Skip to main content
. 2020 Feb 18;10:2863. doi: 10.1038/s41598-020-59873-9

Table 6.

The 11 nonlinear trimodal regression analysis parameters were used to assess cardiovascular risks on subjects grouped by age through machine learning algorithms and evaluation metrics were computed.

Age [years] Algor. Acc. Mean [%] Acc. Max [%] Sens. [%] Spec. [%] Recall [%] Precision [%] AUCROC
CHD 66–75 GB 79.0 81.7 73.6 84.5 73.6 82.6 0.883
RF 87.5 90.2 83.7 91.3 83.7 90.5 0.953
ADA-B 84.3 89.3 79.5 89.2 79.5 88.0 0.920
76–83 GB 75.9 79.7 69.5 82.3 69.5 79.7 0.862
RF 85.3 87.4 82.9 87.7 82.9 87.1 0.930
ADA-B 77.0 82.3 71.0 83.0 71.0 80.7 0.836
84–98 GB 72.8 81.1 79.4 66.2 79.4 70.2 0.825
RF 82.0 86.2 86.3 77.7 86.3 79.4 0.908
ADA-B 71.3 81.0 81.0 61.7 81.0 61.7 0.769
CVD 66–75 GB 76.4 79.6 70.9 81.9 70.9 79.6 0.868
RF 85.4 88.0 81.7 89.1 81.7 88.2 0.937
ADA-B 78.3 82.1 73.6 83.1 73.6 81.3 0.858
76–83 GB 72.0 76.2 66.4 77.6 66.4 74.8 0.817
RF 80.6 82.4 78.5 81.9 78.5 82.7 0.890
ADA-B 66.1 73.2 61.1 71.2 61.1 68.0 0.725
84–98 GB 68.9 76.2 77.2 60.6 77.2 66.2 0.786
RF 78.0 88.9 83.7 72.4 83.7 75.2 0.875
ADA-B 62.9 67.6 64.3 61.5 64.3 62.5 0.659
CHF 66–75 GB 93.8 95.0 91.5 96.0 91.5 95.8 0.981
RF 97.9 99.2 97.5 98.4 97.5 98.4 0.998
ADA-B 97.5 98.7 96.2 98.8 96.2 98.8 0.997
76–83 GB 88.1 90.5 84.6 91.7 84.6 91.0 0.963
RF 96.0 97.0 94.7 97.4 94.7 97.3 0.995
ADA-B 94.2 96.4 92.2 96.1 92.2 95.9 0.986
84–98 GB 82.6 87.8 88.2 76.9 88.2 79.2 0.921
RF 92.6 96.4 92.8 92.4 92.8 92.4 0.981
ADA-B 89.9 93.5 92.5 87.2 92.5 87.9 0.964