latent disease cluster zm,n ~ Multinomial(θm).

ii. Choose a disease wm,n ~ Multinomial(ϕzm,n).

LDA can be represented as a graphical model at the upper-left of Figure 1. By applying 

Gibbs sampling, we can learn parameters α and β, and hyper-parameters θ and ϕ in LDA. 

We could leverage ϕ, the probability of a disease in a latent topic, to discover latent 

comorbidities that appear in the same disease cluster.

Wang et al. Page 4

J Biomed Inform. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this study, we also propose a novel unsupervised machine learning model, Poisson 

Dirichlet Model (PDM), which extends LDA for discovering disease clusters of excess risk. 

Based on a patient’s age, sex, and length of follow-ups we can compute an expected number 

of diagnoses em,n for subject m and diagnosis n, and compare the observed count ym,n to this 

expectation. We hypothesize that the PDM could be sensitive to patterns of excess disease 

risk, which will be different than overall risk, and that these patterns could identify more 

distinguished disease clusters than LDA.

With the same notations used for LDA, PDM assumes the following generative process for 

each patient in the cohort:

1. For each of K disease topics:

a. Choose ϕ ~ Dirichlet(β)

2. For each of M patients in C:

a. Choose γm ~ Gamma(ξ, δ), where E(γ) = ξ · δ = 1.

b. Choose θm ~ Dirichlet(α).

c. For each of N diseases that patient wm has been diagnosed:

i. Choose a latent disease cluster zm,n ~ Multinomial(θm).

ii. Choose a disease count ym,n ~ Poisson(ϕzm,n · em,n · γm).

The proposed PDM model is represented as a probabilistic graphical model at the upper-

right of Figure 1. In this generative process, em,n denotes the expected number of diagnoses 

for disease wm,n that is computed by a simple rate model fit to the overall data. Specifically, 

the follow-ups for each subject in the cohort were divided into bins based on single years of 

age and sex. For each disease diagnosis, the counts (number of occurrences) were modeled 

using a generalized additive model separately for males and females, assuming a Poisson 

error structure. Age was fit using a smoothing spline with 4 degrees of freedom and the log 

of person-years in each bin were treated as an offset. The expected event rates for each 

person were estimated using predictions from these models based on the age, sex, and 

follow-up of each person. After dividing each patient’s follow-up by age and sex, em,n can 

be derived mathematically by:

em, n = 𝔼 Y | Xwm, n
= β + log X1, wm, n

+ X2, wm, n

where β is a coefficient, log X1, wm, n
 is an offset of the person-years, X2, wm, n

 is age, and Y 

follows a Poisson distribution.

Poisson distribution is utilized to generate the total number of each disease that has been 

diagnosed for a patient. γm is a positive multiplier for patient m generated from a Gamma 

distribution with mean equal to 1. Since some patients may have a significantly larger 

number of diagnoses (e.g., sicker or better insurance) than others, γm is utilized as a 
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normalizer on the number of patients’ diagnoses so that the parameters of Poisson 

distribution are not learned towards the extreme cases.

In plain language, we use PDM to generate diseases using two steps for each patient in a 

cohort: 1) each patient has different portions of the disease topics with different proportion; 

2) each disease a patient has been diagnosed with is drawn from one of the disease topics, 

where the selected disease topic is chosen from the per-document distribution over disease 

topics. PDM defines a disease topic to be a distribution over a fixed number of diagnosis 

codes representing diseases. For example, the rheumatology topic has the disease 

osteoarthritis (e.g., CCS 203: Osteoarthritis) with high probability while the psychiatry 

disorder topic has the bipolar disorder with high probability (e.g., CCS 657.1: Mood 

disorders: Bipolar disorders). We assume that the disease topics are specified and hidden 

from the data. PDM is a statistical model using the intuition that each patient with multi-

morbidities exhibits multiple disease topics. Since PDM is a data-driven approach without 

using prior medical knowledge, the disease topics indicate the inner-connections of diseases 

hidden in the data that could be potentially used to uncover novel disease relations.

Figure 1 also illustrates that LDA models the observed number of disease diagnoses while 

PDM takes advantage of the combination of observed and expected number of diagnoses. 

The use of expected data for each patient in PDM alleviates the impact of age and sex on 

finding different patient subgroups, and lessens the difficulty of LDA in handling missing 

data that were not collected during residents’ absence in the healthcare system, particularly 

in medical EHRs, while simultaneously incorporates the epidemiological characteristics of 

the population. Since the experimental data are from Olmsted County, we used the expected 

risk table of the Minnesota population. Since em,n is pre-calculated before training PDM, it 

is treated as a fixed-valued constant in the parameter learning process.

3.2. Parameter Estimation

Markov Chain Monte Carlo (MCMC) methods are usually used to generate random samples 

that can be used in estimating the parameters of posterior distributions in a probabilistic 

machine learning model. MCMC constructs a Markov chain to converge to the target 

distribution, and generates samples from that Markov chain. Since the Dirichlet priors are 

conjugate to the Multinomial distributions, Gibbs sampling, a widely adopted MCMC 

algorithm, is utilized for inference of the LDA model [23]. However, it cannot be applied to 

PDM since the Poisson distributions are not conjugate to the Dirichlet priors. Therefore, a 

more general MCMC sampling method, Metropolis-Hastings (MH) algorithm [24], was 

applied to approximate the distributions and learn the parameters of PDM. The MH 

sampling algorithm creates a Markov chain based on a proposal distribution and corrects the 

wrong density through an acceptance-rejection step, in comparison with the Gibbs sampling 

algorithm that always accepts the proposal distribution. We implemented the parameter 

estimation algorithm using JAGS1 and rJAGS2, which automatically choose the proposal 

distribution for the sampling process. We utilized two sampling chains with a burn-in of 500 

iterations followed by 1000 iterations for inference. The models were ran on a computing 

1http://mcmc-jags.sourceforge.net/
2https://cran.r-project.org/package=rjags

Wang et al. Page 6

J Biomed Inform. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://mcmc-jags.sourceforge.net/
https://cran.r-project.org/package=rjags


server with 80 Intel Xeon(R) E5–4650 2.4GHz CPUs and a total of 794Gb memory. The 

implementation codes for PDM are publicly available3.

