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Abstract
Knowledge of the genetic architecture of importantly agronomical traits can speed up genetic improvement in cultivated rice
(Oryza sativa L.). Many recent investigations have leveraged genome-wide association studies (GWAS) to identify single
nucleotide polymorphisms (SNPs), associated with agronomic traits in various rice populations. The reported trait-relevant
SNPs appear to be arbitrarily distributed along the genome, including genic and nongenic regions. Whether the SNPs in
different genomic regions play different roles in trait heritability and which region is more responsible for phenotypic
variation remains opaque. We analyzed a natural rice population of 524 accessions with 3,616,597 SNPs to compare the
genetic contributions of functionally distinct genomic regions for five agronomic traits, i.e., yield, heading date, plant height,
grain length, and grain width. An analysis of heritability in the functionally partitioned rice genome showed that regulatory
or intergenic regions account for the most trait heritability. A close look at the trait-associated SNPs (TASs) indicated that
the majority of the TASs are located in nongenic regions, and the genetic effects of the TASs in nongenic regions are
generally greater than those in genic regions. We further compared the predictabilities using the genetic variants from genic
regions with those using nongenic regions. The results revealed that nongenic regions play a more important role than genic
regions in trait heritability in rice, which is consistent with findings in humans and maize. This conclusion not only offers
clues for basic research to disclose genetics behind these agronomic traits, but also provides a new perspective to facilitate
genomic selection in rice.

Introduction

It is crucial to dissect the genetic architecture of the com-
plex traits for understanding the relationship between DNA
and these traits and for benefiting genomic selection (GS) or

whole-genome prediction (WGP). Genome-wide associa-
tion study (GWAS) has been widely used for the identifi-
cation of single nucleotide polymorphisms (SNPs), or other
DNA markers, that are significantly associated with the
traits of interest. It is common in GWAS that each indivi-
dual trait-associated SNP (TAS) explains a very small
percent of the phenotypic variation, whereas the aggregate
of the effects of all associated SNPs can account for
15–45% trait variability (Manolio et al. 2009). The so-called
lost trait heritability is likely ascribed to a large number of
loci with small effects, many of which cannot be detected
with conventional statistical approaches. To consider the
loci with minor but nontrivial effects, the linear mixed
models (LMMs) with a polygenic effect have been pro-
posed to use the entire set of genomic markers, yielding
increased trait heritability in GWAS or improved trait pre-
dictability in WGP (VanRaden 2008; Yang et al. 2010). In
the LMMs, the genetic contributions, denoted by regression
coefficients, of all the markers are treated as random effects
and are assumed to follow the same distribution (Speed
et al. 2012; Yang et al. 2010). Recent studies in human and
crops have shown that trait-associated loci are enriched in
regulatory regions, compared with the protein-coding exon
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regions (Hindorff et al. 2009; Maurano et al. 2012; Schork
et al. 2013). Moreover, important genetic matter, such as
miRNAs and long noncoding RNAs (lncRNAs), was found
to be produced in the noncoding genomic regions, sug-
gesting a biological importance of nongenic regions in
genomes (Edwards et al. 2013). Maurano et al. (2012)
reported that about 93% of detected variants are located in
noncoding regions, and 57.1% of these nongenic variants
are positioned in DNaseI hypersensitivity sites (DHSs)—an
essential gene-regulatory region. This is in agreement with
other studies which also suggested that trait-associated loci
tend to cluster in gene-regulatory regions, including pro-
moter regions and transcriptional enhance elements (Hin-
dorff et al. 2009; Schork et al. 2013). The accumulation of
evidences suggested that regulatory regions in genomes
generally play a more important role in dictating the phe-
notypes than genic regions. To compare the roles of various
types of the genomic regions, analysis of heritability (ana-
logy to ANOVA) may be performed to compare the con-
tributions from these genomic partitions and allow for
distinct distributions when LMM is used to model DNA
makers in different genomic regions. For example, the
functional enrichment assay showed that DHS regions
account for the most heritability in human genomes (Gusev
et al. 2014). Similarly, a Maize study revealed that most
trait-associated variants lie in nongenic regions, which are
responsible for the regulations over gene expression (Li
et al. 2012). This has not been proved in rice genomes.

Rice is the most widely consumed staple food for a large
part of the world population (Huang et al. 2010); therefore,
understanding the roles of different parts of rice genomes
will advance our knowledge of the genetic architecture of
important traits and facilitate genetic improvement in
breeding. Rice is an ideal model for the analysis of herit-
ability in functional partitions of the genomes because of
the following reasons: (1) the size of rice genomes is rela-
tively small (~400 MB), (2) the high-quality reference
genome with functional annotations is available (Sasaki
2005), (3) millions of genomic markers can be genotyped
with cost-effective sequencing technology, (4) agronomic
traits have been accurately gauged by repeated measure-
ments in multiple projects, and (5) the major genetic
determinants of agronomic traits have already been char-
acterized (Huang et al. 2010, 2016, 2012; Yano et al. 2016).
This is the first analysis of heritability on rice genomes,
where we investigated five agronomic traits, i.e., yield
(YD), heading date (HD), plant height (PH), grain length
(GL), and grain width (GW), using a diverse population
including 524 lines with 3 million SNPs. The results of the
analysis of heritability based on all SNP markers showed
that nongenic regions consistently account for more genetic
variation in five traits than genic regions. Similar compar-
isons between nongenic regions and genic regions were also

performed by only using the SNPs identified by GWAS,
yielding the same conclusion as the analysis of heritability.
We also compared the predictions of traits using selected
SNPs from genic and nongenic regions, respectively, which
showed that nongenetic regions had better predictabilities than
genic regions. We conclude that DNA variants in nongenic
regions play a more important role than those in genic regions
in determining the agronomic traits of rice. Future in-depth
research in regulatory regions of rice genomes will uncover
the mysteries of genetics behind these traits and eventually
benefit genetic improvement in breeding.

Materials and methods

Rice population and sequencing data

In the study, we considered a diverse rice collection of 533
accessions, including 200 varieties from a core/minicore
collection of O. sativa L. in China (Zhang et al. 2011), 132
parental lines used in the international Rice Molecular
Breeding Program (Yu et al. 2003), 148 lines from a
minicore subset of the US Department of Agriculture rice
gene bank (Yan et al. 2009), 18 lines used for SNP dis-
covery in the OryzaSNP project (McNally et al. 2009), and
35 lines from the Rice Germplasm Center at the Interna-
tional Rice Research Institute, which represent landraces
and elite varieties. A total of 524 lines have been selected
for the study, since the record of their phenotype and
genetic variants is available. Five agnomically important
traits, i.e., YD, HD, PH, GL, and GW, were considered in
the study.

About 6.7 billion 90-bp paired-end reads have been
generated using the Illumina HiSeq 2000 platform (Chen
et al. 2014). Missing genotypes have been imputed using
the genotype data of another set of 950 rice lines from
Huang et al. (2012). Aligned with the rice reference genome
(Nipponbare, MSU version 6.1), a total of 6,551,358 high-
quality SNPs were obtained, with the minor alleles being
present in at least five accessions. To simplify the compu-
tation, the SNP markers with missing data were eliminated,
leaving a total of 3,616,597 SNPs in the analysis. The
SnpEff software developed by Cingolani et al. (2012) was
utilized for SNP annotation.

Genome partitioning and analysis of heritability

Following Speed et al's. study (Speed and Balding 2014), an
LMM is used to decompose the genetic variances for a trait,
i.e.,

y ¼ Xβ þ
XM

i
gi þ ε; ð1Þ
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where y is an n × 1 vector representing phenotypic values
with n equal to the sample size, β is the fixed effect, X is the
design matrix for fixed effects (such as locations, years,
etc.), gi represents the polygenic effect of ith genomic
partition type, and ε denotes the residuals which are
normally distributed, i.e., N(0,Iσ2), with I being the identity
matrix and σ2 being the variance of the residual. In this
study, we sorted the rice genomes into four types of
partitions, including regulatory regions, intron regions, exon
regions, and intergenic regions (M= 4 in Eq. (1)). Different
distributions are assumed for the polygenic effects in
different genomic partition types, i.e., gi � N 0;Kiϕ

2
i

� �
,

where Ki is the kinship matrix calculated using the SNPs in
the ith genomic partition type and ϕ2

i is the genetic variance
shared by the SNPs in this genomic partition type (Gusev
et al. 2014). The heritability from Eq. (1) is calculated as the
ratio of the sum of the total genetic variance to phenotypic
variance, i.e., h2 ¼PM¼4

i¼1 ϕ2
i =
P

i ϕ
2
i þ σ2

� �
. The restricted

maximum likelihood method may be used to estimate the
variance parameters ϕ2

1; ϕ
2
2; ϕ

2
3; ϕ

2
4, and σ2, which was

similar to our previous studies (Wei et al. 2018).
The LDAK software was used for the analysis of herit-

ability, including the estimation of genetic variance and
heritability for each genomic partition type and the calcu-
lation of standard errors for the estimated parameters (Speed
and Balding 2014). The enrichment score for each genomic
partition type was calculated as the ratio of the percentage
of the heritability explained by the SNPs in this type of
genomic partitions to the percentage of SNPs falling in this
partition type (the expected percentage of the heritability by
these SNPs). The z-statistic was adopted to test the sig-
nificance level of enrichment for each genomic partition
type based on Gusev et al. (2014). The z-statistic was cal-
culated as the difference between the percentage of h2gi and
the percentage of SNPs in the ith category divided by the
analytical standard error (SE).

In addition, a simulation-based test was applied to
evaluate the significance level of enrichment by contrasting
the observed likelihood ratio test (LRT) statistic with the
empirical NULL distribution of LRT for a calculation of a p
value. The observed LRT is calculated using the below
formula:

LRT ¼ �2 L0 bβ; bϕ2;bσ2� �
� L1 β; bϕ2

1;
bϕ2
2;
bϕ2
3;
bϕ2
4;bσ2� �� �

;

ð2Þ
where ϕ2 in the NULL hypothesis (L0) is assumed to be
identical across four genomic partitions. For any NULL
model, we randomly partitioned the entire set of SNPs into
four categories of the same sizes as the originally defined
functional partition types, followed by the calculation of a
LRT of the NULL model using exactly the same steps by
which the observed LRT was calculated. This process was

repeated 100 times to generate a NULL distribution of the
LRT, of which the 5th percentile was used for testing the
NULL hypothesis that various partition types equally
contribute to the phenotypic variability.

Genome-wide association study

The GWAS method with LMM, shown as follows, was
used for the identification of trait-associated loci (Yu et al.
2006; Zhang et al. 2005),

y ¼ Xβ þ Zkuk þ ξþ ε; ð3Þ

where Zk is the genotype of the kth SNP, uk is the fixed
effect for the kth SNP, and ξ is a random effect to control
the polygenic background with a multivariate normal
distribution N(0,Kϕ2). Note that the kinship matrix K in
the GWAS analysis was calculated using the entire set of
SNPs for simplicity; therefore, K did not vary when
different SNPs were analyzed using the GWAS model.
Other elements in Eq. (3) remain the same as Eq. (1). The
LRT was used to test each SNP marker, i.e.,

LRT ¼ �2 L0 bβ; bϕ2; σ2
� �

� L1 bβ; uk;bϕ2; σ2
� �� �

; ð4Þ

where L0 denotes the likelihood of the Null model (without
the estimated effect of the SNP marker buk) and L1 denotes
the likelihood of the model under evaluation (with buk).
Eigen decomposition was used for handling the algebra that
involved the kinship matrix to increase the computational
efficiency (Kang et al. 2008).

Genomic best linear unbiased prediction (GBLUP)

BLUP has been widely employed to predict breeding values
in animals, when pedigree data are available for the calcu-
lation of kinship (VanRaden 2008). The kinship can be
deduced using whole-genome variant data, yielding a more
powerful method, i.e., GBLUP, for the prediction of
breeding values in animals and plants. We use subscripts (0)
and (1) to represent the training set and the validation set,
respectively, in GBLUP. The estimated breeding value for
the validation set bgð1Þ can be described as

bg 1ð Þ ¼
XM

i¼1
bgi 1ð Þ ¼

XM

i¼1
Ki 10ð Þbϕ2

i

XM

i¼1
Ki 00ð Þbϕ2

i þIbσ2� ��1
y 0ð Þ � X 0ð Þbβ� �

;

ð5Þ
where bgið1Þ is the estimated breeding component for the

ith genomic partition type, Ki(10) represents the genetic
covariance between the validation set and training set when
the SNPs in the ith genomic partition type are considered,
and

P
Ki 00ð Þbϕ2

i þ Ibσ2 is the Var (y(0)) for the training set.
The parameters, including bϕ2

1; ¼ ; bϕ2
M ; bσ2 and bβ, are
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estimated from the training set and then used for genomic
prediction for the validation set. Such model is analogous to
MultiBLUP by Speed et al., since multiple kinship matrices
are involved in BLUP (Speed and Balding 2014), in con-
trast to the GBLUP models, where only one kinship matrix
is used. The predicted phenotypic value for individuals in
the validation sets is equal to the sum of the estimated
breeding value plus fixed effects, that is, by 1ð Þ ¼ X 1ð Þβ þ bg 1ð Þ.
The predictability of trait is defined as the squared corre-
lation coefficient between the observed phenotypic values
and the predicted phenotypic values (Xu et al. 2016; Xu
et al. 2014), as shown in the following formula:

r2 ¼ cov y;by1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var yð Þvar by1ð Þp !2

ð6Þ

The tenfold cross-validation was implemented to calcu-
late trait predictability for model evaluation or comparison
among different genomic partition types. The data sets are
equally partitioned into ten portions, in which we predicted
the phenotypic value in one portion (validation) using the
other nine portions (training). Each individual has a pre-
dicted value after all the portions are used as a validation
set. Then we calculated the predictability as formula (6).

Results

Summary of single-nucleotide polymorphism of rice
genomes

In the study, about 6.5 million high-quality SNPs dis-
tributed in the 12 chromosomes were considered (Chen
et al. 2014). The SNPs with missing genotypes were

eliminated, leaving a total of 3,616,597 SNPs with about
9600 SNPs per million bases on average. Since the rice
genome is relatively small, such SNP density is sufficient to
study the differences in heritability between functional
partitions of rice genomes. Figure S1 shows that SNPs are
linearly arranged in each chromosome, indicating that SNP
markers are evenly distributed along the entire genome and
functional partitions of the genome are equally represented
in the study.

We used SnpEff tool to annotate the genetic variants
based on rice reference genome (MSU version 6.1). The
genome-wide variants are annotated into a total of 28 cate-
gories, the annotation for which is shown in Table S1. The
28 categories were further classified into seven genomic
regions including intergenic, upstream, 5′UTR, exon, intron,
3′UTR, and downstream (Fig. 1a). Since the regulatory
elements are mostly positioned in the upstream, downstream
regions, and flanking untranslated regions (UTRs), we
therefore further reclassified these seven genomic regions
into the final four functional partitions, i.e., regulatory par-
tition (upstream, downstream, 5′UTR, and 3′UTR), intron
partition, exon partition, and intergenic partition (Table S1).
Four categories are redefined based on the variant function:
(1) regulatory partition, including 1,864,917 variants, about
51.6% percent of total markers, plays role in the regulation
of gene expression; (2) intron partition, consisting of
491,680 variants (13.6%), represents the regions mingled
with exons in the open-reading frame (ORF) and is spliced
out during post transcriptions; (3) exon partition, composed
of 456,341 variants (12.6%), denotes the regions that are
retained in the mature mRNAs and eventually translated into
protein; (4) Intergenic partition, represented by 803,659
variants (22.2%), is made up of noncoding DNA, excluding
the regulatory partition (refer to Fig. 1b).

Fig. 1 Categories of 3 million of SNPs obtained based on second-
generation sequence platform. a Distributions of the seven categories
directly obtained from SnpEff software and b distributions of the four

categories, combining upstream, downstream, 5′UTR, and 3′UTR into
regulatory categories
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Comparison of genetic effects across functional
categories

For each trait, we estimated genetic variations of the four
functional categories, jointly using the LMM, where the
kinship matrix for each category was calculated using the
data of SNPs in that genome partition. Table 1 presents the
results of the analysis of five agronomic traits, i.e., YD, HD,
PH, GL, and GW. It appears that (1) genetic variation was
mainly ascribed to regulatory and intergenic regions for YD
and GL, (2) regulatory regions seemed to account for the
most genetic variations in HD or PH, and (3) the associated
genetic variation was only detected in intergenic regions in
GW. Little genetic association (approximate to zero) has
been identified for genetic regions including introns and
exons. These results indicated that the variations of these
five traits are mostly governed by the DNA variants outside
gene regions rather than the variants located within genes.
We also provided standard error of heritability of each
functional category in Table S2, which will be used in the
significant test of enrichment analysis. A three-component
population structure has been disclosed by PCA (Fig. S3).
We therefore reanalyzed the data by incorporating the
population structure in the regression models as covariates,
but there was no difference between the models with and
without population structure (Table S3 vs. Table 1). We
also removed individuals with strong relatedness based on
cluster analysis (h parameters setting to 100 in cutree
function) and the remaining 452 individuals were used to
perform an analysis of partitions of heritability across
functional annotations. The results are summarized in Table
S4, which are very similar to the results using the entire
sample.

For each trait, we calculated the value of the logarithm of
likelihood based on the estimated parameters, including five
variance parameters, i.e., bϕ2

1;
bϕ2
2;
bϕ2
3;
bϕ2
4, and bσ2, which are

marked with red triangles in Fig. S2. We also calculated
logarithm of likelihood values of NULL-equivalent models
by using various values, from 0 to 1.2, with an incremental
step of 0.08, for these five variance parameters. Since the
phenotypic values for each trait have been standardized with
a standard normal distribution (N(0,1)),

P4
i¼1 Ki

bϕ2
i þ Ibσ2 is

supposed to 1; however, the actual value of phenotypic

variance may vary, so we constrained it in a bracket of
0.5–1.2. For each trait, the distribution of 14,587 values of
the logarithm of likelihood for the NULL-equivalent models
is shown in Fig. S2, indicating that the optimal results were
always achieved by the estimated values of these five var-
iance parameters.

The enrichment analysis (Gusev et al. 2014) was then
performed on each of five traits, respectively, and the
enrichment scores were computed for each genomic parti-
tion as the ratio of the observed proportion of heritability to
the expected proportion of heritability, which is defined as
the percentage of SNPs in this category of regions. For five
traits, either regulatory or intergenic regions exhibited high
enrichment in heritability (>1), whereas the exon and intron
regions were significantly depleted (Fig. 2). For example,
variants in intergenic regions for GW were highly enriched
(an enrichment score of 4.5×) compared with the expected
proportion of heritability, and explained ~100% of trait
heritability (SE= 1%). Following the methods described in
Gusev et al. (2014), we also performed a z-test on the
enrichment score for each category, which suggested that
the regulatory partition in PH and the intergenic partition in
GW were extremely significant (p < 0.01). The remaining
functional categories did not show significant enrichment,
due to the large variance of estimated heritability values.
The results of simulation indicated that the LRT (or like-
lihood) calculated from the defined functional categories is
significantly larger than that of NULL models with random
genomic partitions (Fig. S4).

Genome-wide association study

For each of the five traits, we examined the distribution of
TASs in the four genomic categories through GWAS. The
Manhattan plots in Fig. 3 showed that HD, GL, and GW are
controlled by several major QTLs (peaks in the plots),
whereas the variabilities of YD and PH are ascribed to
many modest genetic loci (or polygenic effects) without
obvious peaks. Because inclusion of test genetic variants in
the kinship matrix would cause the loss of detection power,
we carried out analysis of GWAS by leaving one chromo-
some out to boost detection power, the results of which are
shown in Fig. S5. There are not significant differences in the

Table 1 Joint estimation of
genetic variance components
across the four functional
regions based on linear mixed
model (LMM)

Trait Regulatory Intron Exon Intergenic Residual Heritability

YD 0.170 ± 1.690a 0.000 ± 1.000 0.000 ± 1.000 0.457 ± 1.720 0.301 0.676

HD 1.142 ± 11.420 0.000 ± 1.000 0.136 ± 10.130 0.000 ± 1.000 0.053 0.960

PH 0.730 ± 1.662 0.000 ± 1.000 0.000 ± 1.000 0.000 ± 1.000 0.100 0.880

GL 0.181 ± 4.794 0.000 ± 1.000 0.000 ± 1.000 0.818 ± 5.083 0.113 0.898

GW 0.000 ± 1.000 0.000 ± 1.000 0.000 ± 1.000 0.626 ± 1.597 0.096 0.867

aDenotes the standard error of genetic variance components of traits
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pattern of association between the results of two methods.
Candidate genes near the major peaks that were identified
for HD, GL, and GW are listed in Table 2. Important bio-
logical functions of these genes have been previously
reported and some of them agree with the traits in the study.
The gene Hd3a, which is a rice ortholog of Arabidopsis FT
gene and plays a key role in the regulation of flowering
through the multiple-signal pathway (Bian et al. 2011; Kim
et al. 2008; Kojima et al. 2002), has been identified at the
downstream of the HD-associated SNP (chromosome 6,
3.484Mb). The two novel genes OsGSTZ2 and OSIPK have
been identified in the region near a HD-associated SNP
(chromosome 12). However, neither gene has been reported
to be a functionally relevant HD; rather, the gene OsGSTZ2
has been reported to relate to seedling cold tolerance (Kim

et al. 2011), while silencing the OSIPK gene can cause a
substantial reduction in phytate levels in seeds (Ali et al.
2013). The gene GS3 (GRAIN SIZE 3), a major QTL that
negatively controls rice length and weight (Fan et al. 2006;
Mao et al. 2010), has been detected in proximity to the SNP
(chromosome 3, 16.704Mb) that is significantly associated
with GL. The GW5 gene is a major QTL that controls rice
gain width and weight (Shomura et al. 2008; Wan et al.
2008). We have found the GW5 gene near the SNP in
chromosome 5 (5.373Mb), which was significantly asso-
ciated with GW. A new candidate gene OsFCA for GW has
been discovered in chromosome 9 and this gene is homo-
logous to the Arabidopsis flowering time gene (FCA) (Du
et al. 2006). Previous research indicated that OsFCA is
involved in the autonomous flowering pathway in rice (Jang

Fig. 2 Partition SNP heritability of the five agronomic traits according
to functional annotations. The y-axis represents what proportion the
functional category can account for the total genetic variation, black

bars for the estimated value, and gray ones for the expectation value.
a–e are corresponding to five traits, YD, HD, PH, GL, and GW,
respectively

490 J. Wei et al.



et al. 2009) rather than contributing to grain shape. Further
investigation is warranted to discover the broader functions
of these new candidate genes for these agronomic traits in
rice.

Intergenic regions and regulatory regions are treated as
nongenic partition, while introns and exons are regarded as
genic partition. We compared the distributions of TASs
between these two partitions. We selected TASs based on p
values using six different threshold values, i.e., 10−5, 10−6,
10−8, 10−10, 10−11, and 10−12, yielding 6280, 3811, 1723,
983, 695, and 465 TASs, respectively, for five traits in total.
Out of these identified TASs with various selection

criterion, the majority (4716, 2857, 1333, 764, 552, and
392, respectively) were situated in nongenic regions. In
order to demonstrate that TASs are enriched in nongenic
regions, we performed a comprehensive simulated study. In
each simulation, we randomly selected a number of SNPs
from the entire genome, with the number equal to 6280,
3811, 1723, 983, 695, or 465, respectively, which corre-
sponds to the number of identified TASs. We then found
out how many of these randomly selected SNPs are located
in nongenic regions. This process was repeated 100 times,
for each of the six numbers of TASs selected using various
thresholds, to form a NULL distribution of TASs sitting in

Fig. 3 Manhattan plots of the five agronomic traits from the GWAS
results, where the y-axis is the logarithm of the p value and the hor-
izontal dashed lines are the critical value at the 0.05 level after

Bonferroni correction, −log10(0.05/3,616,597) ≈7.86. a–e represent
the results of YD, HD, PH, GL, and GW, respectively
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nongenic regions (Fig. S6). The results showed that the
TASs identified using various thresholds are significantly
enriched in nongenic partition. We also compared the dis-
tributions of independent TASs selected using clump
function of plink software. Due to less independent TASs
identified by the stringent threshold values, we only focused
two threshold values (10−5 and 10−6) to identify 661 and
292 TASs for the five traits. Out of these identified TASs,
the majority (499 and 216, respectively) were situated in the
nongenic regions but not significantly higher than expec-
tation values. This indicates that no enrichment was
observed in genic or nongenic regions. This might be due to
the loss of power if only an SNP was picked from a group
of effective nongenic variants.

We then compared the genetic effects of the SNPs,
represented by the genetic variances (proportional to herit-
ability values) of the SNPs, between genic and nongenic
partitions. The genetic variance is defined as 2p(1−p)a2

(Falconer et al. 1996), where p represents the minor allele
frequency (MAF) and a is the additive effect of each marker
estimated from LMM. We focused on the most significant
SNPs, i.e., the top 50, 100, or 150 SNPs for each genomic
partition among independent SNP sets selected using plink
software. Figure 4 shows the distributions of the genetic
effects of these top SNPs for each of the five traits. It
appeared that the significant SNPs in nongenic partition
generally had larger genetic effects than those in the genic
partition. These results are supportive of our hypothesis that
nongenic regions in the genome are the main source of
genetic variations that account for the variability in complex
traits.

Whole-genome prediction

We compared the predictive performance of different sets of
SNPs for the five agronomic traits based on 100 replicates
of tenfold cross-validation. First, we carried out the pre-
diction using the BLUP method, in which genetic effects of
SNPs were treated as random effects. The kinship matrix (or
relatedness matrix) was inferred from all the SNPs included
in the regression model, either the set of SNPs in each of the
four functional partitions or any combination of these sets
of SNPs. The results in Table 3 showed that SNPs in
nongenic partition (regulatory or intergenic) produced better

prediction than those in genic partition (intron or exon),
when these four sets of SNPs were used in the BLUP model
individually, but the differences between their prediction
performances were not phenomenal. For example, in pre-
dicting HD, regulatory partition had the highest predict-
ability (0.562), which was slightly but significantly higher
than that of exon partition (0.544) based on t test (p < 0.01).
The similar results were observed when genic partition
(introns and exons) and nongenic (regulatory or intergenic)
were compared using the BLUP, where a single kinship
matrix was calculated from SNPs in two combined
categories.

We also compared the predictive performance of various
models using a multiBLUP framework. These models use
the entire set of SNPs in the genome but different numbers
of kinship matrices based on how the four functional SNP
sets were grouped, yielding models with two kinship
matrices (genic and nongenic), four kinship matrices, vari-
able number of kinship matrices determined by the adaptive
approach, or a single kinship matrix for all genomic SNPs.
The results in Table 4 showed that although the differences
between various models were not large, models with two
genomic partitions yielded the best predictabilities. Con-
versely, adaptive strategies did not achieve the highest
performance in most traits, except for GL.

We carried out an additional simulated study to
demonstrate the prediction based on the SNPs in nongenic
partition outperformed that based on the SNPs in genic
partition. Each time, we randomly sampled 103, 5 × 103, or
104 independent SNP markers, respectively, from genic
partition (model I), from nongenic partition (model II), or
from the entire genome (model III—reference model), and
used these selected SNPs in the prediction analysis through
tenfold cross-validation. Each scenario was replicated 100
times. Figure 5 shows the relative changes in predictability
for model I or model II by referencing model III, i.e., the
values along the y-axis were calculated as R2

i � R2
0

� �
=R2

0,
where R2

i was the predictability of model I/II when i= 1/2
and R2

0 was the predictability of model III. Positive/Nega-
tive values along the y-axis indicate better/worse prediction
performance compared with the reference model III. The
results indicated that (1) model II generally had higher
predictabilities than model I in most of the cases, especially
when fewer markers were used for prediction. (2) Prediction

Table 2 Candidate genes related
to agronomic traits in the
identified regions

Peak SNPs Chromosome −log10(p) Effects Variance Candidate gene

HD 3,484,349 6 11.371 −0.415 0.033 Hd3a

6,428,603 12 8.567 −0.291 0.019 OSIPK,OsGSTZ2

GL 16,704,529 3 17.508 −0.491 0.116 GS3

GW 5,373,357 5 24.838 −0.388 0.072 GW5

1,890,440 9 9.800 −0.539 0.062 OsFCA
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using genic partition (model I) was not as good as that using
the entire set of SNPs in the genome (model III), whereas
prediction using nongenic partition (model II) outperformed
the prediction using all SNPs (model III) in most of the
cases. (3) The prediction performance for three prediction
models (I, II, and III) became less variable and more reliable
when more SNPs were included in these models.

Discussion

Mounting studies have been conducted to investigate the
genetic contributions to agronomic traits across func-
tionally partitioned genomic regions (Li et al. 2012; Xue

et al. 2016). In this study, we analyzed the trait-associated
genetic variations in different partitions in rice genomes
and found that nongenic regions played a key role in five
agronomic traits of a natural rice population. The study
population is ideal for GWAS, because this rice collection
includes genetically diverse varieties from different areas,
including 200 lines from a core collection in China, 132
varieties from the International Rice Molecular Breeding
program, and 148 varieties from the US Department of
Agricultural rice gene bank. Data for over 3 millions of
high-quality SNPs are available and these SNPs are
evenly distributed in the 400-Mb rice genomes (about one
SNP per 130 bp), which is suitable for an analysis of
heritability across genomic partitions. The analysis of

Fig. 4 Comparison of the effects of the top-ranked SNP (50, 100, and
150) in genic (black) and nongenic regions (gray). The y-axis repre-
sents how much one SNP can explain genetic variance, which is

calculated based on the formula 2p(1−p)a2. a–e are corresponding to
the five traits, YD, HD, PH, GL, and GW, respectively
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heritability, or variance-component method, which was
proposed by Gusev et al. (2014), outperforms the regular
testing approaches based on summary statistics because
linkage disequilibrium (LD) between functional cate-
gories is taken into account. In this study, we used both
methods, i.e., analysis of heritability across genomic
partitions and GWAS, to analyze the rice data, leading to
a consistent conclusion that variation of SNPs in nongenic
regions contribute most to the phenotypic variation. The
analysis of heritability using individual SNP sets (intron,
exon, regulatory, or intergenic) showed that the genetic
contributions from these four SNP sets are very similar,
with the contributions from regulatory regions or inter-
genic regions more than those from the introns or exons
(Table S5). Similarly, predictions using SNPs in intron
regions or exon regions only were almost as good as the
predictions made by using SNPs in regulatory regions or
intergenic regions only (Table 3). However, when the four
SNP sets were used simultaneously in the analysis of
heritability, the genetic contributions were mainly detec-
ted from regulatory regions or intergenic regions, whereas
the contributions from introns or exons were close to zero
(Table 1). In summary, a larger proportion of trait herit-
ability was explained by SNPs in nongenic partition,
based on the results of the analysis of heritability.

Consistently, GWAS showed that top TASs identified in
nongenic partition had larger genetic effects than those in
genic partition.

Several studies of human data revealed the similar results
of genetic architectures underlying complex traits. For
example, Maurano et al. (2012) systematically investigate
the spatial distribution of TASs and found that trait-
associated variants tend to cluster in regulatory regions
marked by DHSs. Gusev et al. (2014) analyzed the original
GWAS data using the variance-component analysis and
also reported that DHS-marked regions explained most of
the genetic variations of the phenotypes. Consistent results
were reported in plant studies, for example, in maize (Li
et al. 2012; Rodgers-Melnick et al. 2016; Xue et al. 2016).
It is not surprising to detect the importance of regulatory
regions in terms of genetic contribution, because lots of cis-
regulatory elements, such as enhancers and silencers, in
these regions directly influence gene expressions by inter-
acting with the promoters. Moreover, we found that, like the
SNPs in regulatory regions, the SNPs in intergenic regions
are also responsible for a large proportion of trait herit-
ability. This was supported by recent research where the
important role of these regions was recognized (Edwards
et al. 2013), and by the fact that abundant functionally
important molecules, such as small RNAs, micro RNAs, or

Table 4 Predictabilities of the
five traits based on MultiBLUP
framework using various
combinations of the genetic
relatedness matrix

Trait mBLUP (2)a mBLUP (4) mBLUP (adapt) GBLUP (whole)

YD 0.451 ± 0.010b 0.451 ± 0.008 0.445 ± 0.015 0.451 ± 0.008

HD 0.560 ± 0.008 0.556 ± 0.011 0.550 ± 0.004 0.555 ± 0.011

PH 0.701 ± 0.005 0.696 ± 0.007 0.695 ± 0.009 0.693 ± 0.007

GL 0.553 ± 0.004 0.550 ± 0.008 0.576 ± 0.005 0.549 ± 0.008

GW 0.696 ± 0.004 0.697 ± 0.006 0.695 ± 0.008 0.694 ± 0.006

aDenotes the number of individual genetic relatedness, such as 2 representing the two relatedness matrices
was used, “adapt” representing the number of matrices automatically calculated by LDAK software and
“whole” denotes that whole genetic variants were incorporated into one matrix
bDenotes the standard error of predictability of traits, calculated from 100 replicates of tenfold cross-
validation

Table 3 Predictability of the five
traits based on the BLUP model,
just inclusion of one type of
kinship matrix

SNP sets YD HD PH GL GW

Regulatory 0.451 ± 0.008a 0.562 ± 0.011 0.697 ± 0.006 0.551 ± 0.007 0.693 ± 0.006

Intron 0.447 ± 0.008 0.545 ± 0.011 0.687 ± 0.008 0.545 ± 0.008 0.691 ± 0.006

Exon 0.443 ± 0.008 0.544 ± 0.011 0.692 ± 0.007 0.536 ± 0.008 0.685 ± 0.006

Intergenic 0.455 ± 0.008 0.556 ± 0.011 0.697 ± 0.006 0.552 ± 0.008 0.697 ± 0.006

Gene 0.445 ± 0.008 0.542 ± 0.011 0.687 ± 0.007 0.539 ± 0.008 0.688 ± 0.006

Non-gene 0.453 ± 0.008 0.559 ± 0.011 0.695 ± 0.007 0.552 ± 0.008 0.695 ± 0.006

GBLUP (whole) 0.451 ± 0.008 0.555 ± 0.011 0.693 ± 0.007 0.549 ± 0.008 0.694 ± 0.006

Regulatory, intron, exon, intergenic, gene and non-gene represents the kinship matrix inferred from genetic
variants within this kind of category

GBLUP (whole) represents that all the variants are used to infer the kinship matrix
aDenotes the standard error of predictability of traits, calculated from 100 replicates of tenfold cross-
validation
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lncRNAs, are transcribed from these regions (Bartel 2009;
Cunnington et al. 2010; Ghoussaini et al. 2008; Jendrze-
jewski et al. 2012). For example, miRNAs typically inter-
fere gene expressions by binding to 3′UTRs of target
mRNAs and repress the transcription process (Bartel 2009).
The genome does not exist as a linear entity within cells,
where the DNA blueprint is actually utilized. Current
research shows that both cis- and trans-interactions between
genetic variants, which depend on chromosome 3D con-
figuration, influence gene expression and provide mechan-
istic insights into functions associated with phenotypes. The
study indicated that variants in intergenic regions played a

more important role than those regulatory regions for YD,
GL, and GW; however, this was not the case for HD and
PH. These results suggested distinct regulatory patterns for
various complex traits, i.e., trans-eQTL is key player con-
trolling YD, GL, and GW, whereas, cis-eQTL is dominant
factor for HD and PH. In this study, we conclude that the
genetic variants in nongenic partition, including regulatory
regions and intergenic regions, are more important than the
genetic variants in genic partition in determining the traits
in rice.

The positive correlation between the per-SNP heritability
and the MAF associated with the SNP was reported in the

Fig. 5 Comparison of the predictabilities derived from the SNPs of
genic (black) and nongenic region (gray). The y-axis represents the
relative difference of predictability between model I (inclusion of
SNPs within the genic region) or model II (inclusion of SNPs within
the nongenic region) and the reference model in which SNPs are

randomly sampled from the whole genome. The x-axis represents the
number of SNPs included in the model. We performed 100 replicates
for each scenario. a–e are corresponding to the five traits, YD, HD,
PH, GL, and GW, respectively
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analysis of heritability in human schizophrenia (Loh et al.
2015). In the study, we followed this strategy to check the
possible relationship between the genetic contribution and
MAF for each of the five traits. The entire set of genomic
SNPs were grouped into six MAF bins based on the fre-
quency of the minor allele (Table S6), the number of SNPs
in these bins ranging from 11.1 to 23.6% of the total SNPs.
Table S6 does not show any significant association between
the explained heritability and the binned SNPs, with various
MAFs in the rice data. We examined the distribution of
MAF in the four functional categories (Fig. S7), which
shows that the four categories have similar allele frequency
spectrum across different MAFs. Our data and results did
not support the hypothesis that higher heritability in non-
genic regions region is due to enrichment of either high or
low MAF SNPs.

Several literatures had used the genomic annotation data
to assist a fine mapping, including genomic position infor-
mation (Kichaev et al. 2014; Pickrell 2014; Yang et al.
2017). Our study leveraged these annotation data to classify
the genetic variants into functional partitions for a delicate
analysis, using GS with MultiBLUP strategy (Speed and
Balding 2014) or GWAS. The data, results, and conclusions
in our study will advance our understanding of the genetic
architectures behind agronomic traits in rice. We assume
that the effects of genetic variants follow the normal dis-
tribution with different variances, when they fall into dif-
ferent functional partitions. These variance parameters need
to be first estimated from the training set and then can be
applied to GS. Our Multi-BLUP strategy is analogous to the
popular software BayesR, in both of which each genetic
variant follows a mixture of normal distributions and the
posterior membership may be inferred from data (Erbe et al.
2012). Our results indicated that considering different var-
iance parameters for various functional partitions did not
significantly improve prediction performance. This may be
owing to the fact that each functional partition already
includes more than enough genetic variants (in millions)
that can accurately capture the genetic relatedness of indi-
viduals in the sample. A simulation study, in which small
numbers of SNPs were randomly selected from these
functional partitions for the analysis, showed that SNPs in
nongenic partition outcompeted the SNPs in the genic
partition in predictability. Therefore, to reduce the geno-
typing cost in breeding if microarrays are used, we only
need to place the SNP markers in nongenic regions onto the
genotyping chips.

A limitation of the study is that only 524 individuals
were used. Estimating genetic parameters from such small
sample may be a problem, because of the potential sampling
bias. Combining other available rice samples (Huang et al.
2010, 2016, 2012; Yano et al. 2016) in the analysis of
heritability may increase power. However, various studies

may be quite different in genotyping method, data quality,
number of variants, etc, posing challenges to a combined
study or meta-analysis. A desirable property of this study
sample is that it is a highly diverse collection because each
individual represents a subpopulation. Compared with other
species like human, such a study sample enjoys a larger
effect size for testing genetic parameters. When other omics
data become available in the future, we may leverage these
additional data to tune the analysis of heritability based on
genomic annotations.
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