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Melatonin alleviates intervertebral disc degeneration by
disrupting the IL-1β/NF-κB-NLRP3 inflammasome positive
feedback loop
Fan Chen1, Guowei Jiang1, Hui Liu1, Zemin Li1, Yuxin Pei2, Hua Wang1, Hehai Pan1, Haowen Cui1, Jun Long1, Jianru Wang1 and
Zhaomin Zheng1,3

The inflammatory response is induced by the overexpression of inflammatory cytokines, mainly interleukin (IL)-1β, and is one of the
main causes of intervertebral disc degeneration (IVDD). NLR pyrin domain containing 3 (NLRP3) inflammasome activation is an
important source of IL-1β. As an anti-inflammatory neuroendocrine hormone, melatonin plays various roles in different
pathophysiological conditions. However, its roles in IVDD are still not well understood and require more examination. First, we
demonstrated that melatonin delayed the progression of IVDD and relieved IVDD-related low back pain in a rat needle puncture
IVDD model; moreover, NLRP3 inflammasome activation (NLRP3, p20, and IL-1β levels) was significantly upregulated in severely
degenerated human discs and a rat IVDD model. Subsequently, an IL-1β/NF-κB-NLRP3 inflammasome activation positive feedback
loop was found in nucleus pulposus (NP) cells that were treated with IL-1β. In these cells, expression of NLRP3 and p20 was
significantly increased, NF-κB signaling was involved in this regulation, and mitochondrial reactive oxygen species (mtROS)
production increased. Furthermore, we found that melatonin disrupted the IL-1β/NF-κB-NLRP3 inflammasome activation positive
feedback loop in vitro and in vivo. Melatonin treatment decreased NLRP3, p20, and IL-1β levels by inhibiting NF-κB signaling and
downregulating mtROS production. Finally, we showed that melatonin mediated the disruption of the positive feedback loop of IL-
1β in vivo. In this study, we showed for the first time that IL-1β promotes its own expression by upregulating NLRP3 inflammasome
activation. Furthermore, melatonin disrupts the IL-1β positive feedback loop and may be a potential therapeutic agent for IVDD.
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INTRODUCTION
Low back pain (LBP), one of the most common health problems, is
a leading cause of disability worldwide and results in an enormous
global burden to public health and the social economy, and ~84%
of people experience LBP some point in their lifetime.1–6 LBP is a
multifactorial disease,7 and the disorder is strongly associated with
intervertebral disc degeneration (IVDD), which is characterized by
a homeostatic imbalance between anabolism and catabolism,
including extracellular matrix (ECM) degradation8,9 or nucleus
pulposus (NP) cell survival.10–12 The intervertebral disc (IVD) is a
special organ that consists of an outer fibrocartilaginous annulus
fibrosus (AF) and an inner gel-like NP.13,14 Inflammatory responses,
which are induced by inflammatory cytokine overexpression, are a
primary and important cause of IVDD. Recent studies have
demonstrated that inflammatory cytokines, including tumor
necrosis factor (TNF)-α and interleukin (IL)-1β, are strongly
correlated with ECM degradation or NP cell survival.15,16 Therefore,
a more profound understanding of the molecular mechanisms
underlying inflammatory cytokine secretion might provide new
therapeutic targets for IVDD.
The NLR pyrin domain containing 3 (NLRP3) inflammasome, a

primary and crucial source of the highly inflammatory cytokines

IL-1β and IL-18, is a canonical multimeric inflammasome complex
that is composed of the adaptor apoptosis-associated speck-like
protein containing a CARD (ASC) and the effector pro-caspase-1.17,18

When exposed to exogenous or endogenous stimuli, the NLRP3
inflammasome becomes activated and drives caspase-1 activation,
which results in the cleavage and maturation of IL-1β and IL-18.19