3.3. Applications on EHRs

3.3.1. Discovering Latent Disease Clusters—Given a cohort of patients diagnosed 

with a certain disease, unsupervised machine learning approaches allow us to discover latent 

comorbidity clusters for that disease, which could help define new domains of risk. LDA and 

the proposed PDM model represent diseases in a latent topic space. The estimated parameter 

β in LDA or PDM is a disease-topic matrix indicating the probability of a disease occurring 

in a latent topic. We hypothesize that the diseases with similar characteristics would be 

automatically clustered in the latent topic space, which is called a latent disease cluster. In 

order to verify the effectiveness of LDA and PDM for identifying latent disease clusters, we 

qualitatively visualized the disease representation in the latent topic space using the disease-

topic matrix by applying a machine learning visualization method, t-SNE [25], which 

mapped the disease representation in the high-dimensional topic space into a two-

dimensional space that enables visualization. By doing so, we could qualitatively evaluate 

the potential of unsupervised machine learning in discovering disease clusters.

We adopted the Hopkins statistic [26] on the disease representations learned by LDA and 

PDM to quantitatively assess clustering results. The Hopkins statistic is a sampling test that 

measures cluster tendency by comparing the distances between disease data points and their 

nearest neighbors to the distances from a sample of pseudo data points. The value of 

Hopkins statistic ranges from 0 to 1 and a greater value indicates a better clustering method.

3.3.2. Discovering Patient Subgroups—An interesting question in the epidemiology 

study is whether we can stratify patients into subgroups so that the patients in the same 

subgroup have similar health characteristics and risks. Population-based evidence has been 

shown to be a major source of support for medical decision making for an individual [27]. 

Using the estimated parameters of LDA or PDM, we can calculate the posterior probability 

of a latent disease cluster for a given patient, i.e., p z |wm, α, β = ∑i
N p z |wm, i, α, β , which is 

a patient-topic probability matrix. Each row of this matrix performs like a feature vector for 

each patient projected by LDA and PDM that could facilitate effective patient subgroup 

clustering. In our experiments, we tested three clustering algorithms using these feature 

vectors, namely hierarchical clustering [28], K-means clustering [29], and Birch clustering 

algorithms [30], with five different numbers of subgroups, ranging from 2 to 6 subgroups.

To evaluate these subgroups, we carried out survival analysis on each patient subgroup. We 

used the Log-rank statistical test to compare the difference between the survival curves. In 

addition to the survival analysis, we conducted statistical analysis on the demographics and 

number of diagnoses for the subgroups. We also used the widely adopted comorbidity 

measure, Elixhauser Comorbidity Index (ECI) [31], to compare patient subgroups in each 

cohort. We compared ECI scores between the subgroups, and 29 ECI categories, including 

congestive heart failure, cardiac arrhythmias, valvular disease, pulmonary circulation 

3https://github.com/yanshanwang/poissondirichlet
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disorders, peripheral vascular disease, hypertension, paralysis, other neurological disorders, 

chronic pulmonary disease, diabetes (uncomplicated), diabetes (complicated), 

hypothyroidism, renal failure, liver disease, peptic ulcer disease (excluding bleeding), 

lymphoma, metastatic cancer, solid tumour (without metastasis), rheumatoid arthritis/

collaged vascular disease, coagulopathy, obesity, weight loss, fluid and electrolyte disorders, 

blood loss anaemia, deficiency anaemia, alcohol abuse, drug abuse, psychoses, and 

depression. Our goal is to evaluate whether the patient subgroups discovered by the 

proposed PDM model could differentiate patients in a defined cohort.

4. Datasets

In this section, we describe the datasets used in the empirical experiments of testing LDA 

and the proposed PDM approach. Three test cohorts extracted from the REP, namely the 

Osteoporosis Cohort, the Delirium/Dementia Cohort, and the Chronic Obstructive 

Pulmonary Disease (COPD)/Bronchiectasis Cohort, were utilized to evaluate the proposed 

PDM model. These cohorts were retrieved from the REP cohort that consisted of a total of 

72,000 patients who were 50 years of age and older during the interval January 1, 1995 

through December 31, 2011 from Olmsted County. The number of diagnoses of the REP 

cohort ranges from 0 to 9198 (mean=286, std=416, see supplementary material for disease 

frequency distribution of the population). We utilized the patients from the REP cohort 

whose total number of disease diagnoses were between three hundred and five hundred and 

who had at least thirty diagnoses of osteoporosis (CCS code: 206), delirium/dementia (CCS 

code: 653), and COPD/bronchiectasis (CCS code: 127) for the three cohorts. Since this is a 

proof-of-concept study and we are not aiming to make clinical conclusions or statements, we 

arbitrarily chose these numbers to ensure that the cohorts had an appropriate number of 

patients and diagnoses so the computation was feasible to verify the computational 

approaches. These diseases have been shown to be related to aging with complicated 

comorbidities. We used Clinical Classifications Software (CCS)4 as the diagnosis taxonomy 

for each patient since the granularity of the International Classification of Diseases (ICD) 

classification is too detailed for many clinical practice cases [22]. Since the REP had created 

a longitudinal record spanning each subject’s entire period of residency in the community, 

we retrieved all their ICD-9 diagnostic codes from the REP linkage system. We collapsed 

the ICD-9 codes into 285 CCS categories. We followed the intuition of stopword removal for 

text preprocessing, and removed the rare CCS codes if the total number of patients with the 

codes was less than or equal to two in each cohort. Table 1 lists the basic demographics of 

the three cohorts, including the number of patients (male and female), median age (male and 

female), and median observed number of diagnoses for the three cohorts. LDA and PDM 

were trained on the data of these cohorts, with numbers of disease topics ranging from 10 to 

30 with step size of 5 (i.e., K = 10, 15, 20, 25, 30). We empirically chose K = 20 for both 

approaches based on the superior Hopkins statistics (see Table S1 in the supplementary 

materials for the different values of Hopkins statistics with different numbers of disease 

topics).

4https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
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5. Results

5.1. Visualization of Latent Disease Clusters

We first compared the visualization of disease representations in the latent topic space 

learned by LDA and the proposed PDM model for three cohorts, as depicted in Figure 2. We 

tested different perplexity settings in t-SNE, namely 5, 10, 15, 20, for both LDA and PDM, 

and chose 10 for LDA and 20 for PDM due to the better visualization with data points 

spreading out (see supplemental materials for the different perplexity settings in the 

Osteoporosis Cohort). We chose 5000 as the number of iterations for both approaches since 

that is generally enough for convergence [25]. We can see that the disease clusters are 

explicitly dichotomized by PDM while almost no disease clusters could be observed by 

LDA. The Hopkins statistics of disease representations by PDM are 0.923, 0.958, 0.936 for 

osteoporosis, delirium/dementia, and COPD, respectively, while the Hopkins statistics of 

LDA are 0.876, 0.890, 0.828. The Hopkins statistic results quantitatively verified that the 

disease representations learned by PDM have better cluster tendency than those by LDA.

Since LDA failed to identify latent disease clusters, we only list the latent comorbidities 

identified by PDM that appeared in the clusters of osteoporosis, delirium/dementia, and 

COPD in Table 2. In order to verify the results, we tried to find evidence by searching 

PubMed5 articles’ titles or abstracts using keywords from the target disease and the latent 

comorbidities, in combination with the term “comorbidity” or “comorbidities”. For example, 

we found 31 PubMed research articles for osteoporosis and implant or graft, 52 articles for 

dementia and osteoporosis, and 30 articles for COPD and cerebrovascular disease. The latent 

comorbidities are not highly related to age and sex and thus the prediction or clustering of 

excess risk would be of more interest for epidemiological analysis. This result shows that the 

proposed PDM model is able to learn the latent patterns hidden in the EHR data that 

differentiate disease clusters by alleviating the impact of age and sex on the diseases.

We provided the top ten diagnoses with the greatest probability in each topic, the 

corresponding probabilities, and overall proportion of each topic for each method and each 

cohort in the supplementary material. We have some interesting findings according to the top 

diagnoses in each topic. For example, we found that CCS206: osteoporosis had the greatest 

probability in Topic 0 by PDM and has the second greatest probability in Topic 13 by LDA 

for the Osteoporosis Cohort. However, those topics represent different disease clusters. For 

example, Topic 0 by PDM contains osteoporosis, COPD, peripheral and visceral artery 

aneurysms as top diseases while Topic 13 by LDA contains disorders of teeth and jaw and 

osteoporosis as top diseases. Explaining the clinical meaning of topics and disease clusters 

and their use cases in healthcare is subject to the future work.

5.2. Validation of Patient Subgroups

In this section, we demonstrate the experimental results of patient subgroups discovered by 

LDA and the proposed PDM model for the three cohorts. As aforementioned, we tested 

three clustering algorithms (i.e., hierarchical clustering, K-means clustering, and Birch 

5https://www.ncbi.nlm.nih.gov/pubmed/

Wang et al. Page 9

J Biomed Inform. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ncbi.nlm.nih.gov/pubmed/


clustering algorithms) and five different numbers of patient subgroups (i.e., 2, 3, 4, 5, 6) on 

the patient-topic matrix computed by LDA and PDM. We carried out survival analysis on 

these subgroups for each cohort based on patients’ death information. The p-values of the 

Log-rank test on the survival curves are listed in Table 3. From the table, we observe that 

LDA generally produces patient subgroups with smaller p-values than PDM. When LDA 

was utilized, the K-means clustering algorithm generated differentiated patient subgroups 

with statistical significance for both Osteoporosis and COPD/Bronchiectasis Cohorts when 

the number of patient subgroups was 2, and achieved the best p-values (p = 0.0051) for the 

Delirium/Dementia Cohort when the number of patient subgroups was 3. The p-values of 

patient subgroups generated by PDM were much higher than those by LDA: K-means 

clustering algorithm achieved p-values of 0.071 and 0.00023 with the number of patient 

subgroups equal to 6 and 2 for the Delirium/Dementia and COPD Cohorts, respectively; and 

the Birch clustering algorithm produced a p-value of 0.0085 for the Osteoporosis Cohort 

when the number of patient subgroups was 2. Overall, the K-means clustering algorithm 

outperformed other clustering algorithms in identifying patient subgroups. The patient 

subgroup results with the best p-values from LDA and PDM with the smallest number of 

patient subgroups are chosen for further survival and comorbidity analysis. We also note that 

using p-value in this study is not optimal as many p-values indicate statistical significance 

and a smaller p-value doesn’t necessarily mean the subgroups are more significantly 

different. Having said that, using the p-value provides a means to select a relatively better 

number of subgroups and clustering algorithms.

5.2.1. Survival curves—Kaplan-Meier survival curves of the selected patient subgroups 

discovered by LDA and PDM are depicted in Figure 3 for three cohorts.

Survival analysis of patient subgroups discovered by LDA for the Osteoporosis Cohort 

depicted in Figure 3 LDA-(a) showed significant difference between the survival curves of 

patient subgroups with p< 0.0001. The patients in Subgroup 1 had a distinguished worse 

survival rate than those in Subgroup 2. Thus, at the point of clinical care, the patients in 

Subgroup 1 should receive more attention than those in Subgroup2. Figure 3 LDA-(b) shows 

significant difference at level p < 0.01 between the survival curves of patient subgroups for 

the Delirium/Dementia Cohort. Three identified patient subgroups are distinguishable with 

disparate survival curves. The patients in Subgroup 2 have a better survival rate than those in 

Subgroups 1 and 3. The patients in Subgroup 1 have the lowest survival rate across the 

survival time distribution. Figure 3 LDA-(c) shows a significant difference between the 

survival curves of patient subgroups with p< 0.0001 for the COPD/Bronchiectasis Cohort. 

The patients in Subgroup 2 have a prominent lower risk and better survival than those in 

Subgroup 1.

Figures 3 PDM-(a), PDM-(b), and PDM-(c) show the survival analysis on the patient 

subgroups discovered by PDM for three cohorts. Figure 3 PDM-(a) showed difference 

between the survival curves of patient subgroups at the level of 0.01 for the Osteoporosis 

Cohort. The survival curves are similar to those by LDA. The patients in Subgroup 2 have a 

better survival rate than those in Subgroup 1 when survival time is approximately < 6 years. 

The survival probability of both subgroups drops dramatically when survival time is between 

6 years and 8 years. The survival probability of patients in Subgroup 2 decreases more rapid 
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than those in Subgroup 1 after survival time > 11 years. Though Figure 3 PDM-(b) does not 

show significant difference between the survival curves of patient subgroups for the 

Delirium/Dementia Cohort, patient subgroups are distinguishable with disparate survival 

curves. For example, the patients in Subgroups 1, 3, and 6 have similar survival curves when 

survival time is approximately < 5 years. However, the patients in Subgroup 6 have a longer 

survival time than those in Subgroups 1 and 3. The patients in Subgroups 2 and 5 have better 

survival than other subgroups across the survival time distribution, and those in Subgroup 2 

have better survival than those in Subgroup 5 when survival time is > 7 years. We provided 

pairwise p-values between six subgroups in the supplemental materials. Figure 3 PDM-(c) 

shows that the survival curves of patient subgroups are different at the level of ¡0.001 for the 

COPD Cohort. The patients in Subgroup 1 have a noticeably better survival rate than those 

in Subgroup 2. These results explicitly show the potential of applying unsupervised machine 

learning models to stratify patients into groups with different risks.

5.2.2. Statistical analysis—Tables 4, 5, and 6 list the statistics of demographics, 

number of diagnoses, and ECI scores for the patient subgroups identified by LDA and PDM 

for the Osteoporosis, Delirium/Dementia, and COPD/Bronchiectasis Cohorts, respectively. 

Statistical significance is based on the Kruskal-Wallis Test (p < 0.001). Also reported are the 

ECI categories that are different among patient subgroups with statistical significance (p-

value< 0.001) in each cohort. The complete analysis for each ECI category can be found in 

the supplemental material.

We first analyze the patient subgroups identified by LDA. As shown in Table 4 for the 

Osteoporosis Cohort, the patients in Subgroup 1 are older than those in Subgroup 2 with 

statistical significance at the level of 0.001, which might be the reason that the patients of 

Subgroup 1 have a worse survival rate in Figure 3 (a). Median ECI scores between the two 

subgroups are statistically different at the level of 0.001. The patients in Subgroup 1 have a 

higher median ECI score, which means they have more comorbidities. 73.4% of patients in 

Subgroup 1 also have a larger number of comorbidites in terms of ECI (5+). The result is 

consistent with their survival analysis in Figure 3 (a). Seven ECI categories, including 

congestive heart failure, pulmonary circulation disorders, hypertension, other neurological 

disorders, weight loss, fluid and electrolyte disorders, and psychoses, are statistically 

different between two patient subgroups at the level of 0.001. The diseases in these ECI 

categories potentially contributed to differentiate patients into subgroups for the 

Osteoporosis Cohort.

For the patient subgroups identified by LDA from the Delirium/Dementia Cohort, there is 

statistically significant difference in age but not in sex among the three subgroups. The fact 

that Subgroup 2 has better survival than Subgroup 1 is mainly due to the younger age of 

Subgroup 2. This result is consistent with previous findings that age is a strong risk factor 

for dementia [32]. No statistical significance is found in the number of diagnoses at the level 

of 0.001. The patients in Subgroup 1 and those in Subgroup 2 have a similar number of 

comorbidities in terms of median number of ECI and ECI (5+). Hypertension is the ECI 

category that has a statistically significant difference between the three subgroups, which is 

also consistent with the outcome of large observational studies that that hypertension plays a 

role in dementia and Alzheimer’s disease [33].
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There is also statistically significant difference in age but not in sex for the patient subgroups 

identified by LDA from the COPD/Bronchiectasis Cohort. The patients in Subgroup 1 have 

a higher median ECI score and a much larger number of comorbidities in terms of ECI (5+) 

than those in Subgroup 2 with a statistically significant difference at p< 0.001. This result is 

consistent with the survival analysis in Figure 3 (c). Nine ECI categories are statistically 

different between two patient subgroups at the level of 0.001. These categories include 

congestive heart failure, cardiac arrhythmias, pulmonary circulation disorders, renal failure, 

obesity, weight loss, fluid and electrolyte disorders, deficiency anaemia, and psychoses. 

Interestingly, obesity appears to be associated with better outcome (15.2% in Subgroup 1 

and 26.3% in Subgroup 2) and weight loss with worse outcome (38.6% in Subgroup 1 and 

19.5% in Subgroup 2). That is likely related to the fact that being underweight in COPD/

bronchiectasis might be a bad prognostic factor since the respiratory muscles lose strength 

during severe weight loss, which leads to respiratory failure. Being extremely obese might 

also worsen COPD/bronchiectasis, but is not addressed in our analysis.

The first observation from the results of patient subgroups identified by PDM is that, unlike 

LDA, PDM does not differentiate patients into subgroups based on age and sex. No 

statistical significance is found in age and sex for the patient subgroups of the three cohorts. 

This characteristic of PDM is very important for epidemiological studies. For example, a 68-

year-old man and a 50-year-old woman with heart failure and stroke may have a similar risk 

of fracture when all two comorbidities are considered together. We expect that an 

appreciation of these different clusters of comorbid conditions will potentially enhance our 

understanding of the latent traits underlying disease risk and thus provide more insights in 

developing new treatments. This result validates the ability of PDM to remove the factors of 

age and sex for discovering patient subgroups, which enables analysis of hidden patterns of 

diseases that are of greater interest in epidemiology research. For the Osteoporosis Cohort, 

no statistical significance is found in the number of diagnoses or the number of 

comorbidities. Only one ECI category, psychoses, is statistically different between two 

patient subgroups at the level of 0.001. For the Delirium/Dementia Cohort, no ECI category 

was found different with statistical significance among patient subgroups. The superior 

survival curves of Subgroup 5 to those of other subgroups, as shown in Figure 3 PDM-(b), 

might be related to the positive effect of the treatment for multi-morbidities on the survival 

of this subgroup. This result may support inferences of cause and effect or indicate potential 

associations between diseases to improve patient care by conducting further cross-sectional 

studies or case-control studies. We will investigate how to make meaningful clinical 

statements using the results in our future work. The conventional comorbidity taxonomy 

could not identify significant factors that cause differential patient subgroups discovered by 

PDM. In other words, PDM might leverage other undiscovered hidden disease patterns to 

discover these patient subgroups that could be used to discover novel disease associations 

and treatments. For the COPD/Bronchiectasis Cohort, the patients in Subgroup 2 are older 

than those in Subgroup 1 but without statistical significance at the level of 0.001. ECI scores 

between the two subgroups are statistically different with p< 0.001. This result, similar to 

that of LDA, indicates that age portends worse prognosis as does greater comorbidities 

(ECI). Only one ECI category, i.e., fluid and electrolyte disorders, is statistically different 

between two patient subgroups at the level of 0.001.
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6. Discussion and Conclusion

In this study, we investigate the applications of unsupervised machine learning approaches in 

discovering latent disease clusters and patient subgroups using the EHR data. We utilized 

LDA, an unsupervised probabilistic generative model in the rubric of topic models, and 

proposed a novel unsupervised machine learning approach, named PDM. PDM extends the 

conventional LDA and uses a Poisson distribution to model patients’ disease diagnoses and 

to alleviate age and sex factors by considering both observed and expected observations. We 

applied LDA and PDM to two clinical use cases: discovery of latent disease clusters and 

patient subgroups using EHRs.

Both approaches were evaluated on the diagnostic EHR data of three cohorts, namely the 

Osteoporosis Cohort, the Delirium/Dementia Cohort, and the COPD/Bronchiectasis Cohort, 

retrieved from the REP medical linkage system. We verified the effectiveness of discovering 

latent disease clusters through the visualization of disease representation in the latent topic 

space. The 2-D scattered plot shows that PDM discovered explicitly dichotomized disease 

clusters based on the latent patterns hidden in the EHR data than LDA. This result implies 

that we could utilize these disease clusters to identify multiple latent comorbities, which 

could be used to calculate excess risk above what would be expected for a given age and sex.

Furthermore, we applied LDA and PDM to discover patient subgroups, and carried out 

survival analysis on these subgroups. The experimental results show that LDA could stratify 

patients into more differentiable subgroups than PDM in terms of p-values. However, those 

subgroups identified by LDA are highly associated with patients’ age and sex. Though the 

difference between the subgroups discovered by PDM has worse p-values, these patient 

subgroups might imply the underlying patterns of diseases of greater interest in 

epidemiology research by alleviating the impact of age and sex. For example, in the study 

for the Osteoporosis Cohort, the ECI categories in LDA are mostly correlated with age, such 

as hypertension and heart failure, while the ECI category of psychoses identified by PDM 

might imply the substantial difference in the survival curves. Evidence has been found in a 

research study [34] that risedronate, which is a medication commonly used for the treatment 

of osteoporosis, could trigger psychiatric side effects and result in termination of treatment 

for osteoporosis, which have the potential to reduce survivals. Relationships between the 

study disease and the ECI categories identified by PDM might of interest to researchers to 

discover hidden links between comorbidities caused by disease mechanism, treatment, 

procedure, etc. that are not correlated with age and sex. Therefore, the proposed PDM might 

be a better option than LDA for studying latent disease patterns in aging cohorts for which 

we would like to alleviate the impact of age and sex since they are major drivers of aging-

associated diseases.

We also provided the dominant topics in each subgroup in Table S2 in the supplementary 

materials. The dominant topics make sense as ways to differentiate patients. For example, 

for the Osteoporosis Cohort, Topic 10 is an obvious cancer disease topic containing several 

cancer diseases and is the dominant topic for Subgroup 1 that might lead to the worse 

survival curve. In our future work, we will study whether these disease topics are clinically 

meaningful and how to utilize them in healthcare applications.
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Due to the similarity of unsupervised machine learning and human learning, unsupervised 

learning is more closely aligned with artificial intelligence (AI), where a computer is 

expected to learn to identify complex processes and patterns without a human’s guidance. 

Compared to the supervised machine learning models that lack generalizability and suffer 

from infeasibility of discovering novel patterns from EHRs [3], the unsupervised machine 

learning techniques utilized to discover particular comorbidity clusters from EHRs that may 

reflect underlying mechanisms (“latent traits”) would help define new domains of risk. The 

disease clusters discovered by PDM might contain new potential risks for diseases. 

Moreover, unsupervised machine learning approaches could be used to stratify patients into 

subgroups with similar characteristics and risks. Discovering differentiated patient 

subgroups will not only facilitate epidemiological analysis and research, but enable 

personalized care that will improve the efficiency and effectiveness of disease prevention, 

diagnosis, and treatment. We believe that both approaches could be leveraged to create an AI 

platform for exploiting the rich data resources of the REP, and likewise serve as a model for 

use by others with EHRs.

This study has a few limitations. First, since this is a proof-of-concept study, we are not 

attempting to make any clinical statements and conclusions. In future work, we will apply 

the methods on carefully selected case and control cohorts to seek potential interesting 

clinical results. Second, LDA and the proposed PDM model were tested on cohorts with a 

relatively small number of patients and diagnoses due to the computational cost of the MH 

algorithm. The average computation time for LDA and PDM is 4.1 hours and 2.6 hours, 

respectively, and it increases exponentially when the numbers of patients and diagnoses 

increase. The detailed computation time of LDA and PDM for each cohort is summarized in 

Table S3 in the supplementary materials. Faster MCMC methods should be considered in 

future work so that the proposed model could be scaled up to larger cohorts. Third, the time 

stamp of diagnosis, which is an important feature for epidemiology, was not considered in 

LDA and PDM models. For example, a 60-year-old man with osteoporosis and heart disease 

will lead to different results if those diagnoses are from 15 years ago versus from the last 3 

years. Fourth, PDM was only evaluated on the EHR data from the REP. In the future, we 

will evaluate the generalizability of the proposed model on the EHR data from other 

institutions. Finally, unsupervised machine learning approaches other than probabilistic 

generative models, such as deep neural network based models [3, 35, 36], and supervised 

models, such as LASSO-based models [37], were not compared in this study. In the future, 

we will compare the proposed approaches with the deep neural network based models as 

well as supervised approaches in discovering latent disease clusters and patient subgroups 

using EHRs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Unsupervised machine learning, as opposed to supervised learning, has shown 

promise in identifying novel patterns and relations from EHRs without using 

human created labels.

• We utilized Latent Dirichlet Allocation (LDA), a generative probabilistic 

model, in discovering latent disease clusters and patient subgroups based on 

EHRs.

• We also proposed a novel model named Poisson Dirichlet Model (PDM), 

which extends the LDA approach using a Poisson distribution to model 

patients’ disease diagnoses and to alleviate age and sex factors by considering 

both observed and expected observations.

• The experimental results show that the proposed PDM could effectively 

identify distinguished disease clusters based on the latent patterns hidden in 

the EHR data by alleviating the impact of age and sex, and that LDA could 

stratify patients into more differentiable subgroups than PDM in terms of p-

values.

• The subgroups discovered by PDM might imply the underlying patterns of 

diseases of greater interest in epidemiology research due to the alleviation of 

age and sex.
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Figure 1: 
The graphical model representation of LDA (upper-left) and PDM (upper-right). Circles 

represents random variables, gray-shaded circles represents observed states, the dashed 

plates represents replication over a set of variables, and the solid squares represent constants, 

which specify fixed-valued variables. M is the number of patients in a cohort, N is number 

of diagnosis for a patient, and K is the number of disease groups. The proposed PDM 

leverages both observed and expected number of diagnosis for each patient in the 

population, which alleviates the difficulty of LDA in dealing with missing data that were not 

collected during residents’ absence in the healthcare system, particularly in the medical 

EHRs, as well as incorporating the epidemiological characteristics of the population.
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Figure 2: 
Comparison of the visualization of diseases (represented by CCS) in the latent topic space 

learned by LDA (left column) and PDM (right column) for three cohorts.
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Figure 3: 
Survival analysis of the patient subgroups discovered by LDA and PDM from the 

Osteoporosis, Delirium/Dementia, and COPD/Bronchiectasis Cohorts.
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Table 1:

Demographics and basic statistics of the study cohorts.

Cohort Osteoporosis Cohort Delirium/Dementia Cohort COPD/Bronchiectasis Cohort

# Patients 388 304 685

# Male (%) 21 (5.4%) 95 (31.2%) 337 (49.2%)

# Female (%) 367 (94.6%) 209 (68.8%) 348 (50.8%)

Median Age 74.4 83.6 73.2

Median Age (Male) 74.7 85.0 75.1

Median Age (Female) 68.8 81.6 71.1

Median Pearson-Years 18 14.4 15.1

Median Observed # Diagnosis 406 387.5 402
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Table 2:

Comorbidities appeared in the clusters of osteoporosis, delirium/dementia, and COPD/bronchiectasis by the 

proposed PDM approach.

Disease Latent Comorbidities in the Same Cluster

Osteoporosis (CCS: 206) Headache; including migraine (CCS: 84)

Nonspecific chest pain (CCS: 102)

Diverticulosis and diverticulitis (CCS: 146)

Complication of device; implant or graft (CCS: 237)

Abdominal pain (CCS: 251)

Delirium/dementia (CCS: 653) Immunizations and screening for infectious disease (CCS: 10)

Conduction disorders (CCS: 105)

Osteoporosis (CCS: 206)

Fracture of lower limb (CCS: 230)

COPD/bronchiectasis (CCS: 127) Peri-; endo-; and myocarditis; cardiomyopathy (except that caused by tuberculosis or sexually transmitted 
disease) (CCS:97)

Aortic; peripheral; and visceral artery aneurysms (CCS: 115)

Fracture of lower limb (CCS: 230)

Late effects of cerebrovascular disease (CCS: 113)

Complications of surgical procedures or medical care (CCS: 238)

Biliary tract disease (CCS: 149)

Other female genital disorders (CCS: 175)
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Table 3:

P-values of the Log-rank test on survival curves of patient subgroups using unsupervised machine learning 

models and three clustering algorithms with different number of subgroups for the three cohorts. The 

subgroups with bolded p-values by PDM and LDA are chosen for further survival and comorbidity analysis.

Number of subgroups 2 3 4 5 6

Unsupervised Methods PDM LDA PDM LDA PDM LDA PDM LDA PDM LDA

Osteoporosis Cohort

Hierarchical clustering 0.16 0.00017 0.28 0.00081 0.44 0.00075 0.41 <0.00073 0.41 <0.0001

K-means clustering 0.39 <0.0001 0.58 <0.0001 0.38 <0.0001 0.38 <0.0001 0.6 0.00032

Birch clustering 0.0085 0.002 0.015 0.0038 0.0098 0.00078 0.011 0.0021 0.018 0.0035

Delirium/Dementia Cohort

Hierarchical clustering 0.10 0.41 0.083 0.23 0.16 0.40 0.26 0.54 0.28 0.61

K-means clustering 0.34 0.012 0.49 0.0051 0.50 0.011 0.42 0.029 0.071 0.0057

Birch clustering 0.14 0.071 0.34 0.19 0.32 0.34 0.46 0.50 0.12 0.033

COPD/Bronchiectasis Cohort

Hierarchical clustering 0.017 0.0045 0.014 <0.0001 0.035 <0.0001 0.027 <0.0001 0.021 <0.0001

K-means clustering 0.00023 <0.0001 0.00032 <0.0001 0.0017 <0.0001 0.086 <0.0001 0.0026 <0.0001

Birch clustering 0.15 0.00045 0.10 <0.0001 0.15 <0.0001 0.12 <0.0001 0.2 <0.0001

J Biomed Inform. Author manuscript; available in PMC 2021 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 24

Ta
b

le
 4

:

D
em

og
ra

ph
ic

s 
an

d 
st

at
is

tic
s 

of
 p

at
ie

nt
 s

ub
gr

ou
ps

 id
en

tif
ie

d 
by

 L
D

A
 a

nd
 P

D
M

 f
ro

m
 th

e 
O

st
eo

po
ro

si
s 

C
oh

or
t. 

St
at

is
tic

al
ly

 s
ig

ni
fi

ca
nc

e 
is

 b
as

ed
 o

n 
th

e 

K
ru

sk
al

-W
al

lis
 T

es
t (

p 
<

 0
.0

01
).

 T
he

 c
om

pl
et

e 
an

al
ys

is
 f

or
 a

ll 
E

C
I 

ca
te

go
ri

es
 is

 p
ro

vi
de

d 
in

 th
e 

su
pp

le
m

en
ta

l m
at

er
ia

l.

M
et

ho
ds

L
D

A
P

D
M

Su
bg

ro
up

s
Su

bg
ro

up
 1

Su
bg

ro
up

 2
p-

va
lu

e
Su

bg
ro

up
 1

Su
bg

ro
up

 2
p-

va
lu

e

# 
Pa

tie
nt

s 
(%

)
27

1 
(6

9.
8%

)
11

7 
(3

0.
2%

)
21

6 
(5

5.
7%

)
17

2 
(4

4.
3%

)

Se
x

0.
03

4
0.

09
6

# 
M

al
e 

(%
)

19
 (

7.
0%

)
2 

(1
.7

%
)

8 
(3

.7
%

)
13

 (
7.

6%
)

# 
Fe

m
al

e 
(%

)
25

2 
(9

3.
0%

)
11

5 
(9

8.
3%

)
20

8 
(9

6.
3%

)
15

9 
(9

2.
4%

)

M
ed

ia
n 

A
ge

78
.3

66
.3

<0
.0

01
71

.1
74

.6
0.

00
2

M
ed

ia
n 

# 
D

ia
gn

os
is

41
4.

0
39

0.
0

0.
00

7
40

5
40

8
0.

81
5

M
ed

ia
n 

E
C

I
6.

0
4.

0
<0

.0
01

6.
0

5.
0

0.
01

3

E
C

I 
G

ro
up

s
<0

.0
01

0.
33

1

# 
Pa

tie
nt

s 
in

 E
C

I 
(0

–1
)

7 
(2

.6
%

)
9 

(7
.7

%
)

9 
(4

.2
%

)
7 

(4
.1

%
)

# 
Pa

tie
nt

s 
in

 E
C

I 
(2

–4
)

65
 (

24
.0

%
)

64
 (

54
.7

%
)

65
 (

30
.1

%
)

64
 (

37
.2

%
)

# 
Pa

tie
nt

s 
in

 E
C

I 
(5

+
)

19
9 

(7
3.

4%
)

44
 (

37
.6

%
)

14
2 

(6
5.

7%
)

10
1 

(5
8.

7%
)

E
C

I 
C

at
eg

or
ie

s 
w

ith
 p

<
 0

.0
01

C
on

ge
st

iv
e 

he
ar

t f
ai

lu
re

48
 (

17
.7

%
)

5 
(4

.3
%

)
<0

.0
01

Ps
yc

ho
se

s
65

 (
30

.1
%

)
23

 (
13

.4
%

)
<0

.0
01

Pu
lm

on
ar

y 
ci

rc
ul

at
io

n 
di

so
rd

er
s

28
 (

10
.3

%
)

1 
(0

.9
%

)
<0

.0
01

H
yp

er
te

ns
io

n
20

9 
(7

7.
1%

)
64

 (
54

.7
%

)
<0

.0
01

O
th

er
 n

eu
ro

lo
gi

ca
l d

is
or

de
rs

85
 (

31
.4

%
)

16
 (

13
.7

%
)

<0
.0

01

W
ei

gh
t l

os
s

97
 (

35
.8

%
)

16
 (

13
.7

%
)

<0
.0

01

Fl
ui

d 
an

d 
el

ec
tr

ol
yt

e 
di

so
rd

er
s

13
9 

(5
1.

3%
)

30
 (

25
.6

%
)

<0
.0

01

Ps
yc

ho
se

s
85

 (
31

.4
%

)
3 

(2
.6

%
)

<0
.0

01

J Biomed Inform. Author manuscript; available in PMC 2021 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 25

Ta
b

le
 5

:

D
em

og
ra

ph
ic

s 
an

d 
st

at
is

tic
s 

of
 p

at
ie

nt
 s

ub
gr

ou
ps

 id
en

tif
ie

d 
by

 L
D

A
 a

nd
 P

D
M

 f
ro

m
 th

e 
D

el
ir

iu
m

/D
em

en
tia

 C
oh

or
t. 

St
at

is
tic

al
ly

 s
ig

ni
fi

ca
nc

e 
is

 b
as

ed
 o

n 

th
e 

K
ru

sk
al

-W
al

lis
 T

es
t (

p 
<

 0
.0

01
).

 T
he

 c
om

pl
et

e 
an

al
ys

is
 f

or
 a

ll 
E

C
I 

ca
te

go
ri

es
 is

 p
ro

vi
de

d 
in

 th
e 

su
pp

le
m

en
ta

l f
ile

.

M
et

ho
ds

L
D

A
P

D
M

Su
bg

ro
up

s
Su

bg
ro

up
 1

Su
bg

ro
up

 2
Su

bg
ro

up
 3

p-
va

lu
e

Su
bg

ro
up

 1
Su

bg
ro

up
 2

Su
bg

ro
up

 3
Su

bg
ro

up
 4

Su
bg

ro
up

 5
Su

bg
ro

up
 6

p-
va

lu
e

# 
Pa

tie
nt

s 
(%

)
16

7 
(5

5.
0%

)
72

 (
23

.7
%

)
65

 (
21

.3
%

)
47

 (
15

.5
%

)
41

 (
13

.5
%

)
34

 (
11

.2
%

)
62

 (
20

.4
%

)
56

 (
18

.4
%

)
64

 (
21

.1
%

)

Se
x

0.
11

4
0.

44
5

# 
M

al
e 

(%
)

44
 (

26
.3

%
)

28
 (

38
.9

%
)

23
 (

35
.4

%
)

16
 (

34
.0

%
)

15
 (

36
.6

%
)

9 
(2

6.
5%

)
19

 (
30

.6
%

)
12

 (
21

.4
%

)
24

 (
37

.5
%

)

# 
Fe

m
al

e 
(%

)
12

3 
(7

3.
7%

)
44

 (
61

.1
%

)
42

 (
64

.6
%

)
31

 (
66

.0
%

)
26

 (
63

.4
%

)
25

 (
73

.5
%

)
43

 (
69

.4
%

)
44

 (
78

.6
%

)
40

 (
62

.5
%

)

M
ed

ia
n 

A
ge

86
.4

79
.7

82
.9

<
0.

00
1

82
.4

84
.0

84
.9

84
.3

85
.7

82
.3

0.
62

3

M
ed

ia
n 

# 
D

ia
gn

os
is

38
5.

0
41

4.
0

37
6.

0
0.

00
9

38
3.

0
39

9.
0

38
5.

5
40

9.
0

41
1.

5
36

8.
5

0.
00

7

M
ed

ia
n 

E
C

I
8.

0
8.

0
7.

0
<

0.
00

1
8.

0
8.

0
7.

0
8.

0
8.

0
8.

0
0.

13
0

E
C

I 
G

ro
up

s
<

0.
00

1
0.

87
4

# 
Pa

tie
nt

s 
in

 E
C

I 
(0

–1
)

0 
(0

.0
%

)
0 

(0
.0

%
)

0 
(0

.0
%

)
0 

(0
.0

%
)

0 
(0

.0
%

)
0 

(0
.0

%
)

0 
(0

.0
%

)
0 

(0
.0

%
)

0 
(0

.0
%

)

# 
Pa

tie
nt

s 
in

 E
C

I 
(2

–4
)

5 
(3

.0
%

)
2 

(2
.8

%
)

12
(1

8.
5%

)
2 

(4
.3

%
)

2 
(4

.9
%

)
2 

(5
.9

%
)

3 
(4

.8
%

)
4 

(7
.1

%
)

6 
(9

.4
%

)

# 
Pa

tie
nt

s 
in

 E
C

I 
(5

+
)

16
2 

(9
7.

0%
)

70
 (

97
.2

%
)

53
 (

81
.5

%
)

45
 (

95
.7

%
)

39
 (

95
.1

%
)

32
(9

4.
1%

)
59

 (
95

.2
%

)
52

 (
92

.9
%

)
58

 (
90

.6
%

)

E
C

I 
C

at
eg

or
ie

s 
w

ith
 p

<
 0

.0
01

H
yp

er
te

ns
io

n
14

0 
(8

3.
8%

)
58

 (
80

.6
%

)
39

 (
60

.0
%

)
<

0.
00

1

J Biomed Inform. Author manuscript; available in PMC 2021 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 26

Ta
b

le
 6

:

D
em

og
ra

ph
ic

s 
an

d 
st

at
is

tic
s 

of
 p

at
ie

nt
 s

ub
gr

ou
ps

 id
en

tif
ie

d 
by

 L
D

A
 a

nd
 P

D
M

 f
ro

m
 th

e 
C

O
PD

/B
ro

nc
hi

ec
ta

si
s 

C
oh

or
t. 

St
at

is
tic

al
ly

 s
ig

ni
fi

ca
nc

e 
is

 b
as

ed
 

on
 th

e 
K

ru
sk

al
-W

al
lis

 T
es

t (
p 

<
 0

.0
01

).
 T

he
 c

om
pl

et
e 

an
al

ys
is

 f
or

 a
ll 

E
C

I 
ca

te
go

ri
es

 is
 p

ro
vi

de
d 

in
 th

e 
su

pp
le

m
en

ta
l f

ile
.

M
et

ho
ds

L
D

A
P

D
M

Su
bg

ro
up

 1
Su

bg
ro

up
 2

p-
va

lu
e

Su
bg

ro
up

 1
Su

bg
ro

up
 2

p-
va

lu
e

# 
Pa

tie
nt

s 
(%

)
49

5 
(7

2.
3%

)
19

0 
(2

7.
7%

)
20

7 
(3

0.
2%

)
47

8 
(6

9.
8%

)

Se
x

0.
00

5
0.

48
9

# 
M

al
e 

(%
)

26
0 

(5
2.

5%
)

77
 (

40
.5

%
)

10
6 

(5
1.

2%
)

23
1 

(4
8.

3%
)

# 
Fe

m
al

e 
(%

)
23

5 
(4

7.
5%

)
11

3 
(5

9.
5%

))
10

1 
(4

8.
8%

)
24

7 
(5

1.
7%

)

M
ed

ia
n 

A
ge

76
.0

66
.8

<0
.0

01
71

.1
74

.6
0.

00
2

M
ed

ia
n 

# 
D

ia
gn

os
is

40
3.

0
40

2.
0

0.
79

1
40

9.
0

39
9.

5
0.

52
6

M
ed

ia
n 

E
C

I
9.

0
6.

0
<0

.0
01

7.
0

8.
0

<0
.0

01

E
C

I 
G

ro
up

s
<0

.0
01

0.
01

6

# 
Pa

tie
nt

s 
in

 E
C

I 
(0

–1
)

0 
(0

.0
%

)
2 

(1
.1

%
)

2 
(1

.0
%

)
0 

(0
.0

%
)

# 
Pa

tie
nt

s 
in

 E
C

I 
(2

–4
)

15
 (

3.
0%

)
35

 (
18

.4
%

))
21

 (
10

.1
%

)
29

 (
6.

1%
)

# 
Pa

tie
nt

s 
in

 E
C

I 
(5

+
)

48
0 

(9
7.

0%
)

15
3 

(8
0.

5%
)

18
4 

(8
8.

9%
)

44
9 

(9
3.

9%
)

E
C

I 
C

at
eg

or
ie

s 
w

ith
 p

<
 0

.0
01

C
on

ge
st

iv
e 

he
ar

t f
ai

lu
re

26
4 

(5
3.

3%
)

27
 (

14
.2

%
)

<0
.0

01
Fl

ui
d 

an
d 

el
ec

tr
ol

yt
e 

di
so

rd
er

s
11

1 
(5

3.
6%

)
33

7 
(7

0.
5%

))
<0

.0
01

C
ar

di
ac

 a
rr

hy
th

m
ia

s
35

0 
(7

0.
7%

)
10

2 
(5

3.
7%

)
<0

.0
01

Pu
lm

on
ar

y 
ci

rc
ul

at
io

n 
di

so
rd

er
s

15
4 

(3
1.

1%
)

23
 (

12
.1

%
)

<0
.0

01

R
en

al
 f

ai
lu

re
12

3 
(2

4.
8%

)
19

 (
10

.0
%

)
<0

.0
01

O
be

si
ty

75
 (

15
.2

%
)

50
 (

26
.3

%
)

<0
.0

01

W
ei

gh
t l

os
s

19
1 

(3
8.

6%
)

37
 (

19
.5

%
)

<0
.0

01

Fl
ui

d 
an

d 
el

ec
tr

ol
yt

e 
di

so
rd

er
s

38
0 

(7
6.

8%
)

68
 (

35
.8

%
)

<0
.0

01

D
ef

ic
ie

nc
y 

an
ae

m
ia

11
0 

(2
2.

2%
)

21
 (

11
.1

%
)

<0
.0

01

Ps
yc

ho
se

s
14

0 
(2

8.
3%

)
19

 (
10

.0
%

)
<0

.0
01

J Biomed Inform. Author manuscript; available in PMC 2021 February 01.


	Abstract
	Introduction
	Background
	Methods
	Mathematical Modeling
	Parameter Estimation
	Applications on EHRs
	Discovering Latent Disease Clusters
	Discovering Patient Subgroups


	Datasets
	Results
	Visualization of Latent Disease Clusters
	Validation of Patient Subgroups
	Survival curves
	Statistical analysis


	Discussion and Conclusion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Table 1:
	Table 2:
	Table 3:
	Table 4:
	Table 5:
	Table 6:

