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1  | INTRODUC TION

Adaptation may occur very rapidly in response to changes that are 
natural or due to human activity. Some recent examples include 
color variation in guppies (Reznick, 2009), field mice (Vignieri, 
Larson, & Hoekstra, 2010), and peppered moth (Cook, Grant, 
Saccheri, & Mallet, 2012); insecticide resistance in Drosophila 
(Ffrench-Constant, Bogwitz, Daborne, & Yen, 2002); beak size 
changes in Darwin's finches (Grant & Grant, 2008); and limb de-
velopment in Anolis lizards (Losos, 2009). The genetic architecture 

underlying these phenotypic traits ranges from few genes of major 
effect (van't Hof, Edmonds, Dalikova, Marec, & Saccheri, 2011) to 
highly polygenic systems (Lamichhaney et al., 2012, 2015; Linnen 
et al., 2013).

The analysis of monogenic adaptation, in which one locus in a 
neutral or weakly selected background is under positive directional 
selection, has made great progress since the influential work of 
Maynard Smith and Haigh (1974). Here, a single or very few alleles at 
selected loci undergo large frequency shifts, possibly sweeping away 
linked neutral genetic variation—a process called selective sweep. 
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Abstract
We analyzed a model to determine the factors that facilitate or limit rapid polygenic 
adaptation. This model includes population genetic terms of mutation and both di-
rectional and stabilizing selection on a highly polygenic trait in a diploid population of 
finite size. First, we derived the equilibrium distribution of the allele frequencies of 
the multilocus model by diffusion approximation. This formula describing the equilib-
rium allele frequencies as a mutation-selection-drift balance was examined by com-
puter simulation using parameter values inferred for human height, a well-studied 
polygenic trait. Second, assuming that a sudden environmental shift of the fitness 
optimum occurs while the population is in equilibrium, we analyzed the adaptation of 
the trait to the new optimum. The speed at which the trait mean approaches the new 
optimum increases with the equilibrium genetic variance. Thus, large population size 
and/or large mutation rate may facilitate rapid adaptation. Third, the contribution of 
an individual locus i to polygenic adaptation depends on the compound parameter 
�ipi
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, where �i is the effect size, pi
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 the equilibrium frequency of the trait-
increasing allele of this locus, and qi

(
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=1−pi
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. Thus, only loci with large values 
of this parameter contribute coherently to polygenic adaptation. Given that mutation 
rates are relatively small, this is more likely in large populations, in which the effects 
of drift are limited.
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Theoretical studies of selective sweeps have been carried out within 
the framework of population genetics (reviewed by Jensen, 2014; 
Stephan, 2019, and others), but these theories do not model the pro-
cess at the phenotypic level (except for fitness).

On the other hand, polygenic adaptation that involves a large num-
ber of selected loci has traditionally been studied using quantitative 
genetics (Mackay, 2004). Because the quantitative genetic models 
date back to the time before the genetic mechanisms of inheritance 
were re-discovered, they do not refer to the underlying molecular de-
tails or dynamics. However, some verbal arguments predict the allele 
frequencies to change by small amounts when a large number of ge-
netic loci of minor effect sizes control a phenotypic trait (Pritchard & 
Di Rienzo, 2010). Yet, it is not clear if adaptation can occur rapidly via 
such subtle changes in the allele frequencies.

There has been a general disconnect between the theories of ad-
aptation that work at either the phenotypic or genotypic level. Ideally, 
however, one would like to consider models in which selection acts on a 
phenotypic trait which is connected to the underlying genetics through 
a genotype-phenotype map. The response to selection can then be de-
tected at the genetic level and predictions can be made about pheno-
typic trait evolution. Such a roadmap has been developed by several 
workers including Bulmer (1972), Barton and Turelli (1989), and Bürger 
(2000). We follow this direction here to understand the evolutionary dy-
namics of quantitative traits from the standpoint of population genetics.

We start our investigation from the simple deterministic model 
that was studied at the equilibrium level by de Vladar and Barton 
(2014) and whose dynamics after an environmental change was an-
alyzed by Jain and Stephan (2015, 2017a). This model gave some 
insights into the questions raised above, such as whether and under 
which conditions rapid adaptation may occur after an environmental 
shift of the fitness optimum of a phenotypic trait. In these analyses, 
we have found two distinctly different modes of rapid adaptation: 
(a) through strong directional selection at a few loci when the effect 
sizes of the alleles at these loci are large relative to a scaled muta-
tion rate or (b) through weak selection at many individual loci (with 
small effect sizes) leading to subtle allele frequency shifts in the case 
of polygenic adaptation. Here, we examine to what extent these de-
terministic results may be generalized to populations of finite size, in 
which genetic drift plays an important role. We focus on polygenic 
adaptation involving a large number of weakly selected loci, since this 
type of adaptation is not nearly as well studied as the case of strong 
selection and selective sweeps (with the exception of the very recent 
work by Simons, Bullaughey, Hudson, and Sella (2018) and Höllinger, 
Pennings, and Hermisson (2019)). Furthermore, we describe the effect 
of demography (population size bottlenecks) on polygenic adaptation.

2  | MODEL

2.1 | Deterministic model of a single quantitative trait

We consider a single trait that is determined additively (no domi-
nance or epistasis) by l unlinked, diallelic loci in a large population of 

diploids. If the phenotypic effect of the + allele at locus i is �i
2
 and that 

of the − allele is −�i
2

, the mean phenotype c1, the genetic variance c2 
and the skewness c3 are given by (Jain & Stephan, 2017a) 

where pi is the frequency of the + allele at locus i and qi=1−pi that of 
the − allele. For simplicity, we assume that the effect-size distribution 
is an exponential function with mean � . We also assume that the fitness 
of an individual with trait value z has a Gaussian shape centered about 
the fitness optimum z0

where s measures the strength of selection on the trait. Without 
loss of generality, we assume 0< z0 and require that z0 < l𝛾 . The lat-
ter condition ensures that the population mean converges to the 
fitness optimum or to a stationary state close to the optimum (Jain 
& Stephan, 2015). In a randomly mating population, the change in 
the allele frequency at the ith locus due to selection and mutation 
is then given by

where Δc1= c1−z0 is the deviation of the mean phenotype from the 
fitness optimum. The first term on the right-hand side of Equation (5) 
models directional selection toward the phenotypic optimum, the sec-
ond term describes stabilizing selection in the vicinity of the optimum 
(Wright, 1935), and the last two terms account for mutation (Barton, 
1986; Bulmer, 1972). In agreement with these authors, we assume 
equal mutation rates �= � in our analysis of this model.

2.2 | Stochastic analysis

To integrate genetic drift into our deterministic model described 
above, we first consider a diploid population of constant size N. We 
analyze our polygenic model (including drift) under equilibrium con-
ditions based on diffusion theory (Ewens, 2004). However, since this 
model has a large number of loci, we need to resort to an approxima-
tion, which reduces the dimension of the system. Using computer 
simulations, we then examine the validity of this approximation. Yet, 
because the number of parameters of our model is relatively large 
(see above), such simulations are very time-consuming if the range 
of biologically relevant parameter values is unknown (as is generally 
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the case for quantitative traits). We therefore chose to examine our 
approximation using parameter values inferred for the best studied 
polygenic trait, human height.

Human height is controlled by more than 500 loci (Wood et al., 
2014), although recent estimates suggest that this number is prob-
ably too high since population structure has not been adequately 
considered (Berg et al., 2019; Sohail et al. 2019). We choose the 
following parameter ranges: 0.001–0.01 for the effect sizes (mea-
sured in units of the standard deviation, where in the case of 
human height 1  SD ≈  6.5  cm; Turchin et al., 2012), s around 0.1 
(Turchin et al., 2012), the number of loci affecting the trait l = 200, 
and mutation rate of about 10−5 per generation. The population 
size is chosen as N=2×104, which is close to the long-term human 
effective population size. Given these parameter values, we have 
2N𝜇l≫1; thus, the total number of mutations per generation af-
fecting the trait is much larger than 1. Under these conditions, the 
usual assumption that the phenotypic distribution is well approx-
imated by a normal distribution is justified (Simons et al., 2018). 
On the other hand, given that the number of mutations per dip-
loid human individual is about 60 per generation (Kong, Frigge, 
Masson, Besenbacher, & Sulem, 2012), of which less than 10% are 
functional, suggests that the number of mutations with any func-
tional effect per haploid per generation is less than 3. Therefore, 
it is plausible that 𝜇l≪1. Finally, the chosen values of the effect 
sizes for most loci fulfill 𝛾i<2

√

2𝜇

s
, which defines the threshold 

of small-effect loci under deterministic conditions and symmetric 
mutation rates (see Results).

2.3 | Simulations

For the simulations, we first consider a diploid population of con-
stant size N to test the assumptions of the stochastic analysis (ex-
plained above). In addition, we simulate a demographic model with 
a major bottleneck resembling the bottleneck inferred from human 
polymorphism data (Schiffels & Durbin, 2014). The details of the 
bottleneck model are described in the section on demography.

Stochastic simulations are performed based on a standard 
Wright–Fisher model (Jain, 2008). We assume that the recombi-
nation rate is high and all loci under selection are unlinked. Thus, 
we calculate the allele frequency changes in each locus inde-
pendently based on the effect size and the allele frequency of that 
locus. We start our simulations with all loci having an equal num-
ber of + and − alleles. In generation t > 0, the allele frequency of 
the + allele at locus i changes by mutation and selection as given 
by Equation (5). First, we do binomial sampling with mutation 
based on allele frequency pi (t). Then, we apply selection by draw-
ing a random number from a binomial distribution whose mean is 
the modulus of the sum of the two selection terms in Equation (5). 
This random number is added to or subtracted from the + allele 
frequency obtained by stochastic sampling (dependent on the sign 
of the sum of the selection and mutation terms in Equation (5)) to 
obtain the + allele frequency at locus i in the next generation. This 

process is repeated for all loci for 2N generations such that the 
allele frequencies stabilize.

In the section on the stochastic equilibrium, we run 50,000 in-
dependent simulations to obtain the distribution of allele frequen-
cies at each locus. This is compared with the expected steady-state 
distribution given by Equation (11). In the adaptation section, we 
introduce an optimum shift from z0 to zf and allow the population 
to adapt to the new optimum. We calculate the allele frequency tra-
jectory of each locus based on Equation (5) where z0 is replaced by 
zf. Then, we compare the dynamics of the mean deviation from the 
optimum Δc1 (t), the allele frequency trajectories pi (t) , and the allele 
frequency changes �pi (at the end of the short-term phase) obtained 
from simulation with Equations (16–18), respectively.

3  | RESULTS

In Figure 1, we show a typical trajectory of the population mean of the 
trait obtained by simulation (single run). The population mean fluctu-
ates around an equilibrium state close to the fitness optimum z0 until—
at time zero—it is shifted within a short time span to the new optimum 
zf. We consider a diploid population of constant size N=2×104. The 
other parameter values are s = 0.1, the number of loci affecting the 
trait l = 200, mutation rate μ = 10−5 per locus per generation, z0 = 0.2, 
zf = 0.5, and the effect sizes γi are drawn from an exponential distribu-
tion with mean � =0.01. In the following, we will analyze these two 
phases, the equilibrium period before the shift of the fitness optimum 
and the response of the population after the optimum change.

3.1 | Stochastic equilibrium between drift, 
mutation, and selection

As mentioned above, we consider a Wright–Fisher population of N 
diploids, where the population size is assumed to be constant. Thus, 

F I G U R E  1   Single run of the trait mean c1 as a function of time 
(in generations). The parameter values are: N=2×104, s = 0.1, 
l = 200, μ = 10−5 per generation, and � =0.01. At generation zero the 
fitness optimum is shifted from z0 = 0.2 to zf = 0.5
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the allele frequencies given by Equation (5) may undergo genetic 
drift, in addition to selection and mutation. We further assume that 
most of the loci have small effects. In the case of symmetric muta-
tion rates and an infinitely large population size, a precise criterion 
for this condition can be provided, namely that for most loci �i < 𝛾̂ , 
where 𝛾̂ =2

√

2�

s
(de Vladar & Barton, 2014).

As mentioned above, in equilibrium the mean phenotype c1 of the 
population fluctuates around a value close to the fitness optimum z0 
(Figure 1). To analyze this stochastic behavior, we recall that in the 
deterministic system (polygenic case) the trait mean may change much 
faster after a perturbation than the allele frequencies (Jain & Stephan, 
2015); that is, after the system is pushed away from the stationary 
state the trait mean may quickly respond, while the allele frequencies 
reach the stationary state only very slowly. To use this property in our 
analysis, we write Equation (5) as follows:

and

Assuming that Δc1 is a fast variable on the time scale of the allele 
frequencies pi means that Δc1 approaches its equilibrium value Δc̃1 
quickly while the allele frequencies need much longer to reach equilib-
rium (Gardiner, 1990, Chapter 6.4). Under this assumption, we obtain 
Δc̃1 by putting the left-hand side of Equation (6) to zero. Furthermore, 
we may neglect the skewness term as we focus on loci with small effect 
sizes �i and c3 is proportional to �3

i
 (see Equation (3)). Then, in equilibrium 

the deviation of the population mean from z0 is approximately given by 

where c̃2 is the equilibrium variance. Thus, for longer times the ex-
pected change of the allele frequency pi can be approximated as

and the variance of the change in pi accounting for the effect of 
drift is

Using diffusion theory (Ewens, 2004, Chapter 4.5), this leads to 
the equilibrium frequency distribution of the trait-increasing allele 
pi at locus i:

where C is the normalization constant (omitting index i for locus i), 
�=2Ns, and �=2N� is the scaled mutation rate.

Equation (11) has some well-known properties. If the exponent 
of the exponential function is very small, such that selection is 
very weak or the effect sizes are very small (i.e., essentially under 
the assumption of a mutation-drift equilibrium), the distribution is 
U-shaped when 𝛽 <0.5, and for larger mutation rates the frequency 
distribution is rather bell-shaped. The normalization constant is then 
given by (Ewens, 2004, Chapter 5.6) 

where B denotes the beta and Γ the gamma function. The mean of this 
distribution is therefore 0.5, which was also obtained for the determin-
istic model (de Vladar & Barton, 2014). The variance of the distribution 
is 1∕

(

4
(

4�+1
))

. The standard deviation is therefore large (nearly 0.5) 
when the scaled mutation rate is small. For large mutation rates, how-
ever, the standard deviation is about 1∕

�

4
√

�

�

.

Under the assumption that the exponent of the exponential 
function is very small (i.e., under the assumption of a mutation–drift 
equilibrium), the genetic variance c2 at equilibrium can also be calcu-
lated in a straightforward way using Equations (11) and (12) in con-
junction with Equation (2). We obtain

For exponentially distributed effect sizes with mean �, the sum on 
the right-hand side of Equation (13) may be approximated by 2l�2(Jain 
& Stephan, 2015). Then, the stationary genetic variation is given as 

This means that for large mutation rates, the stationary variance 
converges to l�2. This result was also obtained for the deterministic 
model, for which the equilibrium allele frequencies are 0.5. However, 
for small mutation rates, such that 4𝛽≪1, the stationary genetic 
variance approaches 4�l�2, a value that is much smaller than l�2. This 
has important consequences for the speed of polygenic adaptation, 
as we will describe below.

Next, we investigate the validity of Equation (11) by simulation. If 
the exponent of the exponential function of Equation (11) deviates 
sufficiently from zero, but is still small relative to 1, the normalization 
constant C is not expected to agree with that of the neutral model 
(given by Equation (12)). Instead, it is approximately given by (see 
Appendix) 
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We also note that in a context where selection cannot be ne-
glected, not only the normalization constant changes, but also the 
whole shape of the distribution is modified by selection.

To examine Equation (11) in conjunction with Equation (15), we 
simulated our model under the action of drift (for constant popula-
tion size N) and selection for the following set of parameter values: 
s = 0.1, N = 2×104, l = 200, μ = 10−5,� =0.01 and z0 = 0.2. The figures 
show a reasonable fit of the theoretical predictions with the simula-
tion results averaged over 50,000 independent runs. Figure 2 reveals 
that the stationary mean deviation is slightly negative as predicted by 
Equation (8), and Figure 3 compares the simulated frequency distri-
bution with Equation (11) for a particular locus with effect size close 
to � =0.01. The stationary second and third moments are shown as 
Figures S1 and S2, respectively. The simulated variance is somewhat 
smaller than predicted by Equation (14), which is due to the fact that 
the latter equation is concerned with the neutral case. The simulated 
skewness is indeed very small as we have assumed in the derivation 
of Equation (8).

There are well-known analytical predictions for the variance of 
the deviation of the mean phenotype from the optimum. Theories 
with very different assumptions about mutation (Lande’s (1976) 
model with no explicit loci, Barton’s (1989) mutation–selection–
drift model similar to ours and Sella and Hirsch’s (2005) weak-mu-
tation Markov chain approximation), all predict that the stationary 
distribution of the mean deviation from the optimum should have 
variance 1/(2Ns). This is a quite generic property of stochastic pro-
cesses best known for the Ornstein–Uhlenbeck process (Simons et 
al., 2018). Indeed, for the values of N and s used in our simulations 
we find that based on the above formula the standard deviation 
of mismatch with the optimum is 0.0158, which is consistent with 
the results displayed in Figure 2 (where the standard deviation is 
0.0160).

3.2 | Adaptation after a sudden shift of the 
fitness optimum

Here, we consider a population in which the allele frequency at locus 
i, i=1, … ,l, is described by distribution given by Equation (11) when 
the fitness optimum is suddenly shifted to a new value zf> z0, which 
is also small (zf< l𝛾 ). Our goal is to model the dynamics of the alleles 
at all i loci until the population has adapted to the new optimum, 
that is, until the population mean has reached a value at or close to 
zf (Figure 1). Describing this dynamics by a multi-dimensional diffu-
sion equation is very difficult. However, when adaptation after the 
environmental change is assumed to be fast, we may resort to a de-
terministic analysis, following that of Jain and Stephan (2017a). This 
may be justified when the scaled selection coefficient of the + allele 
at locus i, which—immediately after the environmental change—is 
given by 2Ns�i

(

zf−z0
)

, is sufficiently large.
Under these assumptions, we get the mean deviation from the 

new fitness optimum, Δc1= c1−zf, and the frequencies of the + al-
leles as (Jain & Stephan, 2015)

and

where the initial condition pi
(

0
)

 for each locus is drawn from the sta-
tionary distribution given by Equation (11). The time variable t is mea-
sured such that t = 0 is the timepoint when the environment changes.

Derivations of Equation (16) can already be found in the clas-
sical literature of quantitative genetics under the assumption that 
the genetic variance is constant (e.g., see Equations (17) and (18) in 
Lande (1976)). However, Jain and Stephan (2017a) showed that it can 
also be derived without this additional assumption. Furthermore, 

(16)Δc1 (t)≈Δc1
(

0
)

exp
(

−sc2
(
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t
)

(17)pi (t)≈
pi
(

0
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(

0
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+qi
(

0
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exp
[

�iΔc1(0)

c2(0)

(
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)]

,

F I G U R E  2   Deviation Δc1 of the trait mean from the optimum 
at the time when the fitness optimum changed (see Figure 1). 
50,000 simulation runs were performed. The average value of the 
simulations and the expectation of Δc1(based on Equation (8)) are 
shown by a dashed and solid line, respectively

F I G U R E  3   Equilibrium distribution of allele frequencies for a 
locus with � = 0.0107 at the time of the environment change. The 
theoretical curve predicted by Equation (11) is also shown
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Equation (17) is equivalent to the first formula of equations (24) and 
(25) in Chevin and Hospital (2008).

Equation (16) defines the short-term phase of the adaptive pro-
cess (Jain & Stephan, 2017a). The short-term phase is defined as the 
time until the phenotypic mean reaches a value close to the new op-
timum. During this time, the genetic variance is essentially constant. 
Depending on the value of the genetic variance, this period, which lasts 
about 

(

sc2
(

0
))

−1 generations, may be very short when the variance is 
large. According to Equation (14), this is the case when the number of 
loci controlling the trait is large and/or the scaled mutation rate β is 
not too small. The role of the mutation rate on the stationary genetic 
variance, and hence on the speed of polygenic adaptation, was not 
noticed in our previous deterministic analyses (Jain & Stephan, 2015, 
2017a). Here, we find that the genetic variance may be much reduced 
below the deterministic value of l�2 when the mutation parameter is 
small such that the distribution given by Equation (11) is extremely 
U-shaped. Such a low value of β may not lead to rapid adaptation (see 
Equations (14) and (16)). When β is so low such that only a few loci are 
polymorphic at any time, our model of polygenic selection is no longer 
applicable.

In the example we use in our simulations mimicking adaptation of 
human height, the speed of polygenic adaptation is not expected to be 
much reduced compared to the deterministic case, since several au-
thors found evidence of very recent polygenic adaptation in human 
height (e.g., Turchin et al., 2012). Indeed, the stationary variance ac-
cording to Equation (14) is about 0.62 l�2 (further discussed below).

Equation (17) informs us about the frequency shifts �pi of the 
alleles during the short-term phase. Since we assume that zf> z0 and 
thus Δc1

(

0
)

<0, the allele frequencies pi (t) are expected to increase 
with time at all loci. Indeed, according to Equation (17), the allele fre-
quency shifts at the end of the short-term phase (i.e,. after 

(

sc2
(

0
))

−1 
generations) for sufficiently small effect sizes are approximately

This result suggests that—in the deterministic case—the allele 
frequency shift at a locus depends strongly on the compound pa-
rameter �ipi

(

0
)

qi
(

0
)

. Thus, it increases with the effect size and is 
greatest for initial frequencies around 0.5. Furthermore, Equation 
(18) shows that after an environmental change the allele frequen-
cies are expected to shift coherently into the same direction. This 
appears to be an important property of polygenic selection because 
it may help detecting this type of selection, although the frequency 
shifts at individual loci are in general small (discussed in Stephan 
(2016) and Jain and Stephan (2017b)).

The stochastic analysis by simulation, however, reveals a more 
complex picture of polygenic adaptation. First, we find a very good 
agreement between Equation (16) and the simulation for the deviation 
Δc1 of the population mean from the optimum within the short-term 
phase, as shown in Figure 4. Second, for the allele frequencies we get a 
reasonable agreement of Equation (17) with simulations when the ef-
fect sizes are sufficiently large and allele frequencies at the time of the 

environmental shift are around 0.5 (Figure S4). In this case, the allele 
frequencies increase with time, as predicted by our deterministic anal-
ysis. However, the fit is generally poor in Figures S3 and S5, in which 
the initial allele frequencies are higher or lower than 0.5. The latter 
figures strongly suggest that besides effect size the initial frequency of 
the allele frequency plays an important role. Reviewing all three online 
figures, it appears that the agreement of theory and simulation is best 
if the allele frequency at the time of the optimum shift is around 0.5.

To further explore this issue, we analyzed the differences �pi 
between the simulated allele frequencies at the end of the short-
term phase and those at t = 0 for each locus. This shows that—on 
average—the differences �pi are positive as predicted by Equation 
(18)  (paired t-test P = 1.25 × 10-8). However, at many loci negative 
values are observed. This is clearly seen in Figure 5, in which �pi is 
plotted against the compound parameter �ipi

(

0
)

qi
(

0
)

, the critical 
parameter of the deterministic case. The figure shows that �pi is 
negative for many loci with low values of �ipi

(

0
)

qi
(

0
)

, but positive 
for all loci above a certain threshold. Therefore, the contributions of 
individual loci to polygenic adaptation depend critically on the pa-
rameter �ipi

(

0
)

qi
(

0
)

. Figure 5 summarizes our findings, which show 
that there is a good agreement between theory and simulation only 
for loci with large �i and/or pi

(

0
)

 around 0.5.

3.3 | Effects of a bottleneck on 
polygenic adaptation

Here, we assume that population size varies with time. Thus, we are 
considering the effects of genetic drift combined with demogra-
phy (varying population size) on polygenic adaptation. Specifically, 
we simulated a simple demographic model with a major bottleneck 
resembling the bottleneck inferred from human polymorphism data 
(Schiffels & Durbin, 2014). The main question we address in this sec-
tion is whether the genetic variance, which may determine the speed 
of adaptation of a polygenic trait to a large extent (see Equation (16)), 
is affected by this bottleneck.

(18)�pi≈−�ipi
(

0
)

qi
(

0
)

Δc1
(

0
) 1−e−1

c2
(

0
) .

F I G U R E  4  Δc1 in the short-term phase after the optimum shift 
(single run) and comparison with Equation (16)
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We started our simulation in the past with a population size 
N=2×104. N remains constant for several thousand generations 
(such that the populations reached equilibrium) before it decreased 
instantaneously to 3,000 individuals. This timepoint mimics the 
beginning of the human Out-of-Africa movement. The population 
then stayed at this bottleneck size for 5,000 generations before it 
instantaneously changed back to the constant size of 2 × 104. 5,000 
generations after this size change we stopped the simulations. The 
results are as follows. In the pre-bottleneck phase, c1 is close to the 
fitness optimum z0 = 0.2, such Δc1 is slightly negative (as in Figure 2). 
During the bottleneck, c1 fluctuates greatly, thereby decreasing to 
an average value such that Δc1 is almost 60% lower than before 
the bottleneck. In the third phase, after population size recovered 
to 2×104, c1 increases again slightly, but remains lower than at the 
beginning of the bottleneck. Thus, due to the bottleneck effect the 
population mean of the trait deviates from the fitness optimum more 
than before the bottleneck. This observation is obviously caused by 
genetic drift. Indeed, drift reduces the genetic variance at the end of 
the bottleneck phase by about 40% (relative to its value at the begin-
ning of the bottleneck) and may thus have a considerable effect on 
the speed of adaptation in humans. Furthermore, although Equation 
(8) describes an equilibrium scenario, this equation may qualitatively 
explain the larger deviation of the trait mean from the optimum at 
the end of the bottleneck.

The relatively large fluctuations during the bottleneck (not 
shown) are probably also due to the increased strength of genetic 
drift (compared to the initial phase). Drift may cause the system 
to change between the many deterministic equilibrium points 
(Barton, 1989). This has been examined in detail for the corre-
sponding two-locus model of stabilizing selection (Pavlidis, Metzler, 
& Stephan, 2012; Wollstein & Stephan, 2014): deterministic equilib-
rium points may be approached, but the trajectories may not stay 

at the equilibria. Drift may lead to frequent crossings of the sepa-
ratrices in the phase plane.

4  | DISCUSSION

4.1 | Overview

We analyzed a polygenic model formulated explicitly in population 
genetic terms. This model describes the effects of both directional 
and stabilizing selection and of mutation on a single quantitative 
trait in a diploid population of finite size. First, we derived the equi-
librium distribution of the allele frequencies by diffusion approxima-
tion under the assumption that the trait mean is a fast variable on 
the time scale of the allele frequencies. This led to a formula describ-
ing the equilibrium distribution at each unlinked locus as a muta-
tion–selection–drift balance (Equation (11)). We tested this equation 
by computer simulation using parameter values inferred for human 
height, a well-studied polygenic trait. Second, assuming that a sud-
den environmental shift of the fitness optimum occurs while the 
population is in equilibrium, we studied the adaptation of the trait 
to the new optimum in the short-term phase (defined by 

(

sc2
(

0
))

−1 
generations). The speed of adaptation depends critically on the equi-
librium genetic variance, which is approximately constant and given 
by Equation (14). Thus, the genetic variance of a population with 
small size and/or low mutation rate may deviate greatly from the de-
terministic value, namely l�2 (Jain & Stephan, 2015, 2017a). Third, the 
contribution of an individual locus i to polygenic adaptation in the 
presence of genetic drift depends on the compound locus-specific 
parameter �ipi

(

0
)

qi
(

0
)

, such that only for large values of this pa-
rameter the frequency shift of the trait-increasing allele at locus i in 
the short-term phase is coherently positive (i.e., for large effect sizes 
and/or initial allele frequencies around 0.5). Fourth, we found that 
population size bottlenecks may keep the trait mean further way 
from the fitness optimum (than a constant population size) by de-
creasing the genetic variance of the population. In the following, we 
discuss the consequences of these findings for polygenic adaptation.

4.2 | Implications for the detection of 
polygenic selection

Our results show that the detection of polygenic selection in the 
genome may be hampered by the effects of genetic drift. Since in 
the polygenic case selection on individual loci is generally weak, 
the detection of it is facilitated when the allele frequencies shift in 
the same direction after an environmental change (Jain & Stephan, 
2017b). Such a coordinated shift is predicted by the deterministic 
model (see Equation (18)). However, in a finite population expe-
riencing drift we found a more complex picture, namely that only 
for sufficiently large values of the parameter �ipi

(

0
)

qi
(

0
)

 the fre-
quency shift of the trait-increasing allele at locus i in the short-term 
phase is positive (Figure 5). Thus, depending on the distribution of 

F I G U R E  5   Allele frequency shift �pi at locus i, i = 1, …, 200, in 
the short-term phase after the environment change versus the 
compound parameter �ipi

(

0
)

qi
(

0
)

. The filled circles denote the 
theoretical expectations predicted by the deterministic model 
(Equation (18)); their average over all 200 loci is shown by the solid 
line, while the average over the simulated values is indicated by the 
dashed line
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effects and the allele frequencies at the time when the environment 
changes, the detection of polygenic selection in the genome may be 
difficult.

4.3 | Effects of population size bottlenecks and 
rapid adaptation in humans

Adaptation of populations to new environments is often accom-
panied by population size bottlenecks. Because bottlenecks re-
duce the genetic variance, they may lead to larger deviations of the 
trait mean from the optimum. This is predicted qualitatively by our 
Equation (8) (although this equation describes an equilibrium sce-
nario). Furthermore, it was demonstrated by simulation. For our 
simulations, we used parameter values that mimic the evolution of 
human height. Our simulations suggest that due to a major bottle-
neck of about 5,000 generations after humans moved out of Africa 
the population mean of this trait deviated about 60% more from the 
phenotypic optimum than before the bottleneck and genetic varia-
tion was reduced by about 40% at the end of the bottleneck.

Although genetic drift may reduce the chance to detect polygenic 
selection in the genome (see above), adaptive differences in human 
height between southern and northern populations in the past 100 
generations have been observed (Turchin et al., 2012). This suggests 
that the genetic variance was relatively high in the human population 
before the bottleneck and was not too severely reduced during the 
bottleneck, as indicated by our simulations. These results appear to be 
consistent with Equation (14), which predicts a relatively high value of 
the stationary genetic variance of 0.62 l�2 for a constant population of 
size N = 2×104 and μ = 10−5 (see above).

4.4 | Extension of the model

In our model, we considered only a single trait that is controlled by a 
large number of loci. Some aspects of the model, however, can also 
easily be generalized to selection on multiple traits (pleiotropy). For 
instance, to examine the effect of pleiotropy on the speed of adap-
tation after a sudden environmental change, we consider the pleio-
tropic model that was recently proposed by Simons et al. (2018). In 
this model, an individual's phenotype is described as a vector in an 
n-dimensional Euclidian space, in which each dimension corresponds 
to an additive, continuous quantitative trait. The focus is on one of 
these traits, where the total number of traits parameterizes pleiotropy. 
Fitness is assumed to decline with distance from the optimal pheno-
type and is described by a Gaussian distribution.

Then, for a large extent of pleiotropy (large n values) the ex-
pected changes in the mean traits c⃗1 are given by (Simons et al., 
2018, Equation (A46))

where c2≪w2. Here, c⃗1 is a vector encompassing the mean values of 
the traits, Δc⃗1 measures the deviations of the population means from 
the trait optima, c2 is the genetic variance of the population as above, 
and w2 quantifies the strength of selection and is given in our model by 
1/s. In the case n=1, Equation (19) is thus identical to our Equation (6) 
if mutation and the third moment are neglected.

For the expected change of the allele frequency p at the focal 
locus due to selection Simons et al. (2018) found (see their Equation 
(A48))

Here, �2 is the square of the magnitude of vector 𝛾, which con-
tains the effect sizes of the focal locus on the n traits. The dot de-
notes a scalar product between Δc⃗1 and 𝛾. Therefore, in the case 
of a single trait Equation (20) agrees with the selection part of 
Equation (5).

The conclusion from this result is that in the highly pleiotropic 
case the strength of directional selection depends not only on the 
effect sizes of the alleles on the traits (summarized in vector 𝛾), 
but also on the angle between Δc⃗1 and 𝛾 . This observation agrees 
with Lande’s (1979) general results on multivariate selection. If 
the vectors Δc⃗1 and 𝛾 are not parallel, the speed of adaptation is 
reduced.
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APPENDIX 

DERIVATION OF EQUATION (15)
We write the normalization constant C (omitting index i for locus i) as

and expand the exponential function up to the linear term of the Taylor series. This results in a sum of three integrals

which can be expressed as beta functions. Using well-known properties of the beta function leads then immediately to Equation (15).
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