Dysregulated NLRP3 inflammasome activation is involved in diverse
diseases, including neurodegenerative diseases,20,21 osteoarthritis,22

cancer,23,24 and inflammatory diseases.25,26 Few studies have
investigated the relationship between NLRP3 inflammasome activa-
tion and IVDD. However, numerous studies have confirmed that IL-
1β is an important cause of IVDD,16,27 and so we hypothesized that
the NLRP3 inflammasome activation/IL-1β inflammatory response
axis may play an important role in IVDD progression and that
eliminating stimuli that activate the NLRP3 inflammasome may
alleviate this progression.
Melatonin (N-acetyl-5-methoxytryptamine), which is synthe-

sized by the pineal gland and many other organs, is a
neuroendocrine hormone28,29 that is involved in a wide range
of physiological functions, including anti-inflammatory,30,31 anti-
degenerative,32,33 antioxidant,34,35 immunomodulatory,36,37 circa-
dian rhythm regulation,38 and cancer prevention activities.39–42
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Notably, recent studies have demonstrated that melatonin
attenuates the inflammatory response by inhibiting NLRP3
inflammasome activation during the progression of atherosclero-
sis43 and brain,44 liver45 and lung diseases.46 Moreover, melatonin
plays crucial roles in the IVDD process, including regulating NP
cell proliferation, remodeling the ECM,47 protecting vertebral
endplate chondrocytes against apoptosis and calcification,48 and
preventing oxidative stress-induced NP cell apoptosis,49 indicat-
ing a strong correlation between melatonin and IVDD. Although
these published studies have indicated that melatonin partici-
pates in the IVDD process by regulating NLRP3 inflammasome
activation in NP cells, this hypothesis has not been experimentally
examined.
Based on these observations, the objective of this study was to

explore the molecular mechanisms underlying a novel activation
model of the NLRP3 inflammasome in IVDD. We also aimed to
investigate whether exogenous melatonin administration pre-
vents IVDD by regulating NLRP3 inflammasome activation in vitro
and in vivo.

RESULTS
Melatonin ameliorates the progression of IVDD and LBP in vivo
First, we established a rat IVDD model to determine whether
melatonin exerts a protective effect during the progression of
IVDD in vivo. Melatonin was intraperitoneally injected into rats
with AF puncture-induced IVDD. MRI images were obtained 4 or
8 weeks post operation, and the IVDs from the rats treated with
melatonin displayed a significantly higher signal intensity than
those without melatonin treatment (Fig. 1b, c). Histologically,
hematoxylin and eosin (H&E) and Safranin-O staining showed
that the amounts of gelatinous NP tissue and the disc height in
the melatonin-treated rats were larger than those in the AF
puncture rats, while the histologic score of the AF puncture rats
was higher than that of the melatonin-treated rats (Fig. 1d, e).
IHC results showed that the expression of Aggrecan and
Collagen II was decreased significantly in the AF puncture
group, and the levels of Aggrecan and Collagen II were
increased in rats that were treated with melatonin (Fig. 1f, g).
Subsequently, the behavioral study results showed that mela-
tonin significantly decreased mechanical hyperalgesia and
thermal hyperalgesia compared to those of the AF puncture
group (Fig. 1h). Therefore, these results indicated that melatonin
alleviates the progression of IVDD and LBP.

Melatonin alleviates IVDD by inhibiting NLRP3 inflammasome
priming and activation in vivo
Next, we further investigated the correlation between NLRP3
inflammasome priming and activation and IVDD in vivo. First,
human discs with different grades of degeneration are shown as
representative MRI images in Fig. 2a (grades I–V). H&E staining
showed that the number of NP cells was decreased in severely
degenerated human discs (Fig. 2b). Moreover, the expression of
NLRP3, p20, and IL-1β was increased in severely degenerated
human discs compared with that in mildly degenerative human
discs, as shown by IHC staining (Fig. 2c, d). Furthermore, the
expression of NLRP3, p20, and IL-1β was increased in the IVDD rat
model group compared with that of the control group, and
melatonin administration reduced NLRP3, p20, and IL-1β expression
in the IVDD rat model (Fig. 2e, f). Then, to examine the mechanism
by which melatonin alleviates the progression of IVDD, we examined
Aggrecan and Collagen II levels in the rat model. The expression of
Aggrecan and Collagen II was significantly decreased in the AF
puncture with melatonin and LPS groups (Fig. 2g, h). These results
demonstrated that NLRP3 inflammasome priming and activation
were involved in the process of IVDD and that melatonin alleviated
IVDD by inhibiting NLRP3 inflammasome priming and activation
in vivo.

Melatonin suppresses NLRP3 inflammasome priming and
activation in vitro
First, we elucidated the effect by which melatonin affects NP cell
viability. Compared with the cytotoxicity in the control group,
the groups treated with melatonin at concentrations below
4 mM for either 24 or 48 h did not show any obvious cytotoxic
effects (Fig. 3a, b). Subsequently, while investigating the effect
of melatonin on NLRP3 inflammasome priming and activation in
NP cells, we found that NLRP3 and p20 expression were
decreased in NP cells treated with different melatonin doses,
with the lowest measured levels occurring at a dose of 1 mM
(Fig. 3c, d). Furthermore, the expression levels of NLRP3 and
p20 started to decrease in NP cells treated with melatonin for
different lengths of time and were significantly reduced at 24 h
(Fig. 3e, f). The RT-qPCR results for NLRP3 were in agreement
with the western blot analysis results (Fig. 3g, h). Furthermore, IF
analysis also showed that melatonin suppressed NLRP3 inflam-
masome activation in NP cells (Fig. 3i). These results showed that
melatonin suppresses NLRP3 inflammasome activation in vitro.

IL-1β induces NLRP3 inflammasome priming and activation
in vitro
Then, we investigated whether NLRP3 inflammasome priming and
activation were induced in an IVDD cell model. As described in
previous studies, IL-1β and TNF-α are classical cytokines that are
used to establish an IVDD cell model. IL-1β is also produced by
NLRP3 inflammasome activation. LPS is a classical stimulator of the
NLRP3 inflammasome. Therefore, we selected IL-1β, TNF-α, and LPS
to stimulate NP cells. First, NLRP3 and p20 expression was
significantly increased in NP cells treated with IL-1β or LPS but only
slightly increased in NP cells treated with TNF-α (Fig. 4a, b).
Furthermore, the levels of NLRP3 and p20 gradually increased in NP
cells treated with different doses of IL-1β and peaked at a dose of
50 ng·mL−1 (Fig. 4c, d). After IL-1β treatment for different lengths of
time, the expression of NLRP3 and p20 started to increase at 12 h
and exhibited an obvious increase at 24 h (Fig. 4e, f). The RT-qPCR
results for NLRP3 expression were in agreement with the western
blot analysis results (Fig. 4g–i). In addition, IF staining also showed
that IL-1β treatment increased NLRP3 expression in NP cells (Fig. 4j).
These results suggest that IL-1β enhances NLRP3 inflammasome
activation in vitro.

IL-1β upregulates NLRP3 inflammasome priming and activation by
increasing NF-κB signaling and mtROS production in vitro
To examine the molecular mechanism by which IL-1β upregu-
lates NLRP3 inflammasome priming and activation, we detected
NF-κB signaling and mitochondrial reactive oxygen species
(mtROS) production in NP cells. Previous studies have demon-
strated that IL-1β is strongly associated with the NF-κB signaling
pathway.50,51 In this study, we found that IL-1β activated the NF-
κB signaling pathway in NP cells (Fig. S1). Subsequently, to test
the role of NF-κB signaling in NLRP3 inflammasome priming in
IL-1β-treated NP cells, a silencing experiment was performed.
Pretreatment with SM7368 (a specific inhibitor of the NF-κB
signaling pathway) or SM7368 plus IL-1β significantly decreased
NLRP3 levels in NP cells compared with those of untreated NP
cells (Fig. 5a–c).
As previously described, mtROS production plays an important

role in NLRP3 inflammasome activation.52,53 Therefore, we examined
whether mtROS production was involved in NLRP3 inflammasome
activation in IL-1β-treated NP cells. We first detected that SOD2
expression was significantly decreased in the IL-1β treatment group
compared with that of the control group, as measured by western
blot and RT-qPCR analyses (Fig. 5d–e). MitoSOX Red staining
indicated that mtROS production was significantly upregulated in IL-
1β-treated NP cells (Fig. 5g, h). Taken together, these results
confirmed that an IL-1β/NF-κB-NLRP3 inflammasome positive feed-
back loop is involved in the process of IVDD.

Melatonin suppresses the NLRP3 inflammasome in discs
F Chen et al.

2

Bone Research            (2020) 8:10 



Melatonin disrupts the IL-1β-NLRP3 inflammasome positive
feedback loop in vitro
The preceding results indicated that melatonin suppresses
NLRP3 inflammasome priming and activation in NP cells.
Therefore, we determined whether melatonin reduces the

inflammatory response by disrupting the IL-1β-NLRP3 inflam-
masome positive feedback loop in NP cells. First, western blot
analysis showed that melatonin obviously attenuated the IL-
1β-induced increase in NLRP3, pro-IL-1β, and p20, while
MCC950 (a specific inhibitor of NLRP3 inflammasome
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activation) did not change the IL-1β-induced upregulation of
NLRP3 and pro-IL-1β. In addition, a considerable decrease in p20
levels was observed in NP cells treated with melatonin plus IL-1β
(Fig. 6a, b). The RT-qPCR and western blot analysis results of NLRP3
and pro-IL-1β are shown in Fig. 6c, d. In addition, IF staining also
confirmed that melatonin significantly attenuated IL-1β-induced
NLRP3 inflammasome activation (Fig. 6e). These data confirmed
that melatonin effectively disrupted the IL-1β-NLRP3 inflamma-
some positive feedback loop in vitro.

Melatonin disrupts the IL-1β-NLRP3 inflammasome positive
feedback loop by downregulating NF-κB signaling and mtROS
production
We next assessed the underlying mechanism by which melatonin
disrupts the IL-1β-NLRP3 inflammasome positive feedback loop.
First, we demonstrated that melatonin significantly suppressed
NF-κB signaling activation (Fig. S2). Subsequently, an siRNA
targeting P65 (si-P65) was established and verified in NP cells
(Fig. S3). Consistently, the NLRP3 level significantly decreased
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when these cells were transfected with si-P65, and melatonin or
si-P65 obviously inhibited the IL-1β-induced increase in NLRP3
expression (Fig. 7a–c). Furthermore, IF staining also revealed
that si-P65 attenuated NLRP3 expression in NP cells treated
with si-P65 plus IL-1β (Fig. 7d, e). In addition, melatonin
prevented the IL-1β-induced decrease in SOD2 expression in NP
cells (Fig. 7f–h). MitoSOX Red staining showed that mtROS
production was significantly reduced in NP cells of the
melatonin plus IL-1β treatment groups (Fig. 7i, j). Therefore,
these results confirmed that melatonin disrupted the IL-1β
positive feedback loop by suppressing NF-κB signaling and
mtROS production in vitro.

Melatonin disrupts the IL-1β/NF-κB-NLRP3 inflammasome positive
feedback loop in vivo
IHC staining showed that, in human samples, p-P65 expression
was higher in severely degenerated discs than in mildly
degenerated discs, while SOD2 expression was reduced (Fig. 8a,
b). Furthermore, the percentage of p-P65-positive cells decreased
significantly, while the percentage of SOD2-positive cells
increased in melatonin plus AF puncture rats compared with
those of AF puncture rats (Fig. 8c, d). These results confirmed that
melatonin suppresses the inflammatory response by disrupting
the IL-1β/NF-κB-NLRP3 inflammasome positive feedback loop
in vitro and in vivo. In conclusion, these results indicated that
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melatonin disrupts the IL-1β positive feedback loop by suppres-
sing NF-κB signaling and mtROS production and attenuating the
progression of IVDD, as illustrated in the proposed schematic
representation of melatonin-mediated IVDD in vivo and in vitro
(Fig. 8e).

DISCUSSION
Melatonin is known to have multiple effects, including antioxidant,
anti-inflammatory, and antiapoptotic impacts, in different sys-
tems.28,29 A recent study showed that melatonin downregulates
the gene expression of cyclin D1, PCNA, matrix metallopeptidase
(MMP)-3, and MMP-9 and upregulates the gene expression of
collagen type II alpha 1 chain and aggrecan in NP cells.47 Our

results were consistent with previous data and showed that the
application of melatonin in an IVDD model alleviated the
progression of IVDD and LBP. However, whether NLRP3 inflamma-
some priming and activation are involved in this process is still
unknown. Thus, we evaluated the markers of NLRP3 inflammasome
priming and activation and found that in the IVDD group, the
expression of NLRP3, P20, and IL-1β was elevated, indicating
the priming and activation of the NLRP3 inflammasome. Further-
more, LPS, which is a proven NLRP3 inflammasome activator,
abrogated the effect of melatonin on IVDD, indicating that
melatonin acts by inhibiting NLRP3 inflammasome priming and
activation. Data from human disc samples also showed that in the
degenerative disc, NLRP3 inflammasome priming and activation
marker expression were significantly increased, which gives us
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more confidence that the NLRP3 inflammasome plays an
important role in IVDD.
One of the main causes of IVDD is an abnormal inflammatory

response, which is induced by the overexpression of inflammatory
cytokines, mainly IL-1β, causing NP cell apoptosis, downregulating
matrix gene expression or upregulating the expression of
collagen- and aggrecan-cleaving enzymes. For the first time, our
study showed that IL-1β promotes its own expression by
upregulating NLRP3 inflammasome activation. Furthermore, mel-
atonin, an anti-inflammatory molecule, disrupts the IL-1β positive
feedback loop by suppressing the NF-κB signaling pathway and
decreasing mtROS production.
First, we found that IL-1β induced NLRP3 inflammasome

priming and activation and thus promoted its own overexpres-
sion. IL-1β has been widely studied in IVDD due to its catabolic
effect. Le Maitre et al. reported that IL-1β is synthesized by native
disc cells and that treating human disc cells with IL-1β induces an
imbalance between catabolism and anabolism.27 These responses
represent the changes observed during IVDD. Hence, these
findings provide a potential strategy for biological therapy by

inhibiting IL-1β to prevent and reverse IVDD. Thus, it is essential to
study the expression and regulatory mechanism of IL-1β in IVDD.
We first found that in degenerated human NP tissue, the
expression of NLRP3, p20, and IL-1β was elevated. The NLRP3
inflammasome has been reported to be activated by LPS or
hyperosmotic stress in different systems. Dolunay et al. showed
that the inhibition of NLRP3/ASC/pro-caspase-1 inflammasome
formation and activity prevents LPS-induced inflammatory hyper-
algesia in mice.54,55 However, whether IL-1β activates the NLRP3
inflammasome has seldom been studied. In this study, we showed
for the first time that in NP cells, IL-1β treatment activated the
NLRP3 inflammasome in time- and dose-dependent manners. In
addition, IL-1β treatment had an effect similar to that of LPS
treatment in upregulating NLRP3 and p20 expression. Interestingly,
according to previous studies, the NLRP3 inflammasome is a
component of the innate immune system that processes pro-IL-1β
into a mature cytokine.17–19 Recently, Tang et al. reported that
honokiol suppresses activation of the TXNIP-NLRP3 inflammasome
in H2O2-stimulated NP cells, thereby inhibiting the activation of
downstream inflammatory mediators such as IL-1β.56 Therefore, it
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is reasonable that IL-1β promotes its own expression through
NLRP3 inflammasome activation, forming a positive feedback loop.
Furthermore, we studied the mechanism by which IL-1β

induces NLRP3 inflammasome priming and activation. Our
previous studies showed that in NP cells, IL-1β activates NF-κB
signaling through p65 phosphorylation.51 There are some studies
concerning NLRP3 inflammasome regulation, and various path-
ways, including the Smad, NFAT, NF-κB, and MAP kinase pathways,
regulate NLRP3 expression.57,58 Yu et al. showed that hepatitis B e
antigen suppresses LPS-induced NLRP3 inflammasome activation
and IL-1β production by repressing NLRP3 and pro-IL-1β expres-
sion through inhibition of NF-κB phosphorylation and by
repressing caspase-1 activation and IL-1β maturation through

inhibition of ROS production.59 Budai et al. also reported that LPS
induces NLRP3 inflammasome regulation through the NF-κB, p38,
JNK, and ERK signaling pathways.60 In this study, we found that IL-
1β induced NLRP3 expression through NF-κB activation. This
conclusion was determined by the application of SM7368, a
specific NF-κB pathway inhibitor. mtROS are the main activators of
the NLRP3 inflammasome;52,53 thus, it is important to know
whether IL-1β regulates mtROS production. According to our
MitoSOX Red staining and western blotting results, IL-1β
treatment reduced SOD2 expression and induced mtROS produc-
tion in NP cells. In conclusion, our results indicated that in NP cells,
IL-1β activates the NLRP3 inflammasome through NF-κB signaling
activation and mtROS production.
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Furthermore, we found that melatonin disrupted the IL-1β
positive feedback loop and studied the mechanism of this
disruption. Melatonin has also been reported to suppress NLRP3
inflammasome activation and IL-1β expression. Dong et al. showed
that melatonin attenuates NLRP3, ASC, cleaved caspase-1, IL-1β,
and IL-6 expression.44 Consistent with previous reports, our data
showed that melatonin suppressed NF-κB signaling activation and
reduced mtROS production to inhibit NLRP3 inflammasome
activation and IL-1β expression. We confirmed these results by
applying p65 siRNA and MCC950 (a specific inhibitor of NLRP3
inflammasome activation). Furthermore, we confirmed our dis-
covery in vivo. Our data showed that in this IVDD model, p-p65
expression was decreased and SOD2 expression was increased after

melatonin treatment, indicating that melatonin exerted anti-
inflammatory effects via the NF-κB-NLRP3 inflammasome-IL-1β axis.
There were several limitations to this study. First, the number of

human IVD tissue samples was relatively small due to the difficulty
associated with acquiring grade I/II discs in clinical practice.
Second, the detailed mechanisms by which melatonin suppresses
NF-κB signaling and mtROS production were not addressed and
might be elucidated in future studies.
In conclusion, we found for the first time that IL-1β forms a

positive feedback loop through NLRP3 inflammasome activation in
IVDD and that melatonin disrupts this vicious cycle by suppressing
NF-κB signaling activation and mtROS production. Our research
showed a new mechanism by which IL-1β promotes the
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inflammatory response in IVDD, and melatonin may be used as a
therapeutic agent for the treatment of inflammatory cytokine-
related IVDD.

MATERIALS AND METHODS
Collection of human IVDs
Before tissue collection, each patient signed an informed consent
form, and the Medical Ethics Committee of The First Affiliated
Hospital of Sun Yat-sen University (no: [2017] 203) approved this
study. All studies in this paper were performed according to The
Code of Ethics of the World Medical Association (Declaration of

Helsinki).61 Between March 2016 and April 2018, we collected 25
disc samples (detailed information about the specimens is in Table 1)
from patients (male: female, 13: 12). The degree of disc
degeneration was evaluated by Pfirrmann classification. Normal
discs were obtained from patients with trauma and deformity, and
degenerated discs were obtained from patients with degenerative
spinal diseases (disc herniation, spinal canal stenosis, and
degenerative scoliosis).

Cell culture and cell viability assay
As previously described,62 NP cells were isolated and cultured in
DMEM (Invitrogen, CA, USA) containing 10% fetal bovine serum
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(Invitrogen, CA) and penicillin/streptomycin (Invitrogen, CA) at
37 °C in a humidified incubator with 5% CO2. We harvested NP
cells using solutions containing trypsin (0.25%) and EDTA (1 mM)
(Invitrogen, CA) and subcultured the cells in 10 cm dishes. NP cells
were seeded in six-well plates, grown to ~80% confluence and
treated with melatonin (1 mmol·L−1, M5250, Sigma-Aldrich, USA),
MCC950 (10 nmol·L−1, Selleck, a specific inhibitor of NLRP3
inflammasome activation), lipopolysaccharide (LPS, 200 ng·mL−1,
L2880, Sigma-Aldrich, USA), TNF-α (100 ng·mL−1, 210-TA-020, R&D
Systems, USA), or IL-1β (50 ng·mL−1, 201-LB-005, R&D Systems,
USA) for 24 h for subsequent experiments. The cytotoxic effect of
melatonin on NP cells was detected using a cell counting kit
(CCK)-8 assay (Dojindo Laboratories, Kumamoto, Japan) according
to the manufacturer’s instructions.

Small interfering RNA (siRNA) transfection
Rat NP cells were seeded at 5 × 106 per well in a six-well plate and
transfected with negative control or siRNA targeting P65 (RiboBio,
Guangzhou, Guangdong, China) when the cells reached 60%–70%
confluence. The sequences for the P65-specific siRNAs were as
follows: 1: GCTGCAGTTTGATGATGAA, 2: GCCCTATCCCTTTACGTCA,
and 3: GGACATATGAGACCTTCAA (10 nmol·L−1). Then, we used
250 μL of serum-free optical-MEM (Invitrogen, CA, USA) to
individually dissolve 5 µL of siRNA or 10 μL of Lipofectamine
3000 (Invitrogen, CA, USA). After mixing them together, the
mixture was added to the cells. After treatment, the cells were
harvested for protein/RNA extraction.

Western blot analysis
The proteins of treated NP cells were extracted and electrophor-
etically separated via 10% or 15% SDS-PAGE, as previously

described.63 Subsequently, the membranes were blocked with
3% bovine serum albumin and incubated with primary antibodies.
The primary antibodies included anti-pro-IL-1β (1:1 000, 12703,
Cell Signaling Technology), anti-IL-1β (1:1 000, ab8320, Abcam),
anti-phospho-P65 (1:1 000, 3033, Cell Signaling Technology), anti-
P65 (1:1 000, 8242, Cell Signaling Technology), anti-phospho-Erk1/
2 (1:1 000, 4370, Cell Signaling Technology), anti-Erk1/2 (1:1 000,
4695, Cell Signaling Technology), anti-phospho-P38 (1:1 000, 4511,
Cell Signaling Technology), anti-P38 (1:1 000, 8690, Cell Signaling
Technology), anti-NLRP3 (1:1 000, AG-20B-0014, AdipoGen), anti-
cleaved Caspase-1 (p20) (1:1 000, AG-20B-0042, AdipoGen), anti-
ASC (1:1 000, AG-25B-0006-C100, AdipoGen), anti-Caspase-1 (1:
1 000, ab1872, Abcam), anti-superoxide dismutase 2 (SOD2) (1:
1 000, 13141, Cell Signaling Technology), and anti-β-actin (1:3 000,
4970, Cell Signaling Technology). After washing with PBS, the
membranes were incubated with the following secondary
antibodies: anti-rabbit IgG (1:5 000, 7074, Cell Signaling Technol-
ogy) or anti-mouse IgG (1:5 000, 7076, Cell Signaling Technology).
Finally, the Western blot bands were detected using enhanced
chemiluminescence detection reagents (Invitrogen, CA, USA) and
quantified using ImageJ software (National Institutes of Health,
Bethesda, MD, USA).

Real-time quantitative polymerase chain reaction (RT-qPCR)
The isolation of total RNA from NP cells was performed using
RNAiso Plus (Takara, Japan). Complementary DNA synthesis was
performed using a Prime Script RT Master Mix kit (Takara)
according to the manufacturer’s instructions. SYBR green Premix
Ex Taq II (Takara) was used to detect the relative mRNA levels of
NLRP3, pro-IL-1β, SOD2, P65, and β-Actin, and the sequences of
the primer pairs are listed in Table 2 (Sangon Biotech, Shanghai,
China). RT-qPCR was performed on an ABI 7900HT Fast Real-Time
PCR System (Applied Biosystems) for 40 cycles and quantified
using the 2−ΔΔCt method.

MitoSOX Red and immunofluorescence (IF) staining
NP cells were treated as described, incubated with 2.0 mL of
5 μmol·L−1 MitoSOX Red reagent or fixed with 4% paraformalde-
hyde and then blocked with 5% normal goat serum. Subsequently,
the cells were incubated with anti-NLRP3 (1:200, ab4207, Abcam)
and anti-phospho-P65 (1:200, 3033, Cell Signaling Technology)
antibodies overnight, followed by incubation with Alexa Fluor-
488-conjugated anti-rabbit and anti-goat secondary antibodies
(Invitrogen, 1:2 000). Nuclear staining was performed using DAPI.
Finally, the cells were photographed under an Olympus BX63
microscope (Tokyo, Japan) at ×400 and ×1 000 magnifications.

Animal model and magnetic resonance imaging (MRI) evaluation
As previously described,64 the rats (weighing 200–250 g, n= 5 per
group) were divided into three groups: the blank group received

Table 1. Information of human disc samples from 25 patients

Human disc samples Sex Age Diagnosis Level Grade

1 M 17 y AIS T9/10 I

2 F 14 y AIS T7/8 I

3 M 16 y AIS T11/12 I

4 F 15 y AIS T11/12 II

5 M 18 y Trauma L1/2 II

6 F 19 y Trauma L3/4 II

7 F 23 y Disc herniation L3/4 II

8 F 31 y Disc herniation L4/5 III

9 M 29 y Disc herniation L2/3 III

10 M 34 y Disc herniation L3/4 III

11 F 42 y Disc herniation L4/5 III

12 F 36 y Disc herniation L4/5 III

13 M 27 y Disc herniation L4/5 III

14 M 30 y Disc herniation L2/3 IV

15 M 39 y Disc herniation L3/4 IV

16 M 47 y Disc herniation L2/3 IV

17 F 58 y Disc herniation L3/4 IV

18 F 67 y Disc herniation L3/4 IV

19 M 59 y Disc herniation L4/5 IV

20 F 69 y Disc herniation L3/4 V

21 M 63 y Disc herniation L4/5 V

22 M 83 y Disc herniation L3/4 V

23 F 68 y Disc herniation L3/4 V

24 M 74 y Disc herniation L2/3 V

25 F 78 y Disc herniation L3/4 V

AIS adolescent idiopathic scoliosis, M male, F female, y years

Table 2. Specific primers

Primers sequences

NLRP3 R 5′- ATCAACAGGCGAGACCTCTG-3′

NLRP3 F 5′- ATCAACAGGCGAGACCTCTG-3′

SOD2 R 5′- GCGTTGATGTGAGGTTCCAG-3′

SOD2 F 5′- GCTCCGGTTTTGGGGTATCTG-3′

P65 R 5′- GTTCACGGATGACCTCTTTGTTT-3′

P65 F 5′- GGGCTTGGAAATAGAGACATTGA-3′

IL-1β R 5′-CACACACTAGCAGGTCGTCA -3′

IL-1β F 5′-CCTATGTCTTGCCCGTGGAG -3′

β-Actin R 5′-GGATGGCTACGTACATGGCTG -3′

β-Actin F 5′-CATTGTCACCAACTGGGACGATA -3′
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no puncture and was intraperitoneally injected with 0.9% normal
saline; the other two groups underwent AF puncture surgery with
a 21-gauge needle inserted 3.0 mm into the L3/4 IVDs for 30 s. At 4
or 8 weeks post operation, MRI (T2-weighted images) signal
change examinations were performed on the rats (n= 5 per
group). In addition, the degree of disc degeneration was evaluated
by Pfirrmann classification.
Melatonin was diluted to 20mg·mL−1 with normal saline and

then intraperitoneally injected into the rats (30mg·kg−1 per week),
in addition to LPS (2mg·kg−1 per week), until the day of euthanasia.

Immunohistochemistry (IHC) and histopathological analysis
The specimens were embedded in paraffin and cut into 5 µm
sections. Subsequently, the sections were deparaffinized and
rehydrated, followed by H&E and Safranin-O staining or antigen
retrieval with 0.01mol·L−1 sodium citrate. The sections were blocked
with 3% hydrogen peroxide and 5% normal goat serum. Then, the
slides were incubated with the following primary antibodies: anti-
NLRP3 (1:200, AG-20B-0014, AdipoGen), anti-cleaved caspase-1 (p20)
(1:200, AG-20B-0042, AdipoGen), anti-IL-1β (1:200, ab8320, Abcam),
anti-SOD2 (1:1 000, 13141, Cell Signaling Technology), and anti-
phospho-P65 (1:200, 3033, Cell Signaling Technology). The sections
were incubated with a secondary antibody and then developed with
DAB solution. Hematoxylin was used for nuclear staining. Finally, the
sections were observed and imaged under an Olympus BX63
microscope at ×10, ×50, and ×400 magnifications, and the
percentages of NLRP3+, IL-1β+, p20+, SOD2+, and phospho-P65+

cells in the IVD samples were quantified using ImageJ software
(National Institutes of Health, Bethesda, MD, USA).65 The histologic
scores were assessed as previously described: normal disc, five;
moderately degenerated disc, 6–11; and severely degenerated disc,
12–14.66,67

Behavioral study
The rats were subjected to behavioral tests as described in our
previous study.63 Reflex reactions to both mechanical and harmful
thermal stimuli applied to both hind paws were measured in five
rats from each group within a week of surgery and every 2 weeks
during the following 10 weeks.

Statistical analysis
The differences among the groups were assessed by one-way
analysis of variance (ANOVA), which was performed using SPSS
software version 19.0 for Windows (IL, USA). If the ANOVA results
were statistically significant, the differences between the two
groups were examined by using Bonferroni’s post hoc test. The
data are presented as the mean ± SD. P values < 0.05 were
considered statistically significant.
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