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Abstract
Colorectal cancer (CRC), a multifactorial disease, is usually induced and
developed through complex mechanisms, including impact of diet and lifestyle,
genomic abnormalities, change of signaling pathways, inflammatory response,
oxidation stress, dysbiosis, and so on. As natural polyphenolic phytochemicals
that exist primarily in tea, tea polyphenols (TPs) have been shown to have many
clinical applications, especially as anticancer agents. Most animal studies and
epidemiological studies have demonstrated that TPs can prevent and treat CRC.
TPs can inhibit the growth and metastasis of CRC by exerting the anti-
inflammatory, anti-oxidative or pro-oxidative, and pro-apoptotic effects, which
are achieved by modulations at multiple levels. Many experiments have
demonstrated that TPs can modulate several signaling pathways in cancer cells,
including the mitogen-activated protein kinase pathway, phosphatidylinositol-3
kinase/Akt pathway, Wnt/β-catenin pathway, and 67 kDa laminin receptor
pathway, to inhibit proliferation and promote cell apoptosis. In addition, novel
studies have also suggested that TPs can prevent the growth and metastasis of
CRC by modulating the composition of gut microbiota to improve immune
system and decrease inflammatory responses. Molecular pathological
epidemiology, a novel multidisciplinary investigation, has made great progress
on CRC, and the further molecular pathological epidemiology research should be
developed in the field of TPs and CRC. This review summarizes the existing in
vitro and in vivo animal and human studies and potential mechanisms to examine
the effects of tea polyphenols on CRC.
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Core tip: Colorectal cancer (CRC) has become the third most common cancer and the
fourth most common cause of cancer-related death, which is involved in a series of
complex mechanisms. Professors pay attention to searching for reasonable methods to
prevent and treat CRC. Tea polyphenols, as natural polyphenolic phytochemicals in tea,
have been demonstrated to prevent and treat CRC effectively. They may become a novel
medicine applied in CRC to prevent cancer and reduce the side effects of chemotherapy
medicines in the future. This review summarizes the molecular mechanism of tea
polyphenols acting on CRC.
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INTRODUCTION

Colorectal cancer
Colorectal cancer (CRC) has become the third most common cancer and the fourth
most  common  cause  of  cancer-related  death[1].  In  the  past  several  decades,  the
mortality  rates  and  the  incidence  of  CRC  have  declined,  and  death  count  has
maintained a long-standing decrease from a peak of 57644 in 1995 to 51651 in 2014[2].
However, for adults aged < 50 years, evidence has shown that the CRC incidence rate
has risen by 1.6% from 2000 to 2013, and mortality has increased by 13% from 2000 to
2014[2]. Usually, the outcome of CRC depends on the phase at diagnosis[3]. Therefore,
early detection and strong protective measures can effectively decrease the mortality
and morbidity of CRC[4]. The occurrence of CRC is related to many factors, including
inflammatory bowel disease, dietary factors, and lifestyle[5,6]. Furthermore, genomic
mutation  and  an  imbalance  in  gut  microbiota  are  also  viewed  as  significant
pathogenic factors that can induce tumorigenesis[1,3].

Molecular mechanisms of CRC
Several mechanisms, including those summarized below, have been related to the
onset and metastasis of CRC (Figure 1).

Diet and lifestyle: CRC is generally reported as diet- and lifestyle-related pathology
and is associated with several main factors: Diet, physical activity, consumption of
alcohol, cigarettes and aspirin[7].

Diet: Findings from a systematic review have demonstrated that various foods are
associated with CRC, positively or negatively[8]. In general, the higher or lower risk of
CRC is related to the proinflammatory or anti-inflammatory property of the food,
respectively[9].  Moreover,  different  foods  can  exert  the  function  via  different
mechanisms. We will take some of these foods as examples to explain the mechanism
that they act on CRC, briefly.

(1)  Red  and  processed  meats:  There  are  several  systematic  reviews  and
epidemiological  studies  indicating  that  intake  of  red  and  processed  meats  will
increase the risk of CRC[10-12]. Besides, a study demonstrated that the consumption of
red and processed meats was associated more strongly with an increased risk of CRC
with KRAS-wildtype, indicating that the potential mechanism should be studied[12].
Intake of red and processed meats at high temperatures results in the formation of
heterocyclic  amines  and polycyclic  aromatic  hydrocarbons,  and then allows the
formation  of  DNA  adducts  that  subsequently  cause  DNA  damage  to  promote
tumorigenesis[13,14]. In red meat, heme is present in high concentrations in the form of
myoglobin and a large amount of heme iron intake has been associated with a higher
risk of CRC[14]. Heme iron from red and processed meats can stimulate the metabolism
of nitrate/nitrite and the formation of N-nitroso compounds, and induce oxidative
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Figure 1

Figure 1  The general molecular mechanisms of colorectal cancer. CRC: Colorectal cancer; MPE: Molecular
pathological epidemiology; PA: Physical activity; CIN: Chromosomal instability; 67LR: 67 kDa laminin receptor; MSI:
Microsatellite instability; EMT: Epithelial-to-mesenchymal transition; WE: Warburg effect.

stress and lipid peroxidation (LPO) to trigger inflammatory response, and thereby
promote the development of CRC[14,15].

(2) Dietary fats: Dietary fats are also associated with CRC. A high intake of ω-6
polyunsaturated fatty acid (PUFA) and saturated fat has tumor-enhancing effects[16].
Rapid metabolism of arachidonic acid (AA), increased activities of phospholipases,
and elevated levels of cyclooxygenase (COX) and lipoxygenase (LPO) may suggest
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the potential mechanism of fatty acid promoting the incident of CRC[17]. However, ω-3
PUFA intake can reduce the risk of CRC, particularly with microsatellite instability
(MSI)-high cancer subtype or high FOXP3+ regulatory T cell (Treg cell) counts[18,19]. ω-3
PUFA exerts the effect of anticancer through several potential molecular mechanisms,
including suppression of AA-derived eicosanoid biosynthesis, impact on transcription
factor  activity,  gene expression,  and signal  transduction pathways,  increased or
decreased production of free radicals and reactive oxygen species (ROS), and so on[20].
In addition, marine ω-3 PUFA also protects against CRC through inhibition of the T
cell-suppressive  activity  of  Treg  cells [19].  In  addition,  oleic  acid,  the  main
monounsaturated fatty acid in olive oil also exerts a protective effect on CRC[21,22]. A
competitive inhibition by oleic acid of the ∆6-desaturase will suppress the eicosanoid
biosynthesis of AA to disrupt the tumor growth progress[21].

(3) Vitamin D: Vitamin D can inhibit the development of CRC, particularly of some
specific subtypes of CRC. The beneficial survival association of high vitamin D level is
stronger  for  CRC  with  lower-level  peritumoral  lymphocytic  reaction  than  for
carcinoma with higher-level reaction[23].  Vitamin D is hydroxylated in the liver to
produce 25(OH)D that serves as a standard indicator of vitamin D activity[23]. And,
then, 25(OH)D is hydroxylated further in the kidneys to produce a hormonally active
metabolite, 1,25-dihydroxyvitamin D[23].  Vitamin D and its metabolites exert their
antineoplastic effect by binding with the transcription factor vitamin D receptor[24].
Vitamin D may suppress signaling pathways and cytokines and modulate adaptive
immune cells, such as B cells, helper T cells (Th cells) and Treg cells[24]. Moreover,
vitamin D diet can also cause significant changes in the fecal microbial community
structure. During the development of CRC, vitamin D deficiency can not only cause a
sharp decrease in Akkermansia muciniphila but also induce changes in the expression of
mucus  and  goblet-cell  associated  genes,  so  that  the  gut  barrier  integrity  is
destroyed[25].

(4)  Dietary  fiber:  A  high  intake  of  dietary  fiber,  particularly  derived  from
vegetables and fruit, was inversely associated with CRC risk[26,27]. This association was
driven mainly by the position of the tumor, which was stronger for the risk of rectal
cancer[28]. However, a new study also indicated that the relationship of fiber and risk
of CRC is independent of tumor subsite or molecular marker[29]. In addition, higher
intake of dietary fiber was more strongly associated with lower risk for Fusobacterium
nucleatum  (F. nucleatum)-positive CRC, but not F. nucleatum-negative CRC[30].  The
findings suggest a potential role for intestinal microbiota in mediating the association
between fiber and CRC[30]. Fiber can be fermented by the gut bacteria into short-chain
fatty acids,  such as butyrate,  acetate,  and propionate,  that  possess a diversity of
tumorsuppressive effects[31]. High level of short-chain fatty acids produced from fiber
might alter pH, increase transit time of gut contents, and lead to differences in local
immune surveillance, and thereby reduce the growth of harmful species, such as F.
nucleatum[30].  In addition, the potential mechanism underlying fiber inhibiting the
development of CRC also contains other following aspects: increasing the stool bulk;
shortening the bowel transit time; diluting the effect of potential carcinogens; and
altering bile acid metabolism[26,32].

(5) Selenium (Se): Epidemiological investigation has demonstrated that higher Se
levels  were  inversely  associated  with  the  risk  to  develop  CRC  in  Europeans[33].
Usually,  dietary  Se  intake  is  essential  for  synthesizing  selenoproteins  that  are
important in inhibiting oxidative and inflammatory processes linked to colorectal
carcinogenesis[34]. Se supply might play an important role in regulating expression of
some selenoproteins, such as glutathione peroxidases (i.e., GPX1), selenoprotein F
(SELENOF),  selenoprotein  P  (SELENOP),  selenoprotein  K  (SELENOK),  and
components of the thioredoxin reductase system (TXNRD1-3), to reduce the oxidative
stress and inflammatory response[34,35]. However, some studies also suggested that the
selenoprotein expression may affect CRC development independent of the Se status,
even leading to the development of CRC with suboptimal Se status[34,35]. In addition, a
study also indicated that intake of Se nanoparticles can activate autophagy to promote
cancer cell death, through up-regulation of beclin 1-related signaling pathways[36].

(6)  Folic  acid:  Accumulating  evidence  displays  that  folic  acid  can  also  be  an
effective chemopreventive agent for CRC[37,38]. Supplemental folic acid has been shown
to prevent the loss of heterozygosity of the tumor suppressor gene that is deleted in
CRC and to stabilize its protein in normal appearing rectal mucosa of patients with
colorectal  adenomas[38].  In addition,  deficiency folic  acid may lead to inadequate
purine and pyrimidine synthesis and changes in methylation, with a concomitant
impact on DNA replication and cell division due to the disruption of folate cycle[39].
Thus, deficiency of folic acid can promote epidermal growth factor receptor (EGFR)
expression through reducing methylation of CpG sequences within its promoter[38].

And (7) Others: Other foods are also associated with CRC positively or negatively.
High sugar foods and spicy foods might have a positive association with CRC risk;
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however, vegetables, soy bean/soy products, seafood, and vitamins C, E and B12 play
a protective role against CRC risk[6-8]. These foods exert the promotive or protective
effect on CRC through modulating the inflammatory response, insulin resistance, and
the composition of gut microbiota mainly[40,41].

Physical activity: Physical inactivity has also been well demonstrated as a lifestyle
risk factor for CRC. There are many epidemiological studies indicating that physical
activity (PA) is associated with a statistically significant reduction in CRC risk[42-45].
Moreover, the association may depend on the location of tumor and gender[42-45]. Some
meta-analysis and systematic reviews indicated that PA is associated with reduced
risk of both proximal colon and distal colon cancer, but the difference was observed
between the colon and the rectum[42,43]. There is even no association observed between
PA and rectal  cancer[43].  And, gender is  another factor to impact the relationship
between the PA and CRC. A systematic review has observed an apparent interaction
between sex and PA in relation to CRC risk,  that  being a statistically significant
reduced  risk  among  men  but  statistically  nonsignificant  reduced  risk  among
women[45]. In addition, there is a potential interactive effect of PA and sedentary time
on CRC risk. The benefits of moderate to strenuous-vigorous PA on CRC risk are
observed  most  clearly  among  those  with  more  sedentary  time  because  these
individuals have lower total activity[45]. Several plausible biological mechanisms have
been proposed, including changes in endogenous sexual and metabolic hormone
levels and growth factors,  decreased obesity and central  adiposity,  and possibly
changes in immune function and so on[46]. Peroxisome proliferator-activated receptor
gamma coactivator 1α (PGC-1α) is a mitochondrial regulator in a wide variety of
biological processes, such as thermogenesis, circadian rhythm, fatty acid oxidation,
glucose metabolism, mitochondrial organization, and biogenesis[46]. PA, as a stressor
that demands energy, stimulates PGC-1α expression, increasing biological processes
of CRC and suppressing the development of CRC[47].

Consumption of alcohol: High consumption of alcoholic beverages may lead to an
increasing risk of  CRC[48,49].  Consumption of  alcohol  is  also relative to molecular
subtypes of CRC. Alcohol intake was positively related to risk of BRAF-tumors but
not to risk of BRAF-positive tumors, irrespective of their KRAS status[50]. Similarly, a
study has demonstrated that higher alcohol consumption was associated with risk of
CRC with  insulin-like  growth factor  2  (IGF2)  differentially  methylated region-0
(DMR0)  hypomethylation  but  not  risk  of  cancer  with  high-level  IGF2  DMR0
methylation[51]. IGF2 up-regulation by DMR0 hypomethylation caused by alcohol may
promote tumorigenesis in colorectal tissue[51]. Alcohol can also interfere with one-
carbon metabolism, a complex network of interrelated biochemical reactions that
involve the transfer of one-carbon (methyl) groups from one compound to another[52].
Excess alcohol can antagonize methyl donors, including vitamin B6, vitamin B12,
methionine, and folate, leading to a lower concentration of S-adenosylmethionine in
the liver, and thereby cause abnormal DNA methylation[51]. Thus, alcohol can impair
the  bioavailability  of  dietary  folate  as  well  as  folate-dependent  intermediary
metabolisms to cause carcinogenesis[52]. Besides, monocyte chemoattractant protein-1
(MCP-1)  is  a  chemokine  that  plays  an  important  role  in  regulating  tumor
microenvironment and metastasis[53]. Alcohol can increase the expression of MCP-1
and its receptor CCR2 at both protein and mRNA levels[53]. The study demonstrated
that alcohol may promote the metastasis of CRC through modulating the glycogen
synthase kinase 3β (GSK3β)/β-catenin/MCP-1 pathway[53].

Cigarette: Cigarette smoke is considered as a risk factor for CRC. A study found that
individuals  with  heavy,  long-term cigarette  smoke  exposure  were  significantly
younger at the time of CRC diagnosis compared to lifelong never-smokers[54]. And,
smoking is also correlative to some specific subtypes of CRC, such as MSI-high, CpG
island  methylator  phenotype  (CIMP)-positive,  and  BRAF  mutation-positive
subtypes[55]. This finding from the study also indicated that epigenetic modification
may  be  involved  in  smoking-related  carcinogenesis[55].  In  general,  heterocyclic
aromatic amines and polycyclic aromatic hydrocarbons may play an important role in
CRC associated with smoking[56,57]. N-Acetyltransferases 1 and 2 (NAT1 and NAT2)
are also considered to participate in the metabolism of aromatic and heterocyclic
aromatic amines[56]. Glutathione S-transferases (GSTs), particularly GSTM1, GSTT1
and GSTP1, are detoxification enzymes that have been known to metabolize a wide
range of carcinogens from cigarette smoke, such as heterocyclic aromatic amines and
polycyclic  aromatic  hydrocarbons[57].  Thus,  NAT1  and  NAT2,  and  GSTs  gene
polymorphisms  may  be  involved  in  cigarette  smoking-CRC  risk[56,57].  A  study
demonstrated that individuals with fast acetylation capacity achieved by NAT1 and
NAT2, may more efficiently activate heterocyclic aromatic amines, thereby increasing
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the induction of DNA damage and, consequently, increasing susceptibility to CRC[56].
Besides,  GST  gene  polymorphisms  influence  interindividual  susceptibility  to
smoking-associated CRC, which can play an important role in the detoxification of
colorectal carcinogenesis during smoking[57]. A novel opinion is that smoking may
increase cancer  cell  survival  and induce some events  associated to epithelial-to-
mesenchymal  transition  (EMT)  process[58].  Smoking  may  reduce  cell  necrosis,
deregulate Claudin-1 and E-cadherin expression and enhance the expression of miR-
21 to induce EMT[58].

Aspirin: Abundant evidence indicates that regular use of aspirin is associated with a
significant  reduction  in  the  incidence  of  CRC[59-62].  Not  only  that,  the  beneficial
function of aspirin may be emphasized in some specific molecular subtypes of CRC.
Several studies have indicated that regular use of aspirin is associated with better
prognosis and clinical outcome in COX-2-positive and PIK3CA-mutated CRC[61,62].
Aspirin might inhibit the expression of COX-2 to reduce the prostaglandin (PG)E2
synthesis, and thereby to reduce the inflammatory response and suppress cancer cell
proliferation  and  survival [59 ,61].  As  to  the  status  of  PIK3CA  mutation,  pho-
sphatidylinositol-3 kinase (PI3K) and the downstream Akt pathway can be activated
to enhance COX-2 activity and PGE2 synthesis, resulting in inhibition of apoptosis in
CRC cells[61]. Therefore, aspirin can attenuate PI3K activity through inhibiting PGE2
signaling[59,61,63]. Meanwhile, aspirin might inhibit mTOR, a downstream effector of the
PI3K pathway, by activation of adenosine monophosphate-activated protein kinase
(AMPK) in CRC[61]. In addition, aspirin may also inhibit Wnt signaling either directly
or through down-regulation of PGE2 to suppress the onset of CRC[63].

Genomic level: Genomic instability is an essential feature that underlies CRC. There
are  three  aspects  to  achieving  genomic  instability  that  can  contribute  to  CRC:
Chromosomal instability, MSI, and CpG island methylation[1].  First, chromosomal
instability, a common and efficient mechanism, can lead to the physical loss of tumor
suppressor genes, such as adenomatous polyposis coli (APC), P53, and SMAD family
member 4, and the activation of oncogenes, such as KRAS and PI3KCA[64,65]. These
changes  can  transform the  normal  phenotype  into  a  malignant  phenotype[1,64,65].
Second,  MSI can silence mismatch repair  genes,  such as  MLH1,  in patients  with
hereditary  nonpolyposis  colon  cancer,  who  then  have  an  even  higher  risk  of
developing  CRC[65].  Finally,  the  aberrant  methylation  of  CpG  islands  has  been
demonstrated to result in the CIMP or CIMP-high, which accounts for 15% of CRC
cases and exists in nearly all CRC tumors with aberrant methylation of MLH1[64].

In addition to genomic mutation, microRNAs (miRNAs) and long noncoding RNAs
(commonly referred to as lncRNAs) are also expressed abnormally in CRC. Existing
evidence  indicates  that  miRNAs,  such  as  miR-93  and  miR-328,  are  aberrantly
expressed  in  CRC and  regulate  the  proliferation  and  metastasis  of  cancer  stem
cells[66,67]. MiR-200c can promote the EMT to induce proliferation and metastasis[68].
Moreover, the up-regulation of a novel lncRNA, colorectal neoplasia differentially
expressed (CRNDE), has been observed in the early stages of colorectal neoplasia (>
90%), except for CRNDE-d[69].

Modification of the signaling pathways: It has been demonstrated that tumor cells in
CRC are maintained by the deregulation of specific signaling pathways[70]. Genetic
events are also part of a larger network that alters signal pathways, resulting in an
increase in tumor cell proliferation and a decrease in tumor cell death[70]. The onset
and migration of CRC involves several signaling pathways, including the mitogen-
activated protein kinase (MAPK) pathway, PI3K pathway, Wnt/β-catenin pathway,
Janus-activated kinase/signal transducers and activators of transcription (JAK/STAT)
pathway, 67 kDa laminin receptor (67LR) pathway, nuclear factor-kappa B (NF-κB)
pathway, and nuclear factor-erythroid 2-related factor (Nrf2) pathway. Moreover, the
crosstalk between pathways can promote the development and invasion of CRC and
increase its resistance to drugs[71]. The author details these specific pathways in the
following  section.  Another  novel  signaling  pathway,  the  Hippo  pathway,  is
responsible for cell proliferation, differentiation, apoptosis, and tumorigenesis and
exists  in  many malignant  tumors,  including  CRC[72,73].  The  Hippo  pathway was
initially defined as a tumor suppressor pathway, but its major effector, Yes-associated
protein (YAP1),  is  viewed as an oncogene;  therefore,  the down-regulation of the
Hippo pathway is  connected to  CRC initiation and progression[72,74].  It  has  been
emphasized that the interaction between the Hippo pathway and the Wnt/β-catenin
pathway is crucial in the development of CRC[74].

Cytokines: Chronic inflammation can promote the development of CRC[75]. In chronic
inflammation, immune cells such as lymphocytes, plasma cells, macrophages, and
neutrophils infiltrate the colon and enrich ROS and reactive nitrogen species (RNS)[76].
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In addition to exogenous mutagens,  ROS and RNS can also cause DNA damage,
which facilitates the initiation of cancer, as observed in a mouse model[76]. Infiltrating
inflammatory cells can also produce high levels of protumorigenic cytokines that
drive tumor progression[76].

Cytokines  are  low-molecular-weight  proteins  that  can  mediate  cell-to-cell
communication  and  induce  cell  transformation  and  malignancy [ 7 7 ].  Many
proinflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin
(IL)-6, are involved in the creation of the tumor microenvironment[77]. Furthermore,
there  are  immunosuppressive  cells  in  the  tumor  microenvironment  that  secrete
vascular endothelial growth factor (VEGF), IL-6, IL-10, transforming growth factor-
beta (TGF-β), soluble FasL, and indolamine-2,3-dioxygenase to promote the growth
and metastasis  of  CRC by generating ROS and RNS,  potentiating the  EMT,  and
inducing angiogenesis[77,78]. Following the activation of these cytokines, some signaling
pathways  that  can  induce  inflammation  and  stress  are  activated  to  induce  the
proliferation of cancer cells[75].

Some enzymes, such as Rab GTPase, can also have an essential function in the
growth and metastasis of CRC, and they are correlated with cytokines. Rab GTPases,
a large family of Ras small GTPases, play a crucial role in normal human physiology
by controlling membrane identity and vesicle traffic[79]. A study using a metastatic
mouse model suggested that high Rab3C expression in patients might increase the
migration  and  invasion  ability  of  colon  cancer  as  a  result  of  IL-6  secretion  and
JAK2/STAT3 signaling pathway activation[80]. Besides the Rab3C-IL-6-STAT3 axis,
another Rab GTPase, Rab25, is also linked to CRC[81]. The loss of Rab25 is associated
with  a  poor  prognosis  in  CRC because  Rab25  can  influence  the  trafficking  and
recycling of numerous key regulators of polarity and signaling that are involved in
transformation[81].

Oxidative stress: Another factor that promotes the development of CRC is oxidative
damage, which is characterized by elevated ROS levels and accumulated mutations
that  cause oxidative DNA damage[82].  ROS,  which includes superoxide (O2

−),  the
hydroxyl radical (•OH), and hydrogen peroxide (H2O2), act as crucially important
mediators in multiple cell signaling pathways[82]. Sustained and excessive ROS are not
only strongly correlated with the tumorigenic potential of cancer cells but also render
cancer cells resistant to anticancer drugs[83]. Studies have demonstrated that both gut
microbiota  and  inflammation  can  cause  oxidative  stress[84].  Gut  microbiota  can
generate  reactive  metabolites  and  induce  chronic  mucosal  inflammation [84].
Inflammatory cells  can mediate  immediate  cellular  stress  responses through the
activation  of  NF-κB,  signal  transducer  and STAT3,  hypoxia-inducible  factor-1α,
activator protein-1 (AP-1), and Nrf2[84].  Meanwhile, LPO, protein oxidation, nitric
oxide  (NO)  production,  enzymatic  activity  alteration  and  DNA  damage  can  be
mediated by oxidative stress, to injure cells, induce gene mutation, and influence
signaling pathways and transcription factors[84].

Gut microbiota: Gut microbiota is viewed as a forgotten organ that participates as an
essential contributing factor in the initiation and development of CRC[85]. The balance
of gut microbiota is conducive to the metabolism of nutrients, maintenance of the
intestinal  barrier,  modulation  of  the  immune  system,  and  protection  from
pathogens[86]. However, some bacterial species have been identified and suspected to
play a role in colorectal carcinogenesis; these include Helicobacter pylori, Bacteroides
fragilis, F. nucleatum, and so on[85]. Dysbiosis is characterized by reduced Firmicutes to
Bacteroidetes  ratio  (known  as  FIR/BAC),  depletion  of  short-chain  fatty  acid-
producing members  of  Lachnospiraceae  and Ruminococcaceae,  and the presence of
putative pathobionts of oral origin[87].  Dysbiosis contributes to increased mucosal
permeability, bacterial translocation, and increased activation of components of the
innate and adaptive immune system. These changes promote chronic inflammation
and further downstream changes that promote colon carcinogenesis[88].

Gut microbiota can regulate some immune cells of the immune system to impact
the development of CRC.

(1) T lymphocytes: Gut microbiota can exert an important effect on T lymphocytes
to  modulate  the  progression of  CRC.  On the  one hand,  gut  microbiota  plays  an
important role in triggering chemokines production, such as that of CCL3, CCL4,
CCL5, CCL20 and CXCL10, ultimately leading to T lymphocyte recruitment in tumor
tissues  and  improved  prognosis  of  CRC[89].  Bacteria-induced  chemokine  gene
expression may also be initiated by Toll-like receptor (TLR) triggering on CRC cells[89].
On the other hand, gut microbiota can regulate the differentiation of T lymphocytes.
Different T lymphocytes can exert different effects on CRC. Th1 cytokine interferon
gamma (IFNγ) plays an antitumorigenic role, whereas the Th2/Treg cytokines IL-4,
IL-5, and IL-10 mediate a protumorigenic role[90]. Besides, Th17 cells are known to be
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protumorigenic  in  CRC,  and IL-17A is  also  linked to  the  gut  microbiota[90].  Gut
microbiota depletion can increase numbers of antitumor IFNγ-secreting T cells and
decrease numbers of protumor IL-17A and IL-10 secreting immune populations to
reduce the development of CRC[90]. Another study also demonstrated that a remodel
of the gut microbiota can enhance anti-inflammatory capacity through promoting the
induction of Tregs[91]. In addition, F. nucleatum, a proinflammatory bacterial species in
tumor tissue but rarely found in normal intestinal microbiota,  is  associated with
increased  lymph node  metastases  and a  worse  outcome in  CRC patients[92,93].  F.
nucleatum is likely to possess immunosuppressive activities through its inhibition of
human T cell responses[94,95]. F. nucleatum has been shown to expand myeloid-derived
immune  cells,  which  inhibit  T  cell  proliferation  and  induce  T  cell  apoptosis  in
CRC[95,96]. F. nucleatum also expresses the virulence factor FadA on their bacterial cell
surface, which has been shown to activate the Wnt signaling pathway and down-
regulate the T cell-mediated antitumor immune response[92]. Similarly, F. nucleatum
can recruit  proinflammatory cytokines,  such as IL-17A, TNF,  and CCL20,  which
induce inflammation and suppress immunity[97]. Meanwhile, rats with depletion of
gut microbiota also show an increase in cytotoxic T lymphocyte cells[98].  Finally, a
study  demonstrated  that  fecal  bacteria  from  CRC  patients  can  up-regulate
degranulation and cytotoxicity of CD8+T cells[99].

(2) B lymphocytes: The human gut homeostasis requires microbiota coated by both
secretory  immunoglobulin  M  (SIgM)  and  secretory  immunoglobulin  A  (SIgA)
emerging from B lymphocytes[100]. SIgA deficiency will cause dysbiosis, which may
promote the development of CRC[100].  The study indicated that SIgM may emerge
from  pre-existing  memory  B  cells  and  could  help  SIgA  anchor  highly  diverse
commensal communities to intestinal mucus[100]. Meanwhile, IL-33 might participate
in  modulating  the  IgA-microbiota  axis  to  prevent  IL-1α-dependent  colitis  and
tumorigenesis[101].  IL-33  can  promote  IgA production  to  maintain  gut  microbial
homoeostasis  and  inhibit  IL-1α-mediated  inflammation  to  prevent  the  onset  of
CRC[101]. Similarly, bacteria in CRC can also induce the production of IL-17, which
promotes influx of intratumor B cells that promote tumor growth and progression[102].

(3)  Natural  killer  (NK)  cells:  Some  certain  bacteria  may  favor  recruitment  of
immune cells such as NK cells other than T cells, to achieve a favorable prognosis[89].
NK cells and CD8+T cell crosstalk in the tumor microenvironment may benefit patient
outcome[103].  Nlrp3  inflammasome components  exacerbate  liver  CRC metastatic
growth by impairing IL-18 signaling and further impacting maturation of hepatic NK
cells[104].  In  addition,  Nlrp3  activation  might  be  mediated  by  a  microbial  ligand
derived from the remaining intestinal microbiota[104].

(4) Neutrophils: Neutrophils are also believed to modulate growth of colon tumors,
and correlate with outcomes of patients with colon cancer[102]. It has been indicated
that neutrophil depletion is correlated with increased numbers of bacteria in tumors
and proliferation of tumor cells, and an inflammatory response mediated by IL-17,
thereby inducing the development of CRC[102].

(5) Eosinophils: Eosinophils in CRC patients are strongly linked with a decreased
disease risk,  better prognosis,  and extended patient survival[105].  Dysbiosis might
impair eosinophil-driven responses to promote the development of CRC[105]. However,
the specific mechanism is not clear.

(6)  Macrophages:  Macrophages are  also involved in the development of  CRC.
Monocytes/macrophages  may  polarize  as  M1  or  M2  cells [106].  Overall,  M1
macrophages display a pro-inflammatory potential mediating antitumor activities,
while  M2  macrophage  display  an  anti-inflammatory  promoting  cancer  cell
growth[106,107].  In  the  tumor  microenvironment,  tumor-associated  macrophages
undergo polarization into M1 and M2 phenotypes[108]. The specific interaction of gut
microbiota and macrophages on CRC is still required to investigate further. Some
studies have provided insights into the relative mechanism. A metastasis-related
secretory protein, cathepsin K, activated by the imbalance of intestinal microbiota,
stimulates CRC progression through accelerating M2 polarization of tumor-associated
macrophages through a TLR4-mTOR-dependent pathway[108]. Besides, another study
also indicated that defects in the subepithelial band of lamina propria-indigenous
macrophages barrier in inflammatory bowel disease encourage the trespassing of the
gut microflora into the host, thereby destabilizing host immunity and promoting the
development of CRC[109]. High amounts of F. nucleatum intratumorally are correlated
with increased macrophage infiltration and CDKN2A promoter methylation in MSI-H
CRC[110].  Although  it  can  be  hypothesized  that  the  repression  of  CDKN2A  via
promoter methylation may be connected with the increased M2 macrophages in F.
nucleatum-high CRC, the M2 macrophage density was not significantly associated
with F. nucleatum  status in MSI-H CRCs, as displayed by the study[110].  Besides, a
strong association between lower frequency of macrophages, increased Firmicutes,
and decreased tumorigenesis was also observed in CRC[111].
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(7) Dendritic cells: Dendritic cells play critical roles in maintaining tolerance and
immune homeostasis in the gut[112].  And, some species in the gut can also induce
dendritic cell maturation and the induction of Tregs and IL-10 production to regulate
tumorigenesis[112]. Overall, the specific immune-microbiota mechanism needs to be
investigated by more animal studies and epidemiological studies before it is proven.

Molecular pathological epidemiology: Molecular pathological epidemiology (MPE)
has emerged as an integration of molecular pathology and epidemiology, to address
the need to investigate the inherent heterogeneity of pathogenic processes even for a
single disease entity[113,114].  Overall,  MPE discusses the interrelationship between
exogenous  and  endogenous  factors,  tumoral  molecular  signatures,  and  tumor
progression[114]. On the one hand, MPE can uncover potential risk factors that are not
detectable  in  conventional  epidemiological  research  without  using  molecular
pathology methods[115]. On the other hand, MPE can help us refine the association
between  exogenous  or  endogenous  factors  and  validate  specific  etiological
hypotheses, thereby augmenting causal inference[113-116]. Meanwhile, MPE study can
provide novel etiologic and pathogenic insights, potentially contributing to precision
medicine for personalized prevention and treatment[116,117]. In addition, MPE can also
integrate several disciplines to evolve subfields of MPE, including pharmaco-MPE,
immuno-MPE  and  microbial  MPE,  to  provide  novel  opinions  into  underlying
etiologic mechanisms[116].

Some progression has been made in CRC. The MPE research has determined the
strength of the association for between the exposures and the specific subtypes of
CRC, which can help to establish causality and speculation on the relative mechanism
of exposure acting on CRC. A MPE study has demonstrated that both obesity and
physical inactivity are associated with a higher risk of CTNNB1 (β-catenin)-negative
CRC but not with CTNNB1-positive cancer risk[118].  Hence, the study implied that
energy balance and metabolism status might exert impact on the development of CRC
independent of WNT/β-catenin activation[118]. Then, pharmaco-MPE, integrating MPE
into pharmacoepidemiology, will play a vital role in identifying target individuals
who will most likely benefit from use of a particular drug, clinically[116]. MPE studies
have  demonstrated  that  regular  use  of  aspirin  can  reduce  the  risk  of  CRC with
overexpression of COX-2 but not of that with weak or absent expression of COX-
2[119,120].  Many  pharmaco-MPE  studies  have  shown  that  regular  aspirin  use  was
associated with lower risk of BRAF-wildtype and PIK3CA-mutated CRC but not with
BRAF-mutated and PIK3CA-wildtype CRC[121,122].

Immuno-MPE,  the  integration  of  immunology  and  MPE,  can  mainly  discuss
exposures  impacting  CRC through regulating  the  immune  system and disease-
immune interactions[117]. An MPE research project has revealed that the association of
aspirin use with CRC survival is stronger in patients with the programmed cell death
ligand 1 (PD-L1)-low tumors than the PD-L1-high CRC[123]. It indicated that PD-L1
expression might serve as a biomarker that predicts resistance to aspirin use[123]. In
addition, microbial MPE is also studied in CRC. Typically, a high level of F. nucleatum
might be associated with molecular features of CRC, including MSI-high and CIMP-
high[124,125]. Meanwhile, another MPE study demonstrated that a greater amount of F.
nucleatum was associated with a lower density of CD3+T cells in CRC, indicating that
the interaction of target microbiota and immune system should be discussed further
for CRC prevention and precision treatment[126].  In addition to F. nucleatum,  other
components of gut microbiota need to be investigated in the future.

Although the  MPE has  many strengths,  the  pitfalls  and challenges  should be
considered.  Challenges  in  MPE  mainly  include  sample  size  selection,  need  for
rigorous  validation  of  molecular  assays  and  study  findings,  and  paucities  of
interdisciplinary experts, education programs, international forums, and standardized
guidelines[113]. In addition, MPE research needs to face the issue of multiple hypothesis
testing, so it is necessary to form a priori hypotheses based on earlier exploratory
findings or on potential biological mechanisms[114]. Similarly, MPE also may create a
higher chance of yielding spurious findings[113].

Other mechanisms:  The EMT and the Warburg effect  (WE) are considered to be
involved in tumor metastasis. EMT occurs when polarized epithelial cells lose their
adhesion property and obtain mesenchymal cell phenotypes as a result of the loss of
membrane E-cadherin expression[127]. Although the exact mechanism in CRC is not
clear,  EMT-related  molecular  mechanisms  have  been  described,  including  the
activation  of  many  signaling  pathways,  such  as  the  TGF-β/Wnt  pathway  and
PTEN/Akt/HIF-1α pathway, as well  as many activated genes,  such as APC and
Akt[128]. The WE is the result of pyruvate being directed away from the tricarboxylic
acid  cycle  and  metabolized  to  lactate,  resulting  in  a  buildup  of  glycolytic
intermediates[129].  Briefly,  the  WE  is  the  process  of  aerobic  glycolysis[129].  Many
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mechanisms can inhibit  the  WE in  CRC to  affect  the  metastasis  of  cancer;  these
include  some  miRNAs[130,131],  such  as  miRNA-98  and  Pim1[132].  Gas1,  a  tumor
suppressor, can inhibit both EMT and the WE in CRC through AMPK activation and
the mTOR pathway[133].

Tea polyphenols
Because of the drug resistance and side effect that can arise in targeted therapy of
CRC, studies have investigated treatments that involve natural bioactivate materials
found in various foods, such as tea polyphenols (TPs)[134,135]. We have learned that TPs
may become a novel medicine to prevent and treat disease with fewer side effects
than traditional medicines[135]. Also, the combination of chemotherapeutic drugs and
TPs could synergistically enhance treatment efficacy and reduce the adverse side
effects of anticancer drugs[136]. Over the past several decades, we have learned that TPs
can be utilized effectively as chemopreventive and chemotherapeutic agents for some
diseases,  including  obesity[137],  diabetes  mellitus[138],  Alzheimer’s  disease[139],
Parkinson’s disease[140], cardiovascular disease[141], and cancers[142]. TPs can play an
essential role in the treatment of most cancers by causing G0/G1 phase cell cycle
arrest and inhibiting angiogenesis[143,144]. One study demonstrated that green TPs could
suppress the pathological formation of new blood vessels by inhibiting members of
the VEGF family[144].

Chemical structure of TPs:  Tea, which originates from the plant species Camellia
sinensis, has become the second most commonly consumed beverage following water,
with  teas  such  as  green  tea,  black  tea,  and  oolong  tea  among  those  frequently
consumed[145]. The main difference between these three kinds of tea is the fermentation
level, which leads to the presence of different TPs[145]. Green tea is made from dry tea
leaves, which do not undergo the process of fermentation[145]. Thus, green TPs contain
more oligomeric polyphenols, with the main content comprising flavan-3-ols or tea
catechins  (approximately  59%),  including  (-)-epigallocatechin  (EGC),  (-)-
epigallocatechin-3-gallate (EGCG), (-)-epicatechin (EC), and (-)-epicatechin-3-gallate
(ECG) (Figure 2), among which EGCG is the most abundant polyphenol in green
tea[145-147].  Although gallic  acid  (GA)  can  also  be  found in  green  tea,  it  is  mostly
contained in the fully fermented Pu-erh tea, usually[148]. Black tea must undergo high
or full fermentation, and the level of fermentation of oolong tea falls in the middle of
this range[136,149]. Therefore, black tea contains lower monomeric polyphenol content
(3%-10% of solids) and higher concentrations of polymeric polyphenols (23-25% of
solids),  such as  theaflavin  (TF),  theaflavin-3-gallate  (TF2a),  theaflavin-3’-gallate
(TF2b),  theaflavin-3,3’-digallate (TF3 or TFdiG),  and thearubigin (Figure 3)[147,150].
Oolong tea polyphenol content includes epitheflagallin (ETG) and EGCG, among
others[149].

Oligomeric  and  polymeric  polyphenols  undergo  mutual  transformation.  The
formation of black TPs involves two steps: Oxidation and polymerization, which are
regarded as the fermentation of green tea[151]. In the first step, catechins are partially
oxidized to quinones as a result of the enzymatic catalysis of polyphenol oxidase or
peroxidase,  which  exist  in  nature[151].  Subsequently,  polymerization  produces
gallocatechin quinones, and further oxidation and rearrangement lead to the synthesis
of the core of black TPs, namely, benzotropolone[151]. For instance, EC and EGC form
TF1, ECG and EGC form TF2a, EC and EGCG form TF2b, and ECG and EGCG form
TF3[151].  Therefore, the chemical structure of black TPs and green TPs share some
similarities. All oligomeric polyphenols have the same basic chemical structure of two
aromatic rings (A and B) linked by three carbons that usually form an oxygenated
heterocycle (C ring), which consists of a C6–C3–C6 skeleton[152,153]. In the B ring, OH or
OCH3 groups usually occupy up to three positions[153]. In flavan-3-ols, the C ring, as
the activated center, is a saturated heterocycle with a hydroxyl group that provides
different arrangements of hydroxy, methoxy, and glycosidic groups and bonds with
other monomers[153]. Moreover, the chemical structures of TPs are not simple linear
oligomers because they contain gallate groups[153].

Bioavailability of TPs: After tea is consumed, TPs can be decomposed into different
fractions and absorbed in the gut, which is considered to be a complex physiological
process. Bioavailability is used to describe the extent of absorption that an ingested
compound is released from food, and its fate in the organism[154]. Furthermore, many
studies  have  investigated  the  kinetics  and  extent  of  polyphenol  absorption  by
measuring plasma concentrations and/or urinary excretion after the ingestion of
TPs[155]. A number of studies have demonstrated that TPs have poor bioavailability
from in vivo and in vitro gastrointestinal digestion[154,156]. In nature, most flavan-3-ols
undergo epimerization and exist as stereoisomers in a cis or trans configuration [(-)-
epicatechin or (+)-catechin, respectively][150]. Different stereoisomers have different
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Figure 2

Figure 2  The structures of green tea polyphenols, including (−)-epigallocatechin-3-gallate, (−)-epicatechin-3-gallate, (−)-epigallocatechin, catechin, (−)-
epicatechin[146].

bioavailability.  The  bioavailability  of  the  stereoisomers  has  been  ranked  as  (-)-
epicatechin > (+)-epicatechin = (+)-catechin > (-)-catechin[150]. Also, the in vivo effects of
flavan-3-ols, major components of green TPs, rely on their absorption and metabolism
in the gastrointestinal tract[157]. Thus, we should discuss the health effects of not only
TPs but also their metabolites.

The different metabolites can be found in the small intestine and large intestine.
The  absorption  and metabolism of  TPs,  including the  processes  of  methylation,
glucuronidation, and sulphation, mainly transpire in the small intestine[150]. Among
the  TPs,  EGCG  is  the  only  known  polyphenol  present  in  plasma  with  a  large
proportion  (77%-90%)  in  the  free  form[158].  Others  are  highly  conjugated  with
glucuronic acid and/or sulfate groups, such as epicatechin-3’-glucuronide and 4’-O-
methylepicatechin-3’-glucuronide, among others, after being metabolized[155].  One
study observed that the conjugated forms of two major phenolic catabolites, (-)-5-
(3’ ,4’ ,5’-trihydroxyphenyl)-gamma-valerolactone  (M4)  and  (-)-5-(3’ ,4’-
dihydroxyphenyl)-gamma-valerolactone (M6), which accounted for up to 40% of the
amount  of  ingested  pure  EGC and EC,  could  be  detected  in  plasma,  urine,  and
feces[159].  4’,4’’-di-methyl-EGCG  was  also  detected  in  human  plasma  and  urine
following green tea ingestion[160].  Although the metabolism of black TPs has been
researched less, the metabolites might contain 3-methylgallic acid, 4-methylgallic acid,
and 3,4-di-methylgallic acid, which also exist in green TPs[150].

In  the  large  intestine,  the  metabolic  fate  of  TPs  after  in  vitro  gastrointestinal
digestion was studied, and bioaccessibility activity of TPs was shown to be higher in
the colon than in the duodenum, suggesting that, in vivo, the gut microbiota might be
able to metabolize dietary polyphenols, resulting in an increase in their beneficial
effects in the large intestine[136,161]. The study demonstrated that green tea catechins
were  more  bioavailable  when  colonic  ring  fission  metabolites  were  taken  into
consideration[158]. A possible ring-fission metabolite, (-)-5-(3’,5’-dihydroxyphenyl)-γ-
valerolactone (M6’), was detected in human urine after green tea ingestion[160]. The
fraction of flavan-3-ols that is not absorbed in the small intestine reaches the large
intestine, where it can undergo several microbial processes that finally lead to smaller
molecules that can be absorbed and reach the liver and, subsequently, the systemic
circulation[158]. Studies have indicated that catechin and epicatechin, which can enter
the portal vein at a relatively high concentration as a result of ileal transfer, can be
further  metabolized  to  methylated  and glucuronidated  forms by  phase  I  and II
metabolism in the liver[162]. From the action of microbiota, ingested flavan-3-ols can be
converted to C6-C5 phenylvalerolactones and phenylvaleric acids, which undergo
side-chain shortening to produce C6-C1 phenolic and aromatic acids that enter the
bloodstream and are excreted in urine[150].
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Figure 3

Figure 3  The structures of black tea polyphenols, including, theaflavin, theaflavin-3-gallate, theaflavin-3'-
gallate and theaflavin- 3,3'-digallate[150].

THE STUDY OF TPS AND CRC

Cytological studies
TPs  have  been  studied  to  assess  their  ability  to  prevent  CRC  cells  in  vitro.  For
example,  the  inhibitory  effect  of  EGCG  was  observed  in  caco-2  colorectal
adenocarcinoma cells and Hs578T breast ductal carcinoma cells[163]. In HT-29 cells,
fermented Pu-erh tea showed stronger anticancer function than unfermented Pu-erh
tea and green tea due to increased GA[148]. In addition to the effects exerted by the TPs
themselves, their metabolic products can also have an antiproliferative effect. A study
reported  that  black  tea,  green  tea,  and  some  phenolic  acids,  such  as  4-hy-
droxyphenylacetic  acid  (4-HPAA),  3-hydroxyphenylacetic  acid  (3-HPAA),  3-O-
methylgallic  acid  (3OMGA),  and  polyhydroxy-  valerolactones,  all  exhibited  an
antiproliferative effect in HCT-116 cells, in which 3OMGA exhibited the strongest
antiproliferative  activity  among  the  phenolic  acids[164].  The  in  vitro  study  also
demonstrated that the combination of EGCG and 3,4-dihydroxyphenylacetic acid (3,4-
DHPAA) significantly increased the antiproliferative activity compared with EGCG or
DHPAA alone[164]. Moreover, many in vitro studies have been conducted to elucidate
the specific mechanisms of the preventive and therapeutic effects of TPs on CRC. The
concentrations of TPs used in cell line studies are usually much higher than the levels
that are achievable in vivo because of their low bioavailability.

Some studies have demonstrated that a concentration-dependent relationship exists
between TPs and CRC. For instance, in human colon cancer cell lines, EGCG might
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exert a therapeutic effect by inhibiting Met signaling in a concentration-dependent
manner[165]. At concentrations of 0.5, 1 and 5 μmol/L, EGCG markedly suppressed the
activation of Met in the presence of hepatocyte growth factor. Concentrations of 10
μmol/L EGCG and below generated low amounts of H2O2 (< 1.5 μmol/L), whereas
higher  H2O2  concentrations  (>  5  μmol/L)  were  required to  directly  increase  the
phosphorylation  of  Met[165].  Green  TPs  (>  800  mg/mL)  can  trigger  apoptosis  of
preneoplastic and neoplastic intestinal epithelial cells in a dose- and time-dependent
manner[166].  Cellular  studies  also  play  an  important  role  in  understanding  the
relationship between TPs and chemotherapeutic drugs. A study on HCT-116 and SW-
480  cells  indicated  that  the  combination  of  panaxadiol  and  EGCG  significantly
increased the pro-apoptotic activity of panaxadiol compared with the drug alone (P <
0.01) because panaxadiol and EGCG can bind to two different sites of annexin V, an
endogenous protein, to mediate cell death[167].

Animal studies
By establishing related animal models of CRC, we can further identify the inhibitory
effect of TPs on CRC and further understand the manner in which TPs act on CRC. A
study  demonstrated  that  a  green  TP  fraction  could  inhibit  the  development  of
azoxymethane (AOM)-induced colon carcinogenesis in male Fischer rats and F344
rats,  but  no  dose-dependent  relationship  was  found  in  male  Fischer  rats[168-171].
Moreover, after investigating 129 female F344 rats, Narisawa et al[172] suggested that
GTP, even at a very low dose (0.002% solution), also had an inhibitory effect on N-
methyl-N-nitrosourea-induced colon carcinogenesis. In addition, the antitumor effect
of white tea has been observed. A study demonstrated that in the ileum, the major site
of tumor formation in Apc(min) mice, white tea was more effective than green tea,
and white tea in combination with non-steroidal anti-inflammatory drugs (commonly
known as NSAIDs), such as sulindac, provided greater tumor suppression than tea or
sulindac treatment alone[173]. It has been demonstrated that black TPs can inhibit 1,2-
dimethylhydrazine-induced oxidative DNA damage in the colon mucosa of Fisher 344
rats because 1,2-dimethylhydrazine can cause DNA oxidative damage and is a colon
carcinogen[174]. Moreover, the modification (beneficial or harmful) effect of green TPs
on CRC may depend on their dosage. The results showed that 0.5% and 1% green TP
could exert a potential effect by increasing the expression of IL-1β and MIF, but 0.1%
might have had a suppressive effect[175]. Similarly, Ju et al[176] confirmed that EGCG in
drinking  fluid  in  the  range  of  0.02%-0.32%  dose-dependently  inhibited  small
tumorigenesis in Apc(min)/+ mice (with a significant negative linear relationship, P <
0.01).

Epidemiological studies
An  increasing  number  of  clinical  trials  have  been  carried  out  to  confirm  the
relationship between TPs and CRC. A randomized, placebo-controlled, multicenter
trial demonstrated the effect of diet supplementation with green tea extract (GTE)
containing 300 mg EGCG on the recurrence of colon adenomas[177]. Scientists have also
concentrated more on the specific dose of TPs to inhibit CRC. A dose-response meta-
analysis was performed to evaluate the relationship between tea consumption and
CRC risk by analyzing 29 qualifying studies. The results of the dose–response analysis
showed that there was a significant inverse association between an increment of 1
cup/d of tea consumption and CRC risk in the green tea-drinking (odds ratio of 0.98,
95%CI: 0.96-1.01) and female subgroups (odds ratio of 0.68, 95%CI: 0.56-0.81)[178]. A
randomized  trial  demonstrated  the  preventive  effect  of  GTE  supplements  on
metachronous colorectal adenomas by raising the green tea consumption in the target
population from an average of 6 cups (1.5 g GTE) daily to 10 cups equivalent (2.5 g
GTE) in supplemental GTE tablets[179]. Additionally, a total of 12 studies (5 cohort and
7 case-control studies) involving 17481 cases and 740859 controls indicated that high
intake of flavonols, such as quercetin, might reduce the risk of colon cancer, and high
intake of flavones (such as apigenin) might reduce the risk of rectal cancer[180].

In  another  study,  the  plasma  concentration  of  TPs  was  observed  to  have  a
suppressive effect on cancer cells, but no association was found between urinary tea
catechins and the risk of rectal cancer[180].  However, a cohort study of 18244 men
demonstrated that those with high prediagnostic urinary EGC levels and 4’-MeEGC
had a lower risk of colon cancer, with a statistically significant difference observed[181].
Some previous studies have not found a statistically significant decrease in the risk of
CRC with the administration of TPs[182-184]. There are many reasons that might cause
these discrepancies among studies. Sex may be regarded as one of the factors. A sex
hormone-mediated pathway may be involved in the observed positive association
between green tea intake and late-stage CRC, which seems to be restricted to males[182].
Moreover, there also exists some bias in study participants. For example, we cannot
avoid effects of lifestyles, such as cigarette smoking and alcohol consumption, or
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other diseases, such as diabetes[182,183]. In addition, one of the studies did not divide tea
consumption into specific subcategories (such as 5-9 cups and 10 or more cups), so the
amount of tea consumption might have affected the result of the experiments[184].

THE RELATIVE MECHANISM OF TPS IN CRC
There are many studies that have proposed mechanisms by which TPs prevent the
formation and migration of  CRC.  However,  many doubts  surround the  specific
mechanism of the prevention of cancer formation and metastasis. In this section, the
author aims to explain the mechanisms by which TPs prevent the formation and
metastasis of CRC.

Diet and lifestyle
The impact of diet and lifestyle should be considered in elucidating the relationship
between TPs and CRC risk. In a dietary pattern, tea should be combined with other
foods. The combination may enhance or diminish the relationship of tea and CRC.
Nowadays, existing studies have strongly demonstrated the relation of tea and some
foods with CRC.  A study suggested that  green tea and black tea  can inhibit  the
formation of heterocyclic amine produced from red and processed meat to suppress
colonic  aberrant  crypt  foci  (ACF)  in  the  rat[185].  Besides,  tea  can  also  induce
cytochromes  P450  and phase  II  enzymes  in  a  manner  consistent  with  the  rapid
metabolism and excretion of heterocyclic amines[185]. Meanwhile, tea has been shown
to  block  N-nitroso  compounds’  formation  from  red  meat,  thereby  exerting  the
protective effect of CRC[186]. A study demonstrated that combination of Se and green
tea is more effective in suppressing CRC than either agent alone[187]. The preventive
effect  of  combination diet  on CRC has  been evidenced by restoring SFRP5 gene
expression, increasing histone H3 acetylation and reducing DNA methyltransferase
(DNMT) 1 expression, inhibiting β-catenin nuclear accumulation, and reducing cyclin
D1 expression and cell proliferation in normal-appearing crypts[187].

Other foods should also be considered when discussing the protective effect of tea
on CRC. Further studies should be undertaken to understand the relationship and
mechanism  profoundly.  Variations  in  lifestyle  factors  might  be  the  cause  of
inconsistent  findings  regarding  green  tea  intake  and  CRC  risk  in  several
epidemiological studies. One study has shown that high green tea consumption (≥
25.50 g/d) was associated with a decreased risk of CRC, with or without considering
lifestyle factors[188]. However, moderate green tea consumption increased the risk of
CRC among ever-smokers, ever-drinkers and the high-inflammatory diet group[188].
Similarly,  another  study conducted in  Shanghai  also  demonstrated that  regular
consumption  of  green  tea  may  reduce  CRC  risk  among  non-smokers  but  no
significant association was found among smokers[189]. However, we cannot obtain the
relative studies to understand the interaction of  PA or aspirin,  and tea,  on CRC.
Furthermore, the relative mechanism of this interaction between lifestyle and CRC
should also be investigated in the future.

Effects on the signaling pathway
TPs can modulate several signaling pathways to exert a suppressive effect on the
growth and metastasis of CRC.

The MAPK pathway: One of the functions of MAPK signaling is the regulation of
gene expression in response to extracellular stimuli to suppress cell proliferation and
induce apoptosis[190]. Among the MAPKs, Jun amino-terminal kinases (JNKs) and p38
are involved in stress-induced apoptosis,  and extracellular signal-related kinases
(ERKs) are connected to cell proliferation in CRC[191]. In the ERK/MAPK pathway,
mutation and overexpression of Ras genes have been found in various cancers to
dysregulate stem cells[192]. In CRC, the Ras signaling pathway involves the activation
of  two  protein  kinases,  MAPKKs  (Raf)  and  MAPKKs  (MEK),  which  lead  to  the
phosphorylation of  ERK1 and ERK2 at  threonine and tyrosine residues to  cause
dimerization, nuclear translocation, and the induction of target genes, such as KRas,
NRas, and BRAF[193,194]. In addition, Ras can also activate JNK and p38 by similarly
activating the protein kinase phosphorylation cascade through rac and cdc42, which
are small GTP-binding proteins[194]. In the JNK/MAPK pathway, JNK is activated in
cells exposed to environmental stress or treated with proinflammatory cytokines, and
targets of the signaling pathway include the transcription factors ATF-2, Elk-1, c-Jun,
and NFAT4[195].

MAPKKs, together with members of the MEK kinase (MEKK) and mixed-lineage
kinase (MLK) groups of MAPKKKs, regulate the activity of JNK (Figure 4)[195]. In CRC,
the p38 MAPK pathway is involved in sustaining tumor growth and chemoresistance,
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and it is classified as a “stress-activated” kinase pathway that is activated by a variety
of extracellular stimuli[196]. Four genes have been identified that encode p38 MAPKs:
MAPK14 (p38α), MAPK11 (p38β), MAPK12 (p38γ), and MAPK13 (p38δ)[197]. MKK3/6
are activated by their upstream kinases, such as MTK1 (or MEKK4) and apoptosis
signal-regulating kinase 1 (Figure 4)[196]. In normal and CRC cells, the manipulation of
p38-interacting protein and p38α, a negative regulator of autophagy, was found to
alter the localization of mATG9, a protein required for autophagosome formation,
which  suggests  that  p38α could  provide  a  link  to  nutrient-dependent  signaling
cascades that are activated during autophagy[196].  Normally,  the balance between
ERK1,2 and p38 pathways is sustained by PP1/PP2A protein phosphatases[198]. Once
the balance is disturbed, some diseases, including CRC, can be induced[198].

TPs can modulate MAPK pathways to inhibit the onset of CRC. Although EGCG
inhibits the ERK signaling pathway in activated cells to induce death, EGCG can
increase the phosphorylation levels of ERK1/2 and Akt in resting cells[199]. In addition,
phosphorylated MAPKs can activate transcription factors, such as AP-1[200].  Thus,
green and black TPs, except for EC, can inhibit AP-1 activity by inhibiting phospho-
ERK and phospho-c-Jun formation and, subsequently, decreasing the levels of c-Jun
and fra-1 by EGCG and TFdiG, respectively (Figure 4)[200]. The inhibitory effect may
depend  on  the  presence  of  the  galloyl  structure  on  the  B  ring  and  the  gallate
moiety[200]. In addition, the JNK pathway plays a pivotal role in EGCG-induced cell
death[191].  EGCG  can  induce  the  activation  of  JNK  to  promote  the  release  of
cytochrome c, leading to apoptosis in the Bax-dependent condition (Figure 4)[191,199].
One study reported a linkage between the ERK and JNK pathways, and an inhibitor
of ERK can cause JNK activation, which induces cell death[191]. In the p38 pathway,
EGCG  can  activate  phospho-p38α,  p38γ,  and  p38δ  to  mediate  the  p38  MAPK
pathway, thus affecting CRC growth (Figure 4)[199].

PI3K/Akt  signaling:  PI3K/Akt  signaling  is  also  involved  in  the  reduction  of
apoptosis, stimulation of cell growth, and an increase in proliferation[201]. Normally,
Akt plays central but diverse roles in the responses of various cell types and tissues to
hormones,  growth  factors,  cytokines,  and  neurotrophic  factors,  among  other
stimuli[201]. Pathologically, multiple genetic lesions confer hyperactivation of Akt in
solid human tumors[201].  In CRC, the array of  downstream pro-survival  and pro-
growth effects of Akt signaling, including changes in cellular metabolism, are likely to
contribute to its role in tumor growth and progression[201]. Receptor tyrosine kinases
(RTKs), such as EGFR, belong to a family of transmembrane receptors that display
tyrosine kinase activity and trigger the activation of downstream signaling pathways
that are mainly involved in cell proliferation and survival, similar to the effects of
lipid rafts (Figure 5)[202]. The canonical pathway leading to Akt activation is initiated
by  the  stimulation  of  RTKs  or  G-protein-coupled  receptors,  leading  to  plasma
membrane recruitment and the activation of one or more isoforms of the class I PI3K
family (Figure 5)[201]. Phosphorylated Akt activates a multitude of downstream targets,
such as  the  mTOR complex 1  (mTORC1),  BAD,  CASP9,  various  FOXO proteins,
GSK3β,  MDM2,  and  TSC1,  which  regulate  proliferation,  apoptosis,  and  other
processes (Figure 5)[201,203].

TPs can inhibit  RTKs and G-protein-coupled receptors in PI3K/Akt pathways
(Figure 5). TPs can inhibit RTKs in many ways. On the one hand, EGCG can inhibit
EGF binding and EGFR activation directly and indirectly by modulating multiple
components in cell membranes to cause anti-angiogenic effects[204]. Low concentration
and high concentration of EGCG can modify the structure of lipid bilayers and reduce
the bilayer stiffness, respectively[204]. On the other hand, EGCG can bind to the 67 LR
protein and thus further inhibit lipid rafts[204]. EGCG inhibits not only EGFR but also
other  RTKs[204].  Studies  have  demonstrated  that  EGCG  can  down-regulate  the
expression of VEGF by blocking ERK-1 and ERK-2 activation so that it can suppress
the growth of CRC[205]. The Akt pathway is also activated by Met. Met, as the receptor
for hepatocyte growth factor, mediates the proliferation, motility, and invasion of
CRC  cells  in  metastasis[206].  Met  activation  has  docking  sequences  for  several
SH2/SH3-containing molecules, including Gab1, Src, Grb2, and PI3K, which in turn
are capable of activating a number of downstream signaling components, including
the  Akt  pathway  (Figure  5) [206].  However,  EGCG  can  inhibit  Met  signaling
independent of H2O2-related mechanisms[165,207]. Enzyme kinetic studies have identified
the gallate moiety as a key structural feature of TPs’ ability to bind to the kinase
domain of the Met receptor[208]. Moreover, the diverse effects of TPs that are mediated
by  the  G-signaling  pathway  may  be  attributable  to  their  selective  effect  on  the
regulators  of  G  protein  signaling  (RGS);  RGS  can  negatively  induce  G  protein
signaling and control the expression of downstream target inflammatory genes, such
as  COX-2,  inducible  nitric  oxide synthase  (iNOS),  and matrix  metalloproteinase
(MMP)-9, possibly through NF-κB (Figure 5)[208]. TF-2, TF-3, and EGCG, all of which
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Figure 4

Figure 4  MAPK activity is regulated through three-tiered cascades composed of a MAPK, MAPK kinase (MAPKK, MKK, or MEK), and an MAPKK kinase or
MEK kinase (MAPKKK or MEKK)[190]. Four groups of MAPKs are extracellular signal-related kinase (ERK)-1/2, Jun amino-terminal kinase (JNK1/2/3), p38 proteins
(p38α/β/γ/δ), and ERK5, which are activated by specific MAPKKs: MEK1/2, MKK4/7 (JNKK1/2), MKK3/6, and MEK5, respectively[190]. MAPKKKs, the upstream
targets of MAPKKs, contain Raf in the ERK pathway, MEK kinase (MEKK) and mixed-lineage kinase (MLK) in the JNK pathway, and MTK1 (or MEKK4) and apoptosis
signal-regulating kinase 1 in the p38 pathway. Moreover, phosphorylated MAPKs can activate transcription factors, such as AP-1. Tea polyphenols (TPs) can
modulate MAPK pathways. In the ERK pathway, TPs can inhibit the activity of transcription factors, such as AP-1, by inhibiting the phosphorylation of ERK1/2. In the
JNK and p38 pathway, TPs can promote the activation of JNK1/2 and p38 to induce cell death. In addition, the blockade of ERK can also lead to the activation of the
JNK pathway.

contain a gallate group, can induce the expression of RGS10 and RGS14 selectively to
inhibit tumorigenesis (Figure 5)[209].

The  Wnt/β-catenin  pathway:  Another  signaling  pathway  is  the  Wnt/β-catenin
pathway. The Wnt pathway also plays a key role in stem-cell  differentiation and
cellular growth, and it is activated aberrantly at the bottom of intestinal crypts[209].
Usually, in the absence of Wnt stimulation, β-catenin is sequentially phosphorylated
within  the  destruction  complex  by  casein  kinase  1  (CK1)  and  GSK3α/β [210].
Phosphorylated β-catenin  is  then recognized by β-TrCP,  a  component  of  the  E3
ubiquitin ligase complex, and ubiquitinated within the destruction complex[210]. Once
Wnt ligands bind to the frizzled (FZD) and low-density-lipoprotein-related protein
5/6  (LRP5/6)  coreceptor  complex,  they  cause  the  accumulation  and  nuclear
translocation of β-catenin to activate the Wnt transcriptional program (Figure 6)[210].
The aberrant up-regulation of Wnt signaling has been found to exist in CRC, not only
influencing the frequent mutation of some tumor suppressor genes, such as APC,
AXIN2,  and β-catenin,  but  also disturbing the epigenetic  silencing of  some Wnt
inhibitors and negative regulators, such as SFRP1, WIF1, DKK1, and DKK3[209].

TPs have an inhibitory effect on the expression of β-catenin (Figure 6); they can
inhibit β-catenin/TCF-4 activity and reduce β-catenin protein expression (Figure 6)[173].
Similarly, they can also reduce the expression of two downstream signaling targets,
namely, cyclin D1 and c-Jun (Figure 6)[173]. When black TPs inhibit the Wnt/β-catenin
pathway, they can decrease the nuclear accumulation of β-catenin by suppressing the
phosphorylation of GSK3β at serine 9, and the suppression is achieved by decreasing
the activation of PI3Knase and Akt[211]. As a result of the decrease in the accumulation
of β-catenin, there is a decrease in related proteins, such as c-MYC and COX-2, and
p21, induced by black TPs[211].  Additionally, EGCG suppresses β-catenin response
transcription, activated by Wnt3a-conditioned medium, to promote the degradation
of intracellular β-catenin through a mechanism that is independent of GSK-3β and
PP2A (Figure 6)[212].

The 67 kDa laminin receptor pathway: The 67 kDa laminin receptor (67LR), a non-
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Figure 5

Figure 5  The class I PI3Ks activated by receptor tyrosine kinases, such as epidermal growth factor receptor, can phosphorylate PI 4,5-bisphosphate to
yield PI 3,4,5-triphosphate in the cell membrane[203]. The activation of PI3K results in the phosphorylation of two key residues on Akt1, T308 in the activation loop
(or T-loop) of the catalytic protein kinase core and S473 in a C-terminal hydrophobic motif[201]. PDK1 at T308 and mTOR complex 2 (mTORC2) at S473 can activate
Akt[203]. Phosphorylated Akt activates a multitude of downstream targets, such as the mTOR complex 1 (mTORC1), BAD, GSK3β. Tea polyphenols (TPs) can inhibit
PI3K/Akt signaling by interrupting receptor tyrosine kinases (RTKs) and G protein-coupled receptors. TPs can inhibit RTKs not only directly but also indirectly by
binding to 67 kDa laminin receptor. Moreover, TPs can activate the regulators of G protein signaling to negatively regulate the pathway. In addition, TPs can bind to
the Met receptor to inhibit PI3K activation. PIP2: PI 4,5-bisphosphate; PIP3: PI 3,4,5-triphosphate; TP: Tea polyphenol; RGS: Regulators of G protein signaling; 67LR:
67 kDa laminin receptor; GPCR: G protein-coupled receptor.

integrin cell surface receptor for the extracellular matrix molecule laminin, is over-
expressed in CRC and plays a role in the growth and metastasis of tumor cells and
resistance to chemotherapy[213,214].  EGCG, as the target ligand of 67LR, can bind to
67LR to exert a series of effects, ultimately achieving antitumor effects[215]. First, EGCG
can mediate 67LR-dependent cell  death by eliciting Akt/endothelial  nitric  oxide
synthase/NO/soluble  guanylate  cyclase/cGMP/protein  kinase  Cδ/acid
sphingomyelinase  signaling  in  CRC [213].  After  EGCG  binds  to  67LR,  Akt  is
phosphorylated, and endothelial  nitric oxide synthase is activated, leading to an
increase in NO[215]. The production of NO causes an increase in cGMP by activating
NO-dependent soluble guanylate cyclase,  which is viewed as a rate-determining
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Figure 6

Figure 6  Wnt signaling is regulated by the cytoplasmic β-catenin destruction complex, which consists of the core proteins AXIN, adenomatous polyposis
coli, casein kinase 1, and glycogen synthase kinase 3[209]. Wnt ligands bind to the frizzled and low-density-lipoprotein-related protein 5/6 coreceptor complex and
cause the accumulation and nuclear translocation of β-catenin. In the nucleus, β-catenin engages the T cell factor (TCF)/lymphoid enhancer-binding factor
transcription factors to activate the Wnt transcriptional program[210]. In the Wnt/β-catenin pathway, Tea polyphenols (TPs) can inhibit β-catenin/TCF-4 activity and
reduce β-catenin protein expression and further reduce the expression of two downstream signaling targets, namely, cyclin D1 and c-Jun. Black TPs can also
suppress the accumulation of β-catenin by suppressing the phosphorylation of GSK3β by decreasing the activation of PI3Knase and Akt. Furthermore, TPs also
promote the degradation of β-catenin by inhibiting β-catenin response transcription. APC: Adenomatous polyposis coli; CK1: Casein kinase 1; GSK3: Glycogen
synthase kinase 3; TCF: T cell factor; TP: Tea polyphenol; LEF: Lymphoid enhancer-binding factor; LRP5/6: Low-density lipoprotein-related protein 5/6; CRT: β-
catenin response transcription.

process, and then protein kinase Cδ and acid sphingomyelinase are activated[214]. Acid
sphingomyelinase is known to be part of the signaling cascade that participates in
apoptosis[215]. In addition, the 67LR pathway can also mediate the anti-inflammatory
effects of EGCG in lipopolysaccharide-stimulated human colorectal cells[216].  67LR
signaling can activate the Toll-interacting protein, which is a negative regulator of
TLRs, to prevent the inflammatory response, further suppressing the onset of CRC[216].

The NF-κB pathway: In CRC, the NF-κB pathway is responsible for suppressing cell
proliferation, apoptosis, inflammation, angiogenesis, and metastasis[217]. There are two
distinct but interacting arms of the NF-κB pathway: The canonical pathway activated
by TNF-α, TLR ligands, and IL-1, and the noncanonical pathway activated by the TNF
superfamily  members  BAFF,  CD40,  receptor-activated  NF-κB  ligand,  and
lymphotoxin β[217]. The canonical NF-κB pathway can be activated by the inhibitor of
κB (IκB) kinase (IKK) complex[218]. The proteasomal degradation of IκB is accompanied
by the translocation of NF-κB to the nucleus, where it facilitates gene transcription[219].
The noncanonical pathway is activated in response to β-catenin and also involved in
tumor proliferation and growth, angiogenesis, and invasiveness by up-regulating the
PI3K/Akt cascade, COX-2, and VEGF, among others[219]. As a transcription factor that
is necessary for iNOS induction, NF-κB can be inhibited by TPs, and TF3 might have a
greater inhibitory effect than other TPs[220]. There is evidence that has indicated that
TPs can block the phosphorylation of IKKβ in the cytosolic fraction and reduce the
nuclear accumulation of the transcription factor NF-κB[220]. TF3 decreases the protein
levels of inducible NO synthase by reducing the expression of iNOS mRNA, and the
reduction may be the result of preventing the activation of NF-κB, thereby inhibiting
the induction of iNOS transcription[220].

The JAK/STAT pathway:  One study analyzed 65 human CRC samples,  and the
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results  showed  that  phosphorylated-STAT3  was  correlated  with  vasculogenic
mimicry, which refers to the process by which highly invasive cancer cells mimic
endothelial  cells  by  forming  blood  channels[221].  STAT3,  a  key  member  of  the
JAK/STAT pathway, is constitutively activated in CRC, activated by IL-6[221]. STAT3 is
also a convergence point for multiple signaling pathways. In cases of CRC, evidence
has demonstrated that the activation of STAT3 and overexpression of cyclin D1 have a
relationship and that STAT3 is correlated with both survivin and bcl-x[222]. TPs have
the ability to suppress the JAK/STAT pathway[223]. EGCG can decrease elevated levels
of phosphorylated STAT1 and STAT3 proteins in a dose-dependent manner[223]. By
blocking the JAK/STAT pathway, the cytokine-mediated up-regulation of iNOS and
intercellular  adhesion  molecule-1  (commonly  referred  to  as  ICAM-1)  can  be
inhibited[223].

The Nrf2-related factor pathway: Another pathway associated with CRC is the Nrf2
pathway. Usually, the Nrf2 pathway plays a dual role in CRC[224]. On the one hand,
Nrf2 prevents tumor initiation, progression and cancer metastasis by eliminating
carcinogens[224]. On the other hand, Nrf2 hyperactivity due to the accumulation of
DNA damage can lead to the up-regulated expression of downstream genes, which
consequently induce metabolic reprogramming and an improved cell proliferation
rate[224]. Because of its antioxidative effect, the Kelch-like ECH-associated protein 1
(Keap 1)-Nrf2-antioxidant responsive element signaling pathway could be targeted in
CRC for cancer chemoprevention[225]. The evidence indicates that TPs can activate the
Nrf2 pathway to prevent CRC[226,227].  Yuan et al[226]  elucidated that the protein and
mRNA levels of Nrf2 were significantly increased in EGCG-treated mice compared
with  that  in  the  control  group  (all  P  <  0.01).  Another  study  demonstrated  that
activation of the Nrf2 signaling pathway was probably induced by the up-regulation
of p62 and the inhibition of  Keap1[227].  In addition,  polymeric black TPs can also
modulate the Nrf2-antioxidant responsive element pathway in both hepatic  and
colorectal  tissues  to  induce  of  the  phase  II  enzymes  NAD(P)H  quinone  oxi-
doreductase-1 and GST to accelerate 1,2-dimethylhydrazine metabolism and decrease
DNA damage in CRC[211].

In sum, although TPs have the ability to modulate the NF-κB pathway, JAK/STAT
pathway and Nrf2  pathway,  we do not  clearly  understand how to  regulate  this
pathway in CRC specifically, so further studies are required.

Anti-inflammatory effect
Some  cytokines,  such  as  TNF  and  IL-6,  which  are  secreted  by  immune  cells
(monocyte/macrophage lineages, mast cells, T and B lymphocytes, natural killer cells,
and neutrophils), can further activate other factors to induce tumorigenesis[228-230]. TPs
can inhibit the production of TNF-α and IL-6 to inhibit the inflammation response[166].
Moreover, the excessive cytokines can modulate the expression of target genes, such
as COX-2[219]. COX is modulated by cytokines, and COX-2, especially, can mediate
inflammation. COX-2 has been found to be overexpressed in early and advanced CRC
tissues, which is associated with a poor prognosis[229]. COX-1 has been hypothesized to
function as a housekeeping gene for the production of cytoprotective PGs in the
gastrointestinal tract, whereas COX-2 is an immediate early gene that is thought to be
involved in inflammation, mitogenesis, specialized signal transduction mechanisms,
or a combination of these processes[231]. NF-κB and Wnt/β-catenin signaling have both
been shown to regulate the expression of COX-2 (under hypoxic conditions) and TNF-
α[231]. Similarly, Ras and PI3K signaling are also involved in the expression of COX-2 at
a transcriptional and post-transcriptional level[231].

Since  COX-2  signaling  plays  a  crucial  role  in  colorectal  carcinogenesis,  the
reduction of COX-2 can reduce inflammation and prevent tumorigenesis[232].  TPs
inhibit the expression of COX-2 in a multilevel process. TF2 can inhibit the expression
of COX-2 at both the mRNA and protein level (Figure 7)[233,234]. In addition, TNF-α,
iNOS,  ICAM-1,  and NF-κB are  strongly  down-regulated[234].  The  EGCG-induced
inhibition of COX-2 occurs at the mRNA transcriptional level. EGCG can decrease the
stability of COX-2 mRNA through the COX-2 3’-untranslated region (Figure 7)[235].
Similarly, at the post-transcriptional level, EGCG can also block the translocation of
RAF-1 from the cytosol to the plasma membrane, thereby disrupting the association of
MEK-1 and RAF-1. The inhibition of MEK-1 activation can affect downstream ERK, so
that it can contribute to a decrease in the expression of COX-2 (Figure 7)[235]. Besides,
fermented Pu-erh tea X has also shown an anti-inflammation effect, via decreased
expression of NF-κB, iNOS and COX-2 messenger RNA, and increased expression of
IκB-α[148]. By inhibiting COX-2 directly and indirectly by TPs, the secretion of cytokines
by immune cells is suppressed indirectly, and then the inflammatory response can be
controlled. In addition, the anti-inflammatory property of EGCG is linked to antifolate
activity.  EGCG is  known as  an  “antifolate”  because  it  can  inhibit  dihydrofolate
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reductase, and this interferes with DNA biosynthesis[236]. As a result, tumor cells are
more  sensitive  to  inhibitors  of  their  formation  and  development[236].  EGCG  can
mediate the release of adenosine following the disruption of the folate cycle. The
release of adenosine can inhibit the Akt and NF-κB pathway by binding to specific
receptors that are produced by a significant increase by EGCG[236].

In  addition,  PGs,  being  cyclooxygenase  metabolites  of  arachidonic  acid,  are
abundantly produced in tumor tissues, and PGE2 is predominant[237,238]. Many types of
cells, including tumor cells, fibroblasts, endothelial cells, and immune cells, produce
PGE2 in  response  to  the  activation of  COX-2 and PGE synthase  (Figure  7)[237,238].
Moreover, PGE2 can also activate COX-2 by stimulating EP receptor (EP1-4) signaling,
with subsequent enhancement of cellular proliferation, promotion of angiogenesis,
inhibition of apoptosis, stimulation of invasion/motility, and suppression of immune
responses in CRC (Figure 7)[239]. TPs can inhibit COX and LPO-dependent arachidonic
acid metabolism in human colonic tissues to reduce risk of CRC, with ECG showing
the  strongest  inhibitory  effects[240].  Reduced  PGE2  levels  can  also  decrease  the
synthesis of COX-2 (Figure 7). It has been reported that green tea can inhibit PGE2
synthesis and thus suppress the development and metastasis of CRC in colorectal
mucosa in the population[241].  Surprisingly, the formation of the PGE2 metabolites
thromboxane (TBX) and 12-hydroxyheptadecatrienoic acid is also inhibited by TPs,
because they may affect the interaction of COX-2 with other microsomal factors in
tumor microsomes[240].

Anti-oxidation and pro-oxidation
Oxidation stress is viewed as the major mechanism to initiate CRC. The antitumor
effects  of  TPs  are  undoubtedly  tied  to  pro-  and anti-oxidative  properties.  Anti-
oxidation and pro-oxidation by TPs, especially EGCG, have been recently studied in
CRC.  Depending on  their  chemical  structure,  TPs  can  act  as  anti-oxidants,  pro-
oxidants, or both[242]. On the one hand, the effect of anti-oxidation depends on the
chemical  structure of  TPs.  The phenol  rings of  TPs can act  as  electron traps and
scavengers of free radicals, inhibiting the formation of ROS and reducing the harm
caused by oxidative stress[242].  Compared with monomeric catechin, the reducing
power of synthetic polycatechins is lower[243].  Reducing power is associated with
molecular weight[243].  The reducing power was found to be lower with increased
molecular weight[243]. In addition, TPs can also enhance the expression of anti-oxidant
enzymes,  including  superoxide  dismutase  and  glutathione  peroxidase[244].  The
polycatechins showed great amplification of superoxide scavenging activity, xanthine
oxidase inhibitory activity, and compared to monomeric catechin: These activities
were proportional to their molecular weights[243]. Similarly, because of its phenolic
hydroxyl group, GA can inhibit LPO, decrease LPO products, and deplete the levels
of  antioxidants  in  CRC[245].  GA can  also  suppress  ROS and enhance  the  level  of
GSH[245]. All of these studies have indicated that GA has anti-oxidative properties. On
the other hand, pro-oxidative activity is usually the result of the auto-oxidation of TPs
in high concentrations[242].  TPs can be oxidized by superoxide anion (O2

-) radicals,
which  affect  their  stability[246].  TPs  can  work  directly  or  indirectly  to  promote
cytotoxicity as part of their antitumor activity; they promote it directly by producing
hydrogen peroxide and indirectly by reducing Fe(III) to Fe(II), which induces the
creation of more potent ROS by the Fenton reaction[247].

In CRC, TPs can also exert the effect of pro-oxidation to inhibit carcinogenesis. By
producing ROS, TP can modulate the expression of MMPs. MMPs are a family of
tightly  regulated  zinc-dependent  endopeptidases  that  can  degrade  nearly  all
components of the extracellular matrix and basement membrane and mediate the
EMT of primary epithelial tumors and their subsequent metastatic capacity[248,249]. In
CRC,  MMP2  and  MMP7  were  shown  to  have  a  significant  association  with  a
decreased risk of developing CRC, but MMP9 showed a significant association with
an increased risk[250]. Therefore, MMP7 can be tested to explore whether it is reduced
in CRCs. EGCG, acting as a pro-oxidant, can exert a promotive effect on pro-MMP7
production in a dose- and time-dependent manner by generating ROS, activating ERK
1/2, JNK 1/2, and c-JUN/c-FOS, and potentiating AP-1 transcription by increasing
the activity of the Jun/FOS protein superfamily[251].

Pro-apoptotic effect
Apoptosis is divided into the intrinsic pathway and the extrinsic pathway. Both the
extrinsic and intrinsic pathways converge in the same terminal execution pathway,
which is initiated by the cleavage of caspase-3 and results in the fragmentation of
DNA, degradation of cytoskeletal and nuclear proteins, cross-linking of proteins,
formation of apoptotic bodies, and expression of ligands for phagocytic cell receptors,
and the  cell  fragments  are  finally  taken up by phagocytic  cells[252].  The extrinsic
apoptotic  signaling  pathway  is  initiated  by  transmembrane  receptor-mediated
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Figure 7

Figure 7  Tumor necrosis factor from immune cells can activate nuclear factor-kappa B, a central activator that induces the expression of inflammatory
genes, such as COX-2, tumor necrosis factor-alpha, inducible nitric oxide synthase, and ICAM-1, and tumor cell survival, proliferation, invasion,
angiogenesis, and metastasis are affected when tumor necrosis factor binds to tumor necrosis factor receptor 1 and assembles with tumor necrosis factor
receptor 1-associated death domain protein, tumor necrosis factor receptor-associated factor 2, cellular inhibitor of apoptosis protein 1 or 2, and linear
ubiquitin chain assembly complex[219,230]. Similarly, another cytokine, interleukin (IL)-6, is also secreted in the tumor microenvironment. The binding of IL-6 to the IL-
6 receptor activates STAT3, a major oncogenic transcription factor[229]. After binding to the IL-6 receptor at the cell surface, gp130 dimerization and activation and the
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transphosphorylation of JAKs are achieved and then contribute to the phosphorylation of STAT3, causing its translocation from the cytoplasm to the nucleus, where it
modulates the expression of a variety of genes[229]. Tea polyphenols (TPs) can inhibit inflammatory gene expression caused by cytokines secreted by immune cells in
colorectal cancer, with the suppression of COX-2 being particularly important. TPs can inhibit COX-2 in a multilevel process, majorly at the transcriptional and post-
transcriptional level. In addition, (-)-epigallocatechin-3-gallate (EGCG) can suppress the expression of nuclear factor-kappa B (NF-κB) through interruption of folate
cycle. EGCG can inhibit dihydrofolate reductase and thereby interfere with the folate cycle, causing the release of adenosine. Adenosine binding to specific receptors
inhibits the activation of NF-κB. In addition, prostaglandin E2 (PGE2) can also activate COX-2 by stimulating EP receptor (EP1-4) signaling, with the subsequent
induction of colorectal cancer onset. Moreover, TPs can inhibit the synthesis of PGE2 and thereby suppress the expression of COX-2. TNF: Tumor necrosis factor;
TRADD: TNFR1-associated death domain protein; TRAF2: TNFR-associated factor 2; LUBAC: Linear ubiquitin chain assembly complex; IL-6: Interleukin 6; TP: Tea
polyphenol.

interactions, which include best-matched ligands and their death receptors, such as
FasL/FasR, TNF-α/TNFR1, