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Abstract
Genome-wide studies often exclude family members, even though they are a valuable source of information. We identified 
parent–offspring pairs, siblings and couples in the UK Biobank and implemented a family-based DNA-derived heritability 
method to capture additional genetic effects and multiple sources of environmental influence on neuroticism and years of 
education. Compared to estimates from unrelated individuals, total heritability increased from 10 to 27% and from 17 to 56% 
for neuroticism and education respectively by including family-based genetic effects. We detected no family environmental 
influences on neuroticism. The couple similarity variance component explained 35% of the variation in years of education, 
probably reflecting assortative mating. Overall, our genetic and environmental estimates closely replicate previous findings 
from an independent sample. However, more research is required to dissect contributions to the additional heritability by rare 
and structural genetic effects, assortative mating, and residual environmental confounding. The latter is especially relevant 
for years of education, a highly socially contingent variable, for which our heritability estimate is at the upper end of twin 
estimates in the literature. Family-based genetic effects could be harnessed to improve polygenic prediction.
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Introduction

Heritability measures the proportion of individual differ-
ences in a trait explained by inherited genetic variation, and 
is traditionally estimated by comparing the resemblance 
of identical and non-identical twins (Knopik et al. 2017). 

Researchers can also now estimate single nucleotide poly-
morphism (SNP) heritability, the variance explained by the 
additive effects of common genetic variants tagged by a 
genotyping array (Yang et al. 2010, 2011). SNP heritability 
is expected to be less than twin and family-based heritabil-
ity, since the former only estimates the additive effects of 
measured common variants, plus variants that are corre-
lated (i.e. in linkage disequilibrium) with them, and ignores 
influences of DNA sequence differences that are rare and/or 
not well tagged by genotyping arrays. Since genome-wide 
association studies (GWAS) also only consider the additive 
effects of common variants, SNP heritability provides an 
estimate of the total genetic effect that could be identified 
with well-powered association studies of a given phenotype 
in a given population. Given the importance of SNP herita-
bility, researchers have investigated approaches to maximise 
the accuracy of estimates, beyond increasing sample sizes 
or denser genotyping (van den Berg et al. 2014; Laurin et al. 
2015; Cheesman et al. 2018; van der Sluis et al. 2010).

The dominant method for the estimation of SNP herit-
ability, Genomic-RElatedness-based restricted Maximum-
Likelihood (GREML), takes advantage of small genetic dif-
ferences among many unrelated individuals to predict trait 
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similarity (Yang et al. 2011). The effects of genetic variants 
that are not in linkage disequilibrium with common geno-
typed SNPs will not be captured using this method. How-
ever, when GREML is applied to family data, the higher 
genetic relatedness among relatives increases the correlation 
between genotyped SNPs and causal variants, because they 
are more likely to be inherited together (Zaitlen et al. 2013; 
Xia et al. 2016). This increase in linked variants helps to 
capture additional genetic variation not normally picked up 
in population studies of unrelated people, such as rare single 
nucleotide variants, copy number variants, and structural 
variants.

An extension of the method that uses family data, 
GREML-KIN, allows the estimation of two categories of 
genetic influence: population-level common variant herit-
ability, plus additional heritability that is associated with 
kinship (Xia et al. 2016; Zaitlen et al. 2013). The first esti-
mate is similar to that derived from GREML using unrelated 
individuals. The latter heritability estimate captures addi-
tional family-based effects, due to the increased correlation 
between genotyped SNPs and causal variants among rela-
tives. The GREML-KIN method also allows for effects of 
environment sharing amongst family members, siblings and 
couples. This inclusion is important as it attempts to remove 
confounding that results from people who are more geneti-
cally related having more similar environments and higher 
phenotypic resemblance than people who are less related.

One study applied GREML-KIN to neuroticism and years 
of education (Hill et al. 2018) in Generation Scotland, a 
large family-based study (Smith et al. 2006). Neuroticism 
is a personality trait characterised by readily experiencing 
negative emotions. It is a strong predictor of common men-
tal disorders, occupational attainment and mortality (Ormel 
et al. 2013). Years of education is also a complex trait that 
shows significant associations with diverse socioeconomic 
and health outcomes (Mackenbach et al. 2008). Twin stud-
ies have repeatedly demonstrated substantial broad sense 
heritability for neuroticism (40–60%) (Hettema et al. 2006) 
and educational attainment (40–50%) (Branigan et al. 2013). 
Extended twin family designs estimate the narrow sense her-
itability of neuroticism to be ~ 25% (Coventry and Keller 
2005). These designs provide a better benchmark for addi-
tive genetic influence than the classical twin design, since 
they incorporate relatives of twin pairs to allow explicit 
separation additive genetic influences from non-additivity, 
shared environment, assortative mating, and gene-environ-
ment correlation. We are not aware of applications of the 
design to educational attainment, but one study estimated the 
narrow sense heritability of adult intelligence, a comparable 
phenotype, to be 44% (Vinkhuyzen et al. 2012). Neuroticism 
and educational attainment both index a range of important 
traits, and are available in numerous large datasets. As a 
result, they have been subject to some of the largest GWA 

studies of psychological traits (N = 449,484 for neuroti-
cism (Nagel et al. 2018; Luciano et al. 2018); N = 1.1 mil-
lion for years of education (Lee et al. 2018)). Nonetheless, 
only ~ 10% of the variance in neuroticism can be explained 
by the additive effects of common SNPs (Luciano et al. 
2018; Nagel et al. 2018). Estimates of SNP heritability for 
years of education also fall substantially short of twin and 
pedigree estimates (14.7%; Lee et al. 2018).

GREML-KIN analyses in Generation Scotland revealed a 
large increase in heritability compared to a standard GREML 
analysis of unrelated individuals (Hill et al. 2018). For neu-
roticism, the total heritability from the best-fitting model 
was 30%, primarily accounted for by kin-based genetic 
effects (19%), as well as common variant effects tagged in 
studies of unrelated individuals (11%—akin to SNP herit-
ability). They detected no family environment effects. For 
years of education, there was a strong kin genetic component 
(28%) in addition to common genetic influence (16%), plus 
substantial variance explained by sibling and couple simi-
larity (11% and 31%, respectively). The findings align well 
with evidence from twin studies that the family environment 
influences education-related outcomes (~ 36% of the vari-
ance; Branigan et al. 2013) but not neuroticism (Polderman 
et al. 2015). If these results are replicated, then the total 
DNA-based heritability of neuroticism and education would 
be close to twin and pedigree study estimates. Moreover, a 
replication of these results would suggest that most of the 
variance in education (86%) can be captured with measured 
parameters. Notably, for each, the larger component of the 
genetic contributions results from less common variants not 
identified in genomic studies of unrelated individuals. The 
authors also found that rarer variants (0.1–1% in frequency) 
explained 12% of the variance in education, but did not influ-
ence variation in neuroticism (Hill et al. 2018).

Our study aimed to estimate familial influences on neu-
roticism and years of education in the UK Biobank, using 
GREML-KIN. We capitalise on the presence of thousands 
of family members in the UK Biobank to shed light on the 
genetic and environmental architecture of these two pheno-
types. To robustly replicate the previous Generation Scot-
land study, we ensured that phenotype definitions were as 
similar as possible, and that there was no sample overlap. 
Based on previous research, we hypothesised that neuroti-
cism and years of education would show increased heritabil-
ity by exploiting the higher linkage disequilibrium within 
families. Our secondary analyses aimed to validate our kin-
based estimates and specifically quantify the contribution of 
rarer genetic variants to the heritability of neuroticism and 
years of education. For this, we used the LDMS-I method, 
and stratified imputed genetic variants by their individual 
level of linkage disequilibrium and allele frequency to allow 
estimation of the variance explained by rarer variants (Evans 
et al. 2018).
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Methods

Sample

Analyses were conducted using the UK Biobank, a 
resource containing rich phenotype and genotype data 
on ~ 500,000 individuals aged between 40 and 70 (Allen 
et al. 2014). To minimise confounding from population 
stratification, analyses were limited to white British indi-
viduals. We identified families and restricted heritability 
analyses to individuals with at least one family member in 
the UK Biobank, as well as phenotype data on neuroticism 
and/or years of education. Previous publications suggested 
a sample size of ~ 40,000 pairs of family members (parent-
offspring, siblings, and couples) within the full dataset 
(Bycroft et al. 2018).

Genotyping

Genome-wide genetic data from the full release of the 
UK Biobank data were collected and processed accord-
ing to the quality control pipeline (Bycroft et al. 2018). 
For primary GREML-KIN analyses, we used genotyped 
or imputed SNPs with minor allele frequency > 0.01 and 
imputation confidence (INFO) score > 0.4, indicating well 
imputed variants. Due to computing memory constraints, 
we used PLINK2 to prune down to 241,678 variants in 
approximate linkage equilibrium using an r2 threshold of 
0.2 (Chang et al. 2015) before calculating genetic related-
ness matrices.

Measures

Neuroticism was measured as a continuous trait, captured 
with 12 questionnaire items such as “Does your mood 
often go up and down?”, “Would you call yourself tense 
or ‘highly strung’?”. This trait was defined previously in 
the UK Biobank (Smith et al. 2013, 2016).

The years of education variable was defined according 
to ISCED categories, as in previous genomic studies in the 
UK Biobank and other samples (Hill et al. 2018; Lee et al. 
2018). The six response categories were: none of the above 
(no qualifications) = 7 years of education; CSEs or equiva-
lent = 10 years; O levels/GCSEs or equivalent = 10 years; 
A levels/AS levels or equivalent = 13 years; other profes-
sional qualification = 15 years; NVQ or HNC or equiva-
lent = 19 years; college or university degree = 20 years of 
education. To test whether the number of response cat-
egories affected heritability estimates, as has been shown 
previously in the UK Biobank (Lee et al. 2018), we ran 

sensitivity analyses using a ‘coarsened’ years of education 
variable, plus a binary variable reflecting college comple-
tion (see Supplementary Fig. 1).

In all analyses the following covariates were included: 
age, sex, the first 40 ancestry principal components from 
the UK Biobank (Bycroft et al. 2018), genotyping batch, 
and assessment centre.

Analyses

Identification of family members

Sibling and parent–offspring pairs were identified using 
relatedness files (KING n.d.) received with the UK Biobank 
data. Relatedness between two individuals is summarised by 
a kinship coefficient, which is defined as the probability that 
a random allele from an individual is identical by descent 
(IBD) with an allele at the same locus from the other indi-
vidual (i.e. identical and inherited from a common ancestor). 
For example, in parent–offspring duos, kinship is ~ 0.25, as 
it is the probability that a random allele in a child is from 
one specific parent (0.5 since humans are diploid) multiplied 
by the probability that the parental allele from that parent is 
passed to the child (0.5; independent to the first probability). 
To allow for normal variation in within-pair similarity, first-
degree relatives are therefore defined as pairs that have a 
pairwise kinship coefficient of ≥ 0.177 and ≤ 0.354.

To distinguish parent–offspring pairs from sibling pairs, 
we plotted the proportion of SNPs with zero identity-by-
state (IBS0) within the kinship bounds of 0.177–0.354 
(Fig. 1). IBS describes the probability that alleles are the 
same regardless of common ancestry. When comparing 
two individuals, variants are termed IBS0 if neither allele 
is shared by the pair. Parent–offspring pairs have IBS0 = ~0 
since they share one allele inherited by descent (IBD) in 
all positions on autosomes. In other words, an individual 
is unlikely to share zero variants with one of their parents, 
unless for example both copies come from the other parent 
(uniparental disomy), or unless there are genotyping errors 
meaning that shared variation is not called. In contrast, sib-
lings have a higher pairwise IBS0.

Couples were identified as pairs of unrelated opposite-
sex individuals matching exactly on a string of house-
hold variables: social deprivation (Townsend Deprivation 
Index), assessment centre, income, time at address, smoker 
in household, type of accommodation, relatives in house-
hold, number in household. This approach of matching on 
household variables was used in a recent study of assortative 
mating in the UK Biobank (Yengo et al. 2018). We note that 
there is potential for type 1 error: it is possible, especially 
in densely populated areas, that people could match on all 
eight variables by chance.
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Kin‑based SNP heritability method accounting 
for environmental similarity: GREML‑KIN

GREML requires the calculation of genetic similarity for 
each pair of individuals across genotyped variants. This 
matrix of genomic similarity is compared to a matrix of 
pairwise phenotypic similarity using a random-effects mixed 
linear model, such that the variance of a trait can be decom-
posed into genetic and residual components, using maxi-
mum likelihood. Ordinarily, GREML is applied in samples 
of unrelated individuals and has a single common genetic 
variance component.

GREML-KIN is an extension of GREML that estimates 
the variance explained by multiple genetic and non-genetic 
sources. The method uses a linear mixed model to fit five 
matrices: G = common genotyped SNP effects; K = kin 
genetic effects; F = nuclear family (siblings, parent-off-
spring, and couples); S = siblings; C = couples. For the G 
matrix, we calculated genetic similarity for all possible pairs 
of individuals across all genotyped SNPs. As GREML-KIN 
allows for effects of the family environment, no relatedness 
cut-off was applied to the G matrix (unlike the standard 
GREML model applied only to unrelated individuals, where 
a cut-off of < 0.025 is typically used). The K matrix is a 
modified G matrix, containing only information on relatives 
(cut-off > 0.025), since values for unrelated pairs are set to 0. 
Family, sibling and couple (F, S and C) similarity matrices 
were created in the format required for GCTA. Elements in 
the genomic relatedness matrix were replaced by 0 if a pair 
did not have the specific relationship; and 1 if a pair do have 
the relationship, or for elements representing individuals’ 
relatedness to themselves.

Importantly, the variance components are not purely 
‘genetic’ and ‘environmental’. The sibling and couple envi-
ronment sharing matrices likely pick up variance due to 
other processes that inflate covariance between relatives, 
including dominance and assortative mating, respectively.

Assortative mating refers to greater similarity between 
partners than is expected by chance. This can result from 
multiple mechanisms, including direct choice based on phe-
notype, social homogamy, and convergence over time due to 
shared environments. Assortative mating amongst couples 
in the UK Biobank sample will be captured by fitting the 
couple similarity matrix (C). However, to the extent that 
phenotypic similarity among the parents of the UK Biobank 
participants reflects their genetic similarity, it is also likely 
that assortative mating in their parents will contribute to 
the additive genetic variance in our estimates (G + K). This 
is because assortative mating induces a positive correlation 
between trait-increasing alleles (‘gametic phase disequil-
brium’), which elevates trait-specific genetic and phenotypic 
variance (Peyrot et al. 2016).

The genetic variance components are also likely to 
include some bias from the indirect effects of genetic vari-
ants shared with relatives. Genetic variants in the parents do 
not only have direct effects on offspring traits by being trans-
mitted, but they also have indirect influences on offspring 
traits through the environment that they provide for their 
children. This can bias SNP-based heritability estimates 
(Young et al. 2018).

The residual component includes sources of variance that 
are not captured by the G, K, F, S or C matrices, particularly 
other environmental influences (idiosyncratic, individual-
specific environments or perceptions that are not shared by 
family members) and error.

To identify the best-fitting model for each trait, we ran 
a model for every possible combination of variance com-
ponents (31 models), and compared them with backwards 
stepwise likelihood ratio testing, starting with the full model 
and dropping non-significant parameters.

We compared GREML-KIN results against those from a 
standard GREML model in a subset of unrelated individu-
als from the family-based analyses. The standard GREML 
model uses a single genomic relatedness matrix with a 
cut-off to exclude one from each pair of related individu-
als (cut-off > 0.025). This approach therefore only detects 
population-level additive genetic effects tagged by common 
genotyped SNPs, plus potential confounding, for example 
from gene-environment correlation and population stratifi-
cation. The residual component contains other sources of 
variance: gene–environment interaction, error, plus all of 
the environmental influence, rare variant effects that are not 
captured when using an unrelated population sample, and 
non-additive genetic effects.

GREML‑LDMS‑I to investigate the effects of less common 
variants

In our GREML-LDMS-I analyses, we started with whole 
genome data imputed from the HRC panel (93,095,623 
autosomal variants; see Bycroft et al. 2018) We ran qual-
ity control to include variants across the allele frequency 
spectrum that were imputed with high confidence (INFO 
score > 0.80), and removed multiallelic variants. Three allele 
frequency bins were made, containing variants with minor 
allele frequency ranges of: 0.001–0.01, 0.01–0.1, 0.1–0.5, 
respectively. SNPs in each bin were split into high versus 
low linkage disequilibrium categories. We stratified by indi-
vidual (rather than regional) SNP LD scores, since this has 
been shown to yield SNP heritability estimates that are more 
robust across different genetic architectures than estimates 
from other approaches (Evans et al. 2018). This led to six 
genome-wide genetic relatedness matrices, one for each 
allele frequency and LD bin (non-overlapping). All matrices 
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included the same number of unrelated individuals (cut-off 
0.025) with phenotype data and with at least one family con-
nection as in standard GREML. The matrices were simul-
taneously fitted using a linear mixed model, and estimates 
were allowed to be negative. In supplementary analyses we 
explored whether the variance explained by the rarest alleles 
could be underestimated because their imputation quality 
was lower. Hence, we checked how many SNPs in each 
minor allele frequency bin were dropped when applying the 
INFO > 0.8 cutoff.

Sample independence

To ensure that our results were independent from the previ-
ous Generation Scotland study, we compared checksums for 
both samples to identify and remove overlapping partici-
pants. A checksum is the sum of nine numbers taken from 
binary genotype files. Checksums were obtained from Gen-
eration Scotland without accessing genotype data directly. 
We then ran checksums in the UK Biobank (after ensur-
ing quality control of genomic data was the same), using a 
script from the Broad Institute, which is available online: 
https​://perso​nal.broad​insti​tute.org/sripk​e/share​_links​/check​
sums_downl​oad/outda​ted_readm​e/id_geno_check​sum.v2.

We note that the number of relationships per individual 
in the UK Biobank is lower than in Generation Scotland. 
Their sample was selected to capture dense kinships, where 
many individuals have siblings, parents and spouses who 
are also study participants. This may result in lower power 
in the UK Biobank to detect influences of family similarity, 
especially if small in magnitude, and reduces power to sepa-
rate confounding factors, as in biometric designs (McAdams 
et al. 2018).

Software

We used the following software in our analyses: identifica-
tion of family members was performed using R; construction 
of genomic relationship matrices was done in GCTA; family, 
sibling and couple similarity matrices were made in bash; 
GREML analyses were conducted in GCTA. Scripts are 
available from the lead author on request. The UK Biobank 
is a public dataset available to all bona fide researchers (with 
funds to pay the access fee).

Results

Identification of family members

Columns 2–4 of Table 1 (bold) show how many pairs of the 
three types of family members we identified with available 
data on neuroticism and years of education. The numbers of 

family relationships closely matched findings from previ-
ous publications (Yengo et al. 2018; Bycroft et al. 2018). 
Column 5 contains the sample sizes of family pairs (the 
total of couple, sibling and parent–offspring pairs). From the 
number of family pairs, we derived the number of families 
(column 6), or in other words, the number of discrete sets of 
individuals who have at least one connection. The number of 
unique individuals (column 7) represents the total number of 
participants with at least one family member, after removing 
double-counted individuals who have multiple connections.

The discrepancies between the numbers of individuals, 
families and nuclear pairs reflects that most people only have 
one family member in the study. This contrasts to samples 
with dense kinship networks such as Generation Scotland, 
where many individuals have siblings, parents and spouses 
who are also study participants. As described in the Meth-
ods, we distinguished parent–offspring and sibling pairs 
according to their IBS0 (Fig. 1). We chose a threshold of 
IBS0 > 0.001 to define siblings (blue) separately from par-
ent–offspring pairs (yellow).

Phenotypic correlations for neuroticism were 0.03 for 
couples, 0.14 for siblings, and 0.13 for parent–offspring 
pairs. Phenotypic correlations for years of education were 
0.38 for couples, 0.30 for siblings, and 0.26 for parent–off-
spring pairs.

Kin‑based SNP heritability method accounting 
for environmental similarity: GREML‑KIN

Figure 2 shows results for the full GREML-KIN models 
for neuroticism and education years. For neuroticism, the 
full model indicated that the variance explained by common 
genetic and kin-based variants is 11% (se = 0.01) and 20% 
(se = 0.09), respectively (31% in total, first two bars). Bars 
3–5 demonstrate that there is no significant influence of fam-
ily, sibling or couple similarity. For neuroticism, the selected 
model gives similar results and contains common SNP and 
kin-based genetic influences (11% (se = 0.01) and 16% 
(0.02) respectively). Compared to this best-fitting model, the 
inclusion of matrices to control for the influence of family 
environments (in the full model) does not reduce heritability. 
The total additive heritability of neuroticism when includ-
ing relatives (27%, selected model) is substantially higher 
than in our analysis of unrelated individuals: 10% (se = 0.01; 
N = 44,694 unrelated individuals; Supplementary Table 1).

Figure 2 also shows the results for years of education 
from our full model. Due to computational memory limita-
tions, it was necessary to run models for education in two 
parts (explained below). We report meta-analysed (inverse 
variance weighted means) results here. The results for each 
part are in Supplementary Tables 2 and 3. The heritabil-
ity of years of education in our selected model was 56%, 
made up of 12% common SNPs at the population level 

https://personal.broadinstitute.org/sripke/share_links/checksums_download/outdated_readme/id_geno_checksum.v2
https://personal.broadinstitute.org/sripke/share_links/checksums_download/outdated_readme/id_geno_checksum.v2
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(se = 0.01) and 44% kin-based effects (se = 0.02). This 
increases heritability considerably from 17% (se = 0.01) in 
unrelated individuals. The final model for education also 
contains a couple similarity effect of 35% (se = 0.01) in 
addition to the common and kin-based genetic influences.

See Supplementary Tables 1–3 for full model-fitting 
results, including all sub-models and fit statistics. As noted 
above, we ran two sets of GREML-KIN models in inde-
pendent samples to reduce the computational burden. The 
first used the same matrices as in analyses of neuroticism. 
The second used new matrices including individuals who 
have education data and at least one family member, and 
who were not included in the neuroticism matrices. In 
defining these groups, we ensured that individuals in the 
same family were kept together.

Supplementary Fig. 1 gives GREML-KIN results for 
alternative education phenotypes (years of education with 
fewer categories, and degree/college completion). Esti-
mates differed only slightly, and the conclusions remain 
the same.

GREML‑LDMS‑I to investigate the effects 
of less common variants

Table 2 shows our estimates of the contribution of vari-
ants of different allele frequencies and individual linkage 
disequilibrium levels to neuroticism and years of educa-
tion. For neuroticism, there is no evidence of a contribu-
tion of SNPs in the lowest minor allele frequency (MAF) 
bin (0.001–0.01), but SNPs of MAF 0.01-0.1 explained 
3% of the phenotypic variance. All variants explained 11% 
(se = 0.02) of phenotypic variation. For education, variants 
tagged by low frequency SNPs (MAF between 0.001–0.01, 
and 0.01–0.1), particularly those in lower linkage disequilib-
rium, make a modest contribution to phenotypic variation, 
and all variants explained 21% of the phenotypic variance. 
Supplementary Table 4 shows that the lower the allele fre-
quency bin, the more SNPs were dropped due to low imputa-
tion confidence.

Checksum analyses indicated that there were no family 
members with phenotype data in the UK Biobank who were 

Table 1   Sample sizes for 
different family relationships in 
the UK Biobank

Phenotype Couple (pairs) Sib (pairs) Parent-
offspring 
(pairs)

Nuclear (pairs) Families Unique individuals

Neuroticism 16,451 14,562 4004 35,017 31,369 65,361
Education 23,201 21,564 5912 50,677 44,316 93,737

Fig. 1   Kinship plotted against 
IBS0 for all first-degree 
relatives in the UK Biobank. 
Blue = siblings; yellow = par-
ent–offspring pairs
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also in Generation Scotland. We can therefore be confident 
that our results are independent of the previous study (Hill 
et al. 2018).

Discussion

In this study, we capitalised on the family information and 
genome-wide genotypes in the UK Biobank to estimate 
genetic and family environmental influences on neuroticism 
and years of education. Inclusion of family-based genetic 
effects substantially increases the heritabilities of neuroti-
cism and education from 10 and 17% in standard analyses 

of unrelated individuals, to 27% and 56% respectively. Our 
estimates closely replicate previous findings from an inde-
pendent sample (Generation Scotland; Hill et al. 2018). The 
additional family-based influences likely include rare vari-
ants, copy number variants, and structural variants. Turning 
to our non-genetic findings, we did not detect any influence 
of nuclear family, sibling or couple similarity on variation in 
neuroticism. This is consistent with evidence against shared 
environmental contributions to personality (Nivard et al. 
2015; Hettema et al. 2006; Coventry and Keller 2005), and 
with the previous study using the same method (Hill et al. 
2018). For education years, we found that 35% of the vari-
ance was explained by couple similarity. This couple effect 
likely captures assortative mating (education years is likely 
to have occurred before they became couples) and family 
environment effects on education.

At least three potential biases mean that the higher 
GREML-KIN heritability may not only be explained by 
‘revealing additional genetic effects’. First, confounding is 
likely to remain in the heritability estimates due to indirect 
effects of alleles shared by parents and offspring (passive 
gene-environment correlation). Simulations in an Icelandic 
dataset suggest that although GREML-KIN gives unbiased 
heritability estimates when family environmental influences 
are present, it over-estimates heritability if phenotypes are 
also substantially influenced by passive gene-environment 
correlation (Young et al. 2018). The influence of passive 
gene-environment correlation for educational attainment in 
the UK Biobank is suggested by the lower SNP heritability 
for adoptees, whose rearing environments are less correlated 
with their genotypes (Cheesman et al., 2019). In the future, 
methods that can distinguish direct from indirect influences 
should be applied to neuroticism, education and other com-
plex, socially-contingent traits (Eaves et al. 2014; Visscher 
et al. 2006; Young et al. 2018).

Second, geographic population differences complicate 
our interpretations of heritability estimates, particularly for 
education. One study found that controlling for urban child-
hood residence, a proxy for a range of environmental factors, 
reduced the SNP heritability of education (but not the herit-
abilities of height or body mass index) above and beyond 
other controls for population stratification (Conley et al. 
2014). Stratification in the UK Biobank is present even at a 

Fig. 2   Variance component estimates for neuroticism and education, 
plus standard errors. G population-level effects of common genotyped 
SNPs; K kin-based genetic effects; F effects of nuclear family (sib-
lings, parent-offspring, couple) similarity; S effects of sibling simi-
larity; C effects of couple similarity. Note that for neuroticism, the 
estimates from our full model for the F, S, and C components are all 
non-significant, and standard errors cross zero. For education, the F 
and S components are non-significant

Table 2   Results of GREML-LDMS-I variance components analyses for neuroticism and education using six minor allele frequency and LD bins

MAF minor allele frequency, LD linkage disequilibrium, h2 (se) variance explained by SNPs in MAF and LD bin, plus standard error

MAF 0.001–0.01 0.001–0.01 > 0.01–0.1 > 0.01–0.1 > 0.1–0.5 > 0.1–0.5
LD Lower Higher Lower Higher Lower Higher Total

No. SNPs 1,772,407 1,772,399 1,756,294 1,756,290 2,105,014 2,104,972 11,267,376
Neuroticism h2 0.00 (0.02) 0.00 (0.01) 0.02 (0.01) 0.01 (0.03) 0.05 (0.01) 0.04 (0.004) 0.11 (0.02)
Education h2 0.06 (0.02) 0.00 (0.05) 0.03 (0.01) 0.01 (0.01) 0.07 (0.01) 0.05 (0.03) 0.21 (0.02)
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fine scale, is unlikely to be completely removed by control-
ling for principal components, and is potentially more severe 
in rare variant analyses (Haworth et al. 2019; Young 2019).

A third key issue is assortative mating. There is clear evi-
dence for assortment on educational attainment, including 
in the UK Biobank (Hugh-Jones et al. 2016; Robinson et al. 
2017; Yengo et al. 2018). Our estimates of additive genetic 
variance are likely to be overestimated due to assortative 
mating among the parents of the UK Biobank participants 
(see Methods). Even beyond this, assortative mating may 
inflate the estimated additive genetic variance because it 
increases phenotypic covariance among relatives and the 
covariance among specific trait-associated loci, but it is not 
captured by genome-wide genetic relatedness (the predictor 
in our GREML models). Assortative mating may also exac-
erbate the bias due to gene-environment correlation (Keller 
et al. 2009; Kong et al. 2018). Specifically, the effects of 
variants influencing educational attainment in offspring may 
be magnified because variants are also present in the parents, 
influencing parental education, parents’ choice of a mate 
with similar attainment, and the rearing environment they 
provide. The effects of assortment on variance component 
estimates from genomic heritability methods are likely to be 
complicated and are an important area for future research.

Although the potential biases mean that interpretations 
should be cautious, our heritability estimates are notably 
closer to twin and extended twin family study estimates than 
are those from standard GREML analysis. The latter design 
is able to differentiate the effects of additive genetics com-
mon environment, assortative mating and gene-environment 
correlation, and the best-powered heritability estimate for 
neuroticism of ~ 25% (Coventry and Keller 2005) is close 
to ours (27%). On the other hand, our total heritability esti-
mate for educational attainment (56%) is notably high and 
likely to be more strongly biased. It is at the upper end of 
twin estimates in the literature (40–50%), even though twin 
heritability does not only reflect additive genetic effects. The 
increase beyond twin heritability is likely to be partly due 
to passive gene-environment correlation, which inflates the 
shared environment component rather than heritability in 
twin studies.

Our allele frequency and LD partitioned heritability 
results (GREML-LDMS-I) give mixed support for the notion 
that the contribution of family-associated genetic influence 
is explained by rarer variants. For education, some effects 
of low allele frequency, low LD variants are captured by 
our partitioned genomic relatedness matrices. For neu-
roticism, the same GREML-LDMS-I heritability analyses 
indicated less rare genetic influence than expected based 
on the large kin-genetic component from the GREML-KIN 
model-fitting. For neuroticism, the gain in heritability from 
GREML-KIN despite the lack of variance in the 0.001-0.01 
frequency bins is perplexing but may be partly explained 

by poor imputation,very rare and structural variation, and 
population stratification. With regard to imputation qual-
ity, the rarest SNPs were more likely to be dropped prior to 
analysis (see Supplementary Table 4). Since rare SNPs tag 
other rare SNPs poorly, dropping rare ones would lead to 
more dramatic underestimation of their effects.

Evidence from other studies suggests an important role 
for rarer variants, which will be further elucidated with 
the increasing availability of whole genome sequence 
data. Multifactorial traits such as personality and edu-
cational attainment are thought to have complex genetic 
aetiologies, consisting of interplay between common and 
rare variation. Recent exome sequencing work has dem-
onstrated rare coding variant effects on many psychiat-
ric traits [that are closely related to neuroticism; (Ganna 
et  al. 2018)]. Other evidence for interactions between 
common variants across the genome and rare copy num-
ber variants in schizophrenia (Bergen et al. 2018) shows 
the importance of examining different types of genetic 
variation together. Importantly, pedigree estimates of the 
heritability of height and BMI can be recovered by using 
whole genome sequence data (rather than imputed data) 
in GREML analyses (Wainschtein et al. 2019). However, 
much larger sample sizes are needed to detect rare genetic 
influences, and confounding factors such as stratification, 
indirect effects and assortative mating are still present.

The additional influences correlated with kinship detected 
in this study indicate a chance to improve prediction using 
polygenic scores. Prediction accuracy is a function of the 
SNP heritability of the target sample, and of the SNP herit-
ability of, and genetic correlation with, the GWAS discovery 
phenotype (de Vlaming et al. 2017). Polygenic scores for 
neuroticism currently explain maximum 4.2% of the pheno-
typic variance in independent samples, which is a fraction 
of the common SNP heritability (~ 10%; Nagel et al. 2018). 
For years of education, polygenic scores explain > 10% of 
the phenotypic variance, close to the SNP heritability of 
15%. Increasing sample sizes and phenotypic homogeneity 
for GWAS of unrelated population samples will continue 
to narrow this gap between polygenic prediction and SNP 
heritability. However, the population-level common variant 
approach may be limited for educational attainment, given 
the relatively high variance already explained by poly-
genic scores. For both traits, genomic prediction could be 
improved by leveraging family information (Lee et al. 2017). 
Inclusion of relatives could help to capture additional effects 
of typically untagged variants that are rare and possibly even 
family-specific. Importantly, for the purpose of prediction, 
genetic scores need not be, and already are not, ‘pure’ indi-
ces of individual genetic propensity. It may help to tag influ-
ential aspects of the environment, for example by combining 
parent and child polygenic scores within a single model.
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In summary, we provide evidence for substantial fam-
ily-based and common genetic effects on neuroticism and 
years of education in the UK Biobank. These results moti-
vate the recruitment of samples with dense kinships and 
methods to leverage genomic family information, whilst 
understanding gene-environment interplay.

Acknowledgements  We would like to thank the scientists involved in 
the construction of the UK Biobank and all of the participants who have 
shared their life experiences with investigators in the UK Biobank. This 
research has been conducted using the UK Biobank Resource, under 
the application 18177 (with thanks to Paul F. O’Reilly). This study 
represents independent research part funded by the National Institute 
for Health Research (NIHR) Biomedical Research Centre at South Lon-
don and Maudsley NHS Foundation Trust and King’s College London. 
The views expressed are those of the author(s) and not necessarily 
those of the NHS, the NIHR or the Department of Health and Social 
Care. High performance computing facilities were funded with capital 
equipment grants from the GSTT Charity (TR130505) and Mauds-
ley Charity (980). T.C. Eley is part funded by a program grant from 
the UK Medical Research Council (MR/M021475/1). R. Cheesman is 
supported by an ESRC studentship. C. Rayner is supported by a grant 
from Fondation Peters to T.C. Eley and G. Breen. K.L. Purves is part 
supported by a grant from the Alexander Von Humboldt Foundation 
and UK Medical Research Council (MR/M021475/1). G. Morneau-
Vaillancourt is supported by a studentship from the Quebec Network on 
Suicide, Mood Disorders and Related Disorders. S.W. Choi. is funded 
from the UK Medical Research Council (MR/N015746/1). KG is sup-
ported by a PhD studentship awarded from the UK Medical Research 
Council. We thank David M. Howard for assistance with checksums 
for Generation Scotland, and Loic Yengo for sharing information on 
identification of couples.

Compliance with ethical standards 

Conflict of interest  G. Breen is a consultant for Eli Lilly. R. Chees-
man, J. Coleman, C. Rayner, K. L. Purves, G. Morneau-Vaillancourt, 
K. Glanville, S. W. Choi and T. C. Eley declare no conflicts of interest.

Human and Animal Rights and Informed Consent  All participants gave 
full informed written consent for participation in the UK Biobank. This 
study was performed in accordance with the criteria defined by the 
rules of the UK Biobank.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

Allen NE, Sudlow C, Peakman T, Collins R, UK Biobank (2014) UK 
biobank data: come and get it. Sci Transl Med 6(224):224ed4

Bergen SE, Ploner A, Howrigan D et al (2018) Joint contributions of 
rare copy number variants and common snps to risk for schizo-
phrenia. Am J Psychiatry 176(1):29–35

Branigan AR, McCallum KJ, Freese J (2013) Variation in the herit-
ability of educational attainment: an international meta-analysis. 
Soc Forces 92(1):109–140

Bycroft C, Freeman C, Petkova D et  al (2018) The UK Biobank 
resource with deep phenotyping and genomic data. Nature 
562(7726):203–209

Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ 
(2015) Second-generation PLINK: rising to the challenge of larger 
and richer datasets. GigaScience 4:7

Cheesman R, Major Depressive Disorder Working Group of the Psy-
chiatric Genomics Consortium, Purves KL et al (2018) Extracting 
stability increases the SNP heritability of emotional problems in 
young people. Transl Psychiatry 8(1):223

Cheesman R, Hunjan A, Coleman JR, Ahmadzadeh Y, Plomin R, 
McAdams TA, Eley TC, Breen G (2019) Comparison of adopted 
and non-adopted individuals reveals gene-environment interplay 
for education in the UK Biobank. bioRxiv, p.707695

Conley D, Siegal ML, Domingue BW, Mullan Harris K, McQueen 
MB, Boardman JD (2014) Testing the key assumption of heritabil-
ity estimates based on genome-wide genetic relatedness. J Hum 
Genet 59(6):342–345

Coventry WL, Keller MC (2005) Estimating the extent of parameter 
bias in the classical twin design: a comparison of parameter esti-
mates from extended twin-family and classical twin designs. Twin 
Res Hum Genet 8(3):214–223

de Vlaming R, Okbay A, Rietveld CA et al (2017) Meta-GWAS accu-
racy and power (MetaGAP) calculator shows that hiding herit-
ability is partially due to imperfect genetic correlations across 
studies. PLoS Genet 13(1):e1006495

Eaves LJ, Pourcain BS, Smith GD, York TP, Evans DM (2014) Resolv-
ing the effects of maternal and offspring genotype on dyadic 
outcomes in genome wide complex trait analysis (“M-GCTA”). 
Behav Genet 44(5):445–455

Evans LM, Tahmasbi R, Vrieze SI et al (2018) Comparison of methods 
that use whole genome data to estimate the heritability and genetic 
architecture of complex traits. Nat Genet 50(5):737–745

Ganna A, Satterstrom FK, Zekavat SM et al (2018) Quantifying the 
impact of rare and ultra-rare coding variation across the pheno-
typic spectrum. Am J Hum Genet 102(6):1204–1211

Haworth S, Mitchell R, Corbin L, Wade KH, Dudding T, Budu-Aggrey 
A, Carslake D, Hemani G, Paternoster L, Smith GD, Davies N 
(2019) Apparent latent structure within the UK Biobank sam-
ple has implications for epidemiological analysis. Nat Commun 
10(1):333

Hettema JM, Neale MC, Myers JM, Prescott CA, Kendler KS (2006) A 
population-based twin study of the relationship between neuroti-
cism and internalizing disorders. Am J Psychiatry 163(5):857–864

Hill WD, Arslan RC, Xia C et al (2018) Genomic analysis of family 
data reveals additional genetic effects on intelligence and person-
ality. Mol Psychiatry 23(12):2347

Hugh-Jones D, Verweij KJ, Pourcain BS, Abdellaoui A (2016) Assor-
tative mating on educational attainment leads to genetic spousal 
resemblance for polygenic scores. Intelligence 59:103–108

Keller MC, Medland SE, Duncan LE, Hatemi PK, Neale MC, Maes 
HH, Eaves LJ (2009) Modeling extended twin family data 
I: description of the Cascade model. Twin Res Hum Genet 
12(1):8–18

KING KING: Relationship Inference Software [Online]. Available at: 
http://peopl​e.virgi​nia.edu/~wc9c/KING/

Knopik VS, Neiderhiser JM, DeFries JC, Plomin R (eds) (2017) Behav-
ioral genetics, 7th edn. Worth, New York

Kong A, Thorleifsson G, Frigge ML, Vilhjalmsson BJ, Young AI, 
Thorgeirsson TE, Benonisdottir S, Oddsson A, Halldorsson BV, 
Masson G, Gudbjartsson DF (2018) The nature of nurture: effects 
of parental genotypes. Science 359(6374):424–428

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://people.virginia.edu/%7ewc9c/KING/


93Behavior Genetics (2020) 50:84–93	

1 3

Laurin CA, Hottenga J-J, Willemsen G, Boomsma DI, Lubke GH 
(2015) Genetic analyses benefit from using less heterogeneous 
phenotypes: an illustration with the hospital anxiety and depres-
sion scale (HADS). Genet Epidemiol 39(4):317–324

Lee SH, Weerasinghe WMSP, Wray NR, Goddard ME, van der Werf 
JHJ (2017) Using information of relatives in genomic prediction 
to apply effective stratified medicine. Sci Rep 7:42091

Lee JJ, Wedow R, Okbay A et al (2018) Gene discovery and polygenic 
prediction from a genome-wide association study of educational 
attainment in 11 million individuals. Nat Genet 50(8):1112–1121

Luciano M, Hagenaars SP, Davies G et al (2018) Association analysis 
in over 329,000 individuals identifies 116 independent variants 
influencing neuroticism. Nat Genet 50(1):6–11

Mackenbach JP, Stirbu I, Roskam A-JR et al (2008) Socioeconomic 
inequalities in health in 22 European countries. N Engl J Med 
358(23):2468–2481

McAdams TA, Hannigan LJ, Eilertsen EM, Gjerde LC, Ystrom E, Rijs-
dijk FV (2018) Revisiting the children-of-twins design: improving 
existing models for the exploration of intergenerational associa-
tions. Behav Genet 48(5):397–412

Nagel M, Jansen PR, Stringer S et al (2018) Meta-analysis of genome-
wide association studies for neuroticism in 449,484 indi-
viduals identifies novel genetic loci and pathways. Nat Genet 
50(7):920–927

Nivard MG, Middeldorp CM, Dolan CV, Boomsma DI (2015) Genetic 
and environmental stability of neuroticism from adolescence to 
adulthood. Twin Res Hum Genet 18(6):746–754

Ormel J, Jeronimus BF, Kotov R et al (2013) Neuroticism and common 
mental disorders: meaning and utility of a complex relationship. 
Clin Psychol Rev 33(5):686–697

Peyrot WJ, Robinson MR, Penninx BW, Wray NR (2016) Exploring 
boundaries for the genetic consequences of assortative mating for 
psychiatric traits. JAMA Psychiatry 73(11):1189–1195

Polderman TJC, Benyamin B, de Leeuw CA et al (2015) Meta-analysis 
of the heritability of human traits based on fifty years of twin stud-
ies. Nat Genet 47(7):702–709

Robinson MR, Kleinman A, Graff M et al (2017) Genetic evidence of 
assortative mating in humans. Nat Hum Behav 1(1):0016

Smith BH, Campbell H, Blackwood D et al (2006) Generation Scot-
land: the Scottish Family Health Study; a new resource for 
researching genes and heritability. BMC Med Genet 7:74

Smith DJ, Nicholl BI, Cullen B et al (2013) Prevalence and character-
istics of probable major depression and bipolar disorder within 
UK biobank: cross-sectional study of 172,751 participants. PLoS 
ONE 8(11):e75362

Smith DJ, Escott-Price V, Davies G et al (2016) Genome-wide analysis 
of over 106 000 individuals identifies 9 neuroticism-associated 
loci. Mol Psychiatry 21(6):749–757

van den Berg SM, de Moor MHM, McGue M et al (2014) Harmoniza-
tion of neuroticism and extraversion phenotypes across inventories 
and cohorts in the genetics of personality consortium: an applica-
tion of item response theory. Behav Genet 44(4):295–313

van der Sluis S, Verhage M, Posthuma D, Dolan CV (2010) Phenotypic 
complexity, measurement bias, and poor phenotypic resolution 
contribute to the missing heritability problem in genetic associa-
tion studies. PLoS ONE 5(11):e13929

Vinkhuyzen AA, Van Der Sluis S, Maes HH, Posthuma D (2012) 
Reconsidering the heritability of intelligence in adulthood: taking 
assortative mating and cultural transmission into account. Behav 
Genet 42(2):187–198

Visscher PM, Medland SE, Ferreira MAR et al (2006) Assumption-free 
estimation of heritability from genome-wide identity-by-descent 
sharing between full siblings. PLoS Genet 2(3):e41

Wainschtein P, Jain DP, Yengo L et al (2019) Recovery of trait herit-
ability from whole genome sequence data. BioRxiv. https​://doi.
org/10.1101/58802​0

Xia C, Amador C, Huffman J et al (2016) Pedigree- and SNP-associ-
ated genetics and recent environment are the major contributors to 
anthropometric and cardiometabolic trait variation. PLoS Genet 
12(2):e1005804

Yang J, Benyamin B, McEvoy BP et al (2010) Common SNPs explain 
a large proportion of the heritability for human height. Nat Genet 
42(7):565–569

Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool 
for genome-wide complex trait analysis. Am J Hum Genet 
88(1):76–82

Yengo L, Robinson MR, Keller MC et al (2018) Imprint of assortative 
mating on the human genome. Nat Hum Behav 2(12):948–954

Young AI (2019) Solving the missing heritability problem. PLoS Genet 
15(6):e1008222

Young AI, Frigge ML, Gudbjartsson DF et al (2018) Relatedness dise-
quilibrium regression estimates heritability without environmental 
bias. Nat Genet 50(9):1304–1310

Zaitlen N, Kraft P, Patterson N et al (2013) Using extended geneal-
ogy to estimate components of heritability for 23 quantitative and 
dichotomous traits. PLoS Genet 9(5):e1003520

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1101/588020
https://doi.org/10.1101/588020

	Familial Influences on Neuroticism and Education in the UK Biobank
	Abstract
	Introduction
	Methods
	Sample
	Genotyping
	Measures
	Analyses
	Identification of family members
	Kin-based SNP heritability method accounting for environmental similarity: GREML-KIN
	GREML-LDMS-I to investigate the effects of less common variants
	Sample independence
	Software


	Results
	Identification of family members
	Kin-based SNP heritability method accounting for environmental similarity: GREML-KIN
	GREML-LDMS-I to investigate the effects of less common variants

	Discussion
	Acknowledgements 
	References




