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Abstract
"Science means constantly walking a tight rope" Heinrich 
Rohrer, physicist, 1933. Community-acquired pneumonia 
(CAP) is the leading cause of death from infectious disease 
worldwide and disproportionately affects older adults 
and children. In high-income countries, pneumonia is 
one of the most common reasons for hospitalisation and 
(when recurrent) is associated with a risk of developing 
chronic pulmonary conditions in adulthood. Pneumococcal 
pneumonia is particularly prevalent in older adults, and 
here, pneumonia is still associated with significant mortality 
despite the widespread use of pneumococcal vaccination 
in middleand high-income countries and a low prevalence 
of resistant organisms. In older adults, 11% of pneumonia 
survivors are readmitted within months of discharge, often 
with a further pneumonia episode and with worse outcomes. 
In children, recurrent pneumonia occurs in approximately 
10% of survivors and therefore is a significant cause of 
healthcare use. Current antibiotic trials focus on short-term 
outcomes and increasingly shorter courses of antibiotic 
therapy. However, the high requirement for further treatment 
for recurrent pneumonia questions the effectiveness of 
current strategies, and there is increasing global concern 
about our reliance on antibiotics to treat infections. Novel 
therapeutic targets and approaches are needed to improve 
outcomes. Neutrophils are the most abundant immune cell 
and among the first responders to infection. Appropriate 
neutrophil responses are crucial to host defence, as 
evidenced by the poor outcomes seen in neutropenia. 
Neutrophils from older adults appear to be dysfunctional, 
displaying a reduced ability to target infected or inflamed 
tissue, poor phagocytic responses and a reduced capacity to 
release neutrophil extracellular traps (NETs); this occurs in 
health, but responses are further diminished during infection 
and particularly during sepsis, where a reduced response to 
granulocyte colony-stimulating factor (G-CSF) inhibits the 
release of immature neutrophils from the bone marrow. Of 
note, neutrophil responses are similar in preterm infants. 
Here, the storage pool is decreased, neutrophils are less able 
to degranulate, have a reduced migratory capacity and are 
less able to release NETs. Less is known about neutrophil 
function from older children, but theoretically, impaired 
functions might increase susceptibility to infections. Targeting 
these blunted responses may offer a new paradigm 
for treating CAP, but modifying neutrophil behaviour is 
challenging; reducing their numbers or inhibiting their 
function is associated with poor clinical outcomes from 
infection. Uncontrolled activation and degranulation can 
cause significant host tissue damage. Any neutrophil-based 
intervention must walk the tightrope described by Heinrich 
Rohrer, facilitating necessary phagocytic functions while 
preventing bystander host damage, and this is a significant 
challenge which this review will explore.

INTRODUCTION
Community-acquired pneumonia (CAP) is the 
leading cause of infectious death globally1 2 and 
disproportionately affects those at the extremes of 
age. CAP is one of the leading causes of sepsis in 
children (we have defined preterm infants as infants 
born before 38 weeks’ gestation; infants as term to 
1 year of age; children as 1–12 years of age; and 
young adults as 12–18 years of age), and pneumonia 
has some of the poorest outcomes in childhood 
sepsis.3 Peak incidence of CAP in children occurs 
at 2 years of age.2 At the other end of the spectrum, 
more than 80% of all episodes of CAP occur after 
60 years of age, where CAP-related mortality is 
highest.4 Older adults with CAP are more likely to 
develop serious complications such as acute respira-
tory distress syndrome (ARDS) and sepsis.5

In child survivors of sepsis, a quarter of children 
are discharged with some form of disability, and 1 
in 10 ha severe disability at discharge.3 Recurrent 
pneumonia occurs in up to 10% of CAP cases in 
children. Adult survivors of CAP are at increased 
risk of death for up to 10 years following recovery, 
and CAP survivorship is associated with poorer life 
satisfaction, increased healthcare expenditure, need 
for domiciliary care, frailty5 and high readmission 
rates.6 Eleven per cent of older adults are read-
mitted within 30 days, often for a secondary infec-
tion.6 These secondary infections are associated 
with increased length of stay, mortality and further 
readmissions.6

The direct and indirect costs of pneumonia 
exceed €10 billion per annum in Europe,7 repre-
senting a substantial cause of disability adjusted 
life years lost.7 Although the prevalence of pneu-
monia in young children is falling (in part due to 
widespread childhood vaccination programmes), 
it remains a significant cause of mortality and 
morbidity worldwide.2 Furthermore, the United 
Nations predict a doubling in the number of people 
aged over 65 years in the next two decades,8 and 
therefore, CAP is likely to remain a significant clin-
ical and economic burden globally at both extremes 
of age. Antibiotics, intravenous fluids and oxygen 
remain cornerstones of CAP treatment. However, 
while improving CAP management to improve 
health outcomes is significant to patients, carers, 
healthcare providers and policy makers, this must 
be balanced with the need for appropriate antibiotic 
stewardship.

This review will explore why children and 
older adults are more susceptible to pneumonia 
and consider what therapeutic strategies might be 
deployed to improve outcomes.
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Table 1  Aetiology of hospitalised CAP in adults in Europe

Causative pathogen
Frequency
(%)

Bacterial pathogens 0–47

 � Streptococcus pneumoniae 11–68

 � Haemophilus influenzae 5.3–12.3

 � Legionella pneumophilia 0–12.8

 � Staphylococcus aureus 0–11.8

 � Moraxella catarrhalis 0–5.4

Gram-negative bacteria 0–24.2

 � Mycoplasma pneumoniae 0.7–32.0

 � Chlamydia pneumoniae 1.0–26.5

Viruses 0–34

 � Influenza viruses 15–19

 � Rhinoviruses 0.7–12.0

 � Respiratory syncytial virus 3–4

 � Parainfluenza 3

 � Metapneumovirus 3

 � Adenoviruses 0.4–04

 � Bacterial–viral coinfection 31

The main causative organisms for CAP are listed, with frequency expressed as a 
percentage. Relative frequencies are pooled from multiple studies; some studies did 
not test for certain pathogens. Adapted from Welte and Köhnlein,4 Ewig et al9 and 
Holter et al.10

CAP, community-acquired pneumonia.

Table 2  The aetiology of CAP requiring hospitalisation in children 
across Europe

Pathogen Frequency (%)

Respiratory syncytial virus 20–28

Rhinovirus 15–27

Human metapneumovirus 10–13

Adenovirus 4.3–27.0

Mycoplasma pneumoniae 8.0–8.2

Parainfluenza viruses 4.7–7.0

Influenza viruses 6.9–7.0

Streptococcus pneumoniae 4.0–25.3

Haemophilus influenzae 32.6

Moraxella catarrhalis 44.7

The main causative organisms for CAP are listed, with frequency expressed as a 
percentage. Adapted from Bhuiyan et al12 and Jain et al.13

Aetiology of CAP in adults
Common causes of CAP are listed in table 1, although identi-
fying a causative pathogen is challenging, even in prospective 
studies.4

Across high-income countries, Streptococcus pneumoniae (SP), 
non-typeable Haemophilus influenzae (ntHI) and Mycoplasma 
pneumoniae are the most common causative bacteria identified 
in CAP,4 9 with no significant differences in unselected cohorts 
of older versus younger adults. Certain patient characteristics 
increase the likelihood of different causative bacteria. Gram-
negative pathogens, ntHI and Staphylococcus aureus are more 
commonly found in patients with existing lung disease and those 
from nursing homes4 who have significantly increased mortality 
from pneumonia. Bacterial and viral coinfections are common, 
identified in up to 31% of adults admitted to hospital with CAP; 
however, pure viral CAP appears to be less common than CAP 
with a pure bacterial cause.10 Secondary bacterial pneumonia 
following viral infection is associated with high mortality and is 
the leading cause of death from influenza.11

Aetiology of CAP in children
Determining aetiology is more challenging in children than 
in adults. Young children are not typically able to expectorate 
sputum and have low rates of blood culture positivity. Children 
also have high carriage or colonisation rates of common respira-
tory pathogens. For example, in healthy children, certain patho-
gens can be present at rates of 20%–25% in nasopharyngeal 
swabs12 13; however, certain pathogens are infrequently detected 
in asymptomatic children, and the presence of these usually indi-
cates clinically relevant infection. Overall, viral pathogens are 
more common in children; common causes are listed in table 2. 
Bacterial–viral coinfection is also common12 and is associated 

with increased risk of adverse outcomes as reported in adult 
populations.

Risk factors for developing CAP in older adults 
and young children
There are some well-established risk factors that partially explain 
the high incidence of CAP in the older adult. Advanced age alone 
is a significant risk factor for CAP,9 and during ageing, the human 
host and respiratory system undergo structural, physiological 
and pathological changes that can lower resilience to infection, 
as described in figure 1A. These often reflect the accumulation of 
multimorbidity and organ insults endured over the years. Older 
adults are often more challenging to diagnose with CAP. They 
commonly present late with atypical features, such as delirium 
while lacking classical signs and symptoms of pneumonia, such 
as fever and cough.14

Vaccination against pneumococcal disease is common in 
high-income countries.15 In older adults, especially frail older 
adults, the response to vaccination is impaired.16 In older adults, 
antibody levels often drop below protective levels 5 years after 
vaccination.17

Young children have not had the lifespan to develop accu-
mulated insults, which increase the susceptibility to infection. 
However, there are accepted risk factors, including younger age, 
existing respiratory disease, previous respiratory infection, vacci-
nation status and presence of environmental pollution, including 
parental smoking (see figure 1B).

Host immune system at the extremes of age
The host immune response to infection changes across the life 
course, both in the very young and with age and frailty. Changes 
associated with increasing age are termed immunosenescence. 
The deficits in innate and adaptive immunity seen with ageing are 
well described, and all predispose towards a less organised and 
effective response to infection, as described in table 3. Studies 
in children have mainly focused on those with the presence of a 
specific disease or immunodeficiency, but in the few studies of 
healthy children, there also appear to be alterations in immune 
function, which might increase the susceptibility to infection.

The immune system in neonates must strike a balance between 
exposure to multiple pathogens while tolerating acquisition of 
colonising organisms, without creating a hostile inflammatory 
environment. Neonates rely heavily on transfer of immunoglob-
ulins from the mother both via the placenta and in breastmilk; 
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Figure 1  Factors increasing susceptibility to CAP. (A) Factors present in older adults (starting at the top and moving clockwise): (1) age alone 
is associated with an increased burden of CAP; (2) the mechanics of ventilation are impaired with age, the thoracic cage is less compliant, the 
diaphragm is weaker, and microaspiration is common; (3) the lung parenchyma loses elasticity, leading to senile emphysema; (4) the mucociliary 
escalator is less efficient in older adults, reducing the clearance of bacteria and microparticles from the lung; (5) the lung microbiome alters with 
age84; (6) ageing is associated with a low-grade pulmonary inflammation; (7) multimorbidity and poor nutritional status; (8) polypharmacy are 
common in old age and CAP; and (9) older adults exhibit reduced responsiveness to hypoxia and hypercapnia.85 (B) Factors present in younger 
children (starting at the top and moving clockwise): (1) younger age is associated with risk of CAP86; (2) asthma increases the risk of CAP87; (3) 
previous respiratory infection increases the risk of future CAP86; (4) impaired innate immunity; (5) impaired adaptive immunity increases the risk of 
developing CAP; (6) not being vaccinated against common respiratory pathogens increases the risk of CAP; (7) passive smoking increases the risk of 
CAP; and (8) environmental pollution increases the risk of CAP in children. CAP, community-acquired pneumonia.

Table 3  Alterations in the innate and adaptive immune system of infants and older adults

Cell Changes in healthy older adults Changes seen in healthy infants

Neutrophils Increased incidence of neutropenia32

Altered cytokine production34

Impaired migration33

Reduced pathogen killing35

Increased apoptosis38

Reduced migratory ability55

Reduced degranulation57

Preserved phagocytosis88

Reduced NET generation60

Preserved ROS generation53

Macrophage/ monocytes Reduced phagocytosis and production of free radicals89

Possible reduced efferocytosis90

Decreased ability to antigen present due to reduced expression of MHC class 
II91

Reduced ability to secrete inflammatory mediators after LPS 
stimulation92

Dendritic cells Relative frequency controversial93

DC function maintained in healthy older adults94 but impaired in frail older 
adults95

Negative correlation between the number of plasmacytoid DC and 
age

NK cells Increased numbers but reduced cytotoxicity96 Reduced cytotoxicity97

NK cells from children are phenotypically different from adults in 
terms of cell surface receptors.98

Adaptive Immunity Reduced numbers of naïve T cells
T cell exhaustion
Decreased capacity to respond to novel antigens
Lower affinity antibodies
Reduced numbers of B cells99

Increased Tregs
Blunted humoral responses97

Table 3 gives an overview of cellular features of changing features of immunity in humans with ages. Features in neutrophils are expanded on later in the text.
DC, dendritic cell; LPS, Lipopolysaccaride; MHC, major histocompatibility complex; NET, neutrophil extracellular trap; NK, natural killer; ROS, reactive oxygen species; Treg, T 
regulatory lymphocyte.

thus, maternal immunity is key to early protective responses.18 
Mode of delivery also influences the early development of 
immunity in the neonate.

Alveolar macrophages (AMs) are the first cells activated by 
pulmonary infection and are avid phagocytes19; their response 
is especially important in SP pneumonia. Once their phagocytic 
capacity is overwhelmed, they orchestrate a proinflammatory, 
antimicrobial local environment to facilitate pathogen killing 
by recruiting neutrophils to the airways. AMs are also able to 
coordinate an anti-inflammatory and restorative environment to 

facilitate repair, clearing apoptotic neutrophils to allow resolu-
tion of inflammation and prevent excessive tissue damage from 
the cytotoxic contents of neutrophil granules.19

Neutrophils are key effector cells during infections in CAP, as 
shown by the high incidence and severity of CAP in patients with 
specific neutrophil deficits20 and in animal models of neutro-
phil depletion, which demonstrate increased susceptibility and 
severity of pneumonia.21 Neutropenia is an important risk factor 
for CAP; however, in this population, the aetiology is often due 
to Gram-negative pathogens.22 There have been advances in our 
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Figure 2  Classical neutrophil functions. (1) Neutrophils actively patrol 
the circulation and are able to detect host-derived and pathogen-
derived inflammatory signals via interaction with endothelial cells. (2) 
Neutrophils become tethered and roll along the endothelial wall in a 
process mediated by selectins. (3) Activation of integrins causes firm 
adhesion. (4) Cytoskeletal rearrangement allows migration through the 
endothelial junction. (5) Once in the interstium, neutrophils are exposed 
to a medley of chemoattractants and begin to migrate to the site of 
injury. (6) Neutrophils secrete a range of cytokines that participate in 
orchestrating the immune response. (7) Bacterial killing is achieved 
through phagocytosis, exposing entrapped bacteria to antimicrobial 
proteins and reactive oxygen species within the phagolysosome. (8) 
NETosis is a process by which decondensed chromatin is extruded into 
the extracellular space covered with an array of neutrophil-derived 
antimicrobial protein. (9) To migrate through dense extracellular 
matrices, neutrophils use granules containing high concentrations of 
proteases. (10) Clearance of an apoptotic neutrophil by a macrophage. 
Once an infection is contained, apoptosis and clearance of apoptotic 
neutrophils are central to the resolution of inflammation. Persistence 
of a proinflammatory neutrophilic response is associated with greater 
tissue damage. NETosis, generation of neutrophil extracellular traps.

understanding of how neutrophil functions alter with age and 
infection, which may increase the susceptibility to CAP.

Classical neutrophil responses to bacterial and viral 
challenges
To understand how neutrophil functions might contribute to 
poor outcomes in CAP requires an understanding of how these 
cells function optimally. Classical neutrophil functions have been 
extensively reviewed elsewhere (by Amulic et al23), and figure 2 
provides a summary of these functions. Of note, neutrophils 
are among the first-line effector cells to be recruited in inflam-
mation, whether the cause of inflammation is cancer, infection 
or autoimmunity to kill potential pathogens or clear inflamed 
tissue. Neutrophils also have a role in the resolution of inflam-
mation and angiogenesis.24 The importance of neutrophils in 
infection and inflammation is demonstrated clinically by specific 
congenital neutrophil deficits such as chronic granulomatous 
disease, which predisposes to severe, recurrent and potentially 
fatal infections20 but also by conditions where neutrophils 
responses are poorly contained, such as alpha 1 antitrypsin 
deficiency. Neutrophils have the potential to cause significant 
tissue damage due to their cytotoxic contents and therefore are 
maintained in three main states: quiescent, primed and acti-
vated.25 Priming is a process whereby exposure to a stimulus 
then increases the neutrophil response to a subsequent agonist; 

it is a prerequisite for tissue damage and is thought to exist as a 
safety mechanism to prevent unnecessary activation. The lung is 
a key site of neutrophil depriming, but this function is impaired 
in lung disease, potentially leading to the sustained activation of 
neutrophils.26

The lung has a stereotyped inflammatory response to infec-
tion regardless of aetiology, and this response includes the 
infiltration of neutrophils and macrophages in response to 
chemotactic signalling, which originates in the lung. Viruses are 
known to impair the host immune responses, allowing oppor-
tunistic bacteria and fungi to invade tissue. A blunted neutro-
phil response to these secondary infections has been implicated 
in the increased prevalence of CAP after influenza. In humans, 
influenza A infections lead to increases in local and systemic 
concentrations of interleukin 8 (CXCL8), causing ] neutro-
phil activation and recruitment, and concentrations of CXCL8 
correlate with increasing disease severity.27 In keeping with this, 
neutrophils are increased in the lungs and blood after infection 
with pathogenic viruses in mice and humans,28 with cell deple-
tion murine studies demonstrating that neutrophils are necessary 
for recovery from severe, but not mild, influenza A infection.29 
In animal models, neutrophil migration to the lungs during a 
viral challenge appears to occur in two waves: the first wave 
peaks at 24 hours, and the second wave then increases over time 
until disease resolution or death. It is hypothesised that these 
waves may reflect different phenotypes of neutrophils, first, clas-
sical antimicrobial and then prorepair,30 with complex interac-
tions between innate immune cells.

Immunosenescence: impact of an ageing host on neutrophil 
function
Senescence or biological ageing is the gradual deterioration of 
functional characteristics associated with age and can refer to 
a whole organism (such as the ageing human), a tissue or cell. 
Immunosenescence is an age-associated immune dysfunction and 
is associated with ‘inflamm-ageing’,14 demonstrated by elevated 
levels of proinflammatory cytokines in older adults, leaving their 
immune system continuously activated.

Neutrophil functions also demonstrate immunosenescence. 
Neutrophil numbers are maintained, both in the periphery and as 
progenitors in the bone marrow31; however, older adults are more 
prone to neutropenia during infection as response to G-CSF appears 
blunted.32 Some studies suggest that neutrophils from older adults 
display altered cytokine production, but there is inconsistency as 
to whether this manifests as decreased or increased proinflam-
matory cytokines, and this might be stimuli specific. Chemo-
taxis is impaired in healthy older adults, demonstrating reduced 
accuracy of migration without impeding the ability of cells to 
move.33 Neutrophils from healthy older adults display a decreased 
capacity to phagocytose opsonised bacteria.34 Reactive oxygen 
species (ROS) generation and associated antimicrobial killing are 
impaired,35 although these defects are not uniform and again may 
be stimuli specific.36 Generation of neutrophil extracellular traps 
(NETosis) is impaired in healthy older adults and in older mice in a 
S. aureus infection model.35 37 Neutrophils from older donors have 
increased susceptibility to spontaneous and induced apoptosis and 
reduced capacity to prolong their lifespan.38 These blunted func-
tions predispose towards infection. Of note, however, age-related 
neutrophil dysfunction does not appear ubiquitous or permanent. 
A recent study in aged cyclists has shown reduced features of 
immunosenescence across a number of cell types and functions,39 
and physical activity has been shown to reduce systemic inflamma-
tion in a prospective study of older adults.40
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Table 4  Neutrophil functions in healthy preterm and term neonates 
compared with healthy adult values

Neutrophil function Preterm infant Term infant

Migratory ability55 ↓↓ ↓

Degranulation57 ↓↓ ↓/ ↔

Phagocytosis88 ↓↓ ↔

NET generation60 ↓↓ ↓

ROS generation53 ↔ ↔
References are as given.
↔, similar ‘normal’ function; ↓, reduced function; NET, neutrophil extracellular trap; 
ROS, reactive oxygen species.

Neutrophil responses to pneumonia in older adults
During severe infections in older adults and aged mice, profound 
neutrophil dysfunction has been described across all effector 
functions. Toll-like receptor signalling (implicated in neutrophil 
ROS generation, cytokine production and increased survival) is 
decreased in older age.41 The accuracy of neutrophil migration is 
impaired in older adults with CAP, and this remains diminished 
for at least 6 weeks following the episode of CAP,33 a pattern not 
seen in neutrophils isolated from young adults with CAP. The 
role of ageing in phagocytosis remains controversial. Neutrophil 
phagocytosis is reduced in some42 but not all studies.43 This is 
likely to be related to methodological issues and may be stimuli 
specific. Timing is likely to be crucial, some studies looked at 
phagocytosis three days after onset of sepsis, and others exam-
ined soon after the onset of sepsis. Phagocytosis, especially of SP, 
is markedly increased by opsonisation.44 This antibody-mediated 
process can be limited at the extremes of life due to immaturity 
or failure to generate antibody in response to vaccination.16 45

Reduced NETosis has been described in older adults with 
CAP,46 but both aggravated and impaired NETosis is associ-
ated with increased mortality, supporting perhaps there being 
an ‘ideal’ level of NETosis, which might be stimuli specific. 
High levels of NETosis predict progression to ARDS and high 
mortality.47 NETosis may be less protective in older adults with 
CAP as both SP and ntHI have mechanisms to evade or degrade 
NETs.48 Finally, the blunted ability of neutrophils from older 
people to respond to survival signals might also compromise 
host response to CAP. The high reinfection rate following CAP 
in older people may also reflect immunosenescence as patients 
with the most dysfunctional neutrophils are at the highest risk of 
secondary infections.49

Neutrophil function in children
Examining the impact of infection on neutrophils in children is 
challenging for three reasons. First, children are a very hetero-
geneous population with vast differences seen from preterm 
infants through to young adults.50 Second, the assays used 
previously required high numbers of neutrophils and thus large 
volumes of blood. Often in studies of infants, cord blood is used; 
however, cord blood is not entirely representative of periph-
eral blood. Third, there are ethical issues with collecting blood 
from healthy children. There is an established body of evidence 
regarding neutrophil function in preterm and term infants, and 
children with established diseases affecting neutrophil function, 
such as haematological malignancies or specific neutrophil disor-
ders such as chronic granulomatous disease, but a paucity of data 
regarding neutrophil functions in healthy children who develop 
infection with no known neutrophil defect, despite one-third 
of children who develop sepsis having no pre-existing medical 
condition.3

Neutrophil function in preterm and term infants
The fetus develops in a sterile intrauterine environment, 
meaning that at birth, it relies on its innate immune system; 
however, neutrophils from preterm infants have significant 
functional differences compared with those from older infants 
(see table 4). Neutrophils from preterm infants have functional 
responses which reflect that of older adults. Preterm infants have 
higher levels of circulating immature granulocytes and increased 
frequency of neutropenia due to low cell mass of neutrophils 
when compared with term neonates or adults.51 This high number 
of circulating immature neutrophils contributes to dysfunction, 
as immature neutrophils are functionally poor.50The low cell 

mass typically rises to levels seen in adults by 4 weeks of age but 
remains blunted if there is concurrent illness.52

Preterm infants have reduced migrational capacity compared 
with term infants,53 but by 3 weeks of age, migration is compa-
rable to that of term infants.54 The mechanisms underlying the 
impaired migration are thought to relate to altered intracellular 
calcium mobilisation and abnormal cytoskeletal arrangement.55 
Degranulation has been demonstrated to be preserved in term 
infants compared with adults, but reduced in preterm infants56; 
conversely, other studies have shown that term infants also have 
reduced degranulation compared with adults.57 Some of the 
differences seen are stimuli specific, with preterm infants having 
normal phagocytosis to bacteria but reduced phagocytosis to 
Candida species.53 In stressed preterm or term infants, phagocy-
tosis is significantly reduced to all pathogens.50 ROS generation 
is normal in preterm and term infants but reduced when these 
infants are under stressful conditions,58 and when the preterm 
infants remain unwell, their ability to generate ROS remains 
impaired at 1–2 months.58

Deficits in neonatal phagocytosis have been attributed to 
lack of maternal immunoglobulin to facilitate opsonisation.18 
Phagocytosis is poorest in infants <33 weeks gestation and 
persists for 1–2 months.18 Administration of immunoglobulin 
to preterm infants restores phagocytosis59 in vitro; however, 
trials of immunoglobulin therapy in neonatal sepsis have failed 
to demonstrate any clinical benefit. NETosis is impaired in both 
term and preterm infants; this appears to not be stimuli specific, 
but infants are only able to generate NETs via a ROS-dependent 
mechanism.60 Apoptosis and clearance of apoptotic neutrophils 
are also abnormal in preterm infants, with delayed apoptosis 
contributing to pulmonary injury.61

Understanding the mechanisms underlying these observations 
is challenging. Certainly, the immune system of an infant needs 
to have significant tolerance to prevent uncontrolled activation 
on exposure to the maternal microbiome and environmental 
factors.62 The limited number of neutrophils recovered from 
infants has meant that investigating the underlying mechanisms 
of dysfunction is challenging. However, a recent study by Kan 
et al has investigated the dysfunction seen in monocytes from 
preterm infants and concluded that there are major differences 
in the metabolic pathways between preterm infants and adults, 
and this may explain the broad defects seen.63

It is unclear when neutrophils from children develop ‘young 
adult’ characteristics. Yegin et al identified that migration was 
significantly poorer in healthy children than in healthy adults,64 
but it reached adult levels between 2 and 5 years of age. This 
blunting of responses coincides with the period of greatest 
susceptibility to infection, again linking infection susceptibility 
and neutrophil responses at the extremes of age.
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Proposed intracellular mechanisms associated with 
neutrophil dysfunction in CAP
Cytosolic calcium is crucial to many neutrophil effector func-
tions. Impaired calcium flux has been associated with defective 
migration, ROS generation and degranulation,65 and neutro-
phils from older adults have higher resting calcium levels and 
reduced calcium flux during effector functions.36 Intracellular 
calcium flux and protein C kinases have been implicated in age-
associated changes in apoptosis.66 The phosphoinositol 3-kinase 
(PI3K) signalling pathway has been implicated in neutrophil 
migration and the ability of neutrophils to appropriately target 
infectious or inflammatory signals. Modification of PI3K signal-
ling improves migratory accuracy,67 and this intracellular signal-
ling pathway is also targetable by statins through their effects on 
small GTPases.

Studies of aged human CAP have not assessed neutrophil 
function before the infective insult, so it is unclear whether the 
impaired effector functions seen in CAP reflect a lower baseline 
preceding the event or a response to CAP. However, exposing 
neutrophils from young adults to pooled plasma from older 
patients with CAP and sepsis replicates the functional deficits 
seen in sepsis,33 which suggests that the CAP environment can 
alter cellular function. In keeping with this, murine models of 
sepsis in older mice show transcriptomic changes in neutrophils 
which would contribute to cellular dysfunction, implicating 
cellular energetics and epigenetics.68

Neutrophils have very few mitochondria, which do not play a 
role in energy metabolism, and the energy required for neutro-
phil activity is derived from glycolysis.69 Effector functions 
such as migration and NETosis are glucose dependent, and the 
importance of the pentose phosphate pathway for neutrophil 
function is clearly observed in patients with G6PD deficiency or 
impairment, in which the development of infections is common 
due to dysfunctional neutrophil microbicidal mechanisms. 
There is some evidence to suggest glycolytic activity is increased 
with age, with an increase in pyruvate kinase activity,70 which 
would be predicted if ageing was associated with constitutive 
PI3K activity.

Hyperlactataemia is an independent predictor of mortality 
in both pneumonia and sepsis.71 Much evidence now supports 
the view that hyperlactataemia is not only due to tissue hypoxia 
or anaerobic glycolysis but also due to increased aerobic glycol-
ysis (the conversion of pyruvate to lactate to generate ATP in 
the presence of oxygen). Neutrophils are highly glycolytic cells 
leading to significant lactate production, especially when acti-
vated. Intracellular lactate can influence many intracellular 
pathways and interacts with the glycolytic pathway, reducing 
glycolysis and thus energy availability to the cell.

Recent studies involving the effects of tumour-derived lactate 
suggest that lactate may have an immunosuppressive effect in 
its local environment and is an active signalling molecule in a 
wide range of immune cells via specific receptors.72 73 In vivo 
models support the concept that lactate may be immunosup-
pressive since pretreatment with lactate reduces inflammation 
and injury in a sterile, lipopolysaccaride-mediated hepatitis and 
pancreatitis model.72 Inhibition of glycolysis in murine models 
of sepsis improved survival by decreasing lactate production and 
cytokine production.74 These studies all suggest that modulation 
of lactate biology may have therapeutic potential to enhance 
immune and neutrophil functions. New studies are urgently 
needed to explore the possibility of using neutrophils’ glycolytic 
pathway to enhance the response to infection, particularly in the 
extremes of age.

Neutrophil function as a therapeutic target
There is evidence to show that excessive or blunted neutrophil 
activity can worsen outcomes for patients, be they young or old. 
Neutrophils can cause significant tissue damage with proteases; 
this proteolytic activity is required for normal function but is 
also associated with tissue damage. High levels of proteases are 
identified in the bronchoalveolar fluid from patients with severe 
pneumonia75 and are associated with increased risk of ARDS. 
Proteases are also able to impair the function of the innate 
immune system by cleaving proteins required for activation. In 
animal models, inhibition of proteases leads to a reduction in 
inflammation and improvement in survival.76

Ex vivo treatment of neutrophils from patients with sepsis 
with G-CSF improves phagocytosis.77 However, clinical trials 
of G-CSF or GM-CSF in sepsis and or pneumonia have failed 
to replicate these results with no improvement in mortality78 79 
or in specific neutrophil functions.80 In addition, use of G-CSF 
risks increasing neutrophilic inflammation; however, several 
large meta-analyses have not demonstrated a significant increase 
in adverse outcomes with G-CSF treatment.78 79

NETosis has also been associated with significant tissue 
damage. Patients with the highest levels of NETosis had increased 
risk of progression to ARDS and increased mortality,47 although 
low levels of NETosis has also been associated with poor 
outcomes.81 Clearance of apoptotic neutrophils and appropriate 
levels of apoptosis are also crucial to resolution of inflammation; 
delayed apoptosis and failure to clear apoptotic neutrophils are 
associated with increased risk of progression to ARDS and high 
mortality.82

Clearly, this suggests that there is an optimal level of neutro-
phil functions, and any therapy targeting neutrophils needs to 
normalise rather than exaggerate function to prevent excessive 
tissue damage, which is associated with increased mortality. Early 
studies have suggested this can be achieved, potentially through 
modification of neutrophil signalling pathways.83

Conclusion
CAP can be considered as a sentinel event that signals high risk 
of short-term and long-term mortality and future readmission 
in both young children and older adults. Despite widespread 
use of vaccination, low prevalence of antimicrobial resistance 
and improvements in sepsis care, mortality and reinfection rates 
remain high, with survivors often left with significant impair-
ments. Age-related changes in neutrophil function may be one of 
the reasons that the very young and the very old are more likely 
to develop CAP, and heightened dysfunctional responses during 
infection may be causally associated with poorer outcomes and 
the increased likelihood of secondary infection. Our evolving 
understanding of immunology has allowed us to harness the 
immune system to better target cancer cells, and more recently, 
there is building evidence that immunosenescent neutrophil 
dysfunction can be improved. Individual cellular functions can 
be modified by focusing on selective pathways, but in the face 
of global cellular dysfunction at the extremes of age, there may 
be more benefit if fundamental biological pathways are targeted, 
such as cellular energetics. Modifying neutrophil therapeutically 
remains a challenge, but perhaps now is the time to walk the 
tightrope Heinrich Rohrer referred to and see if we can use this 
highly effective phagocyte to improve patient outcomes.
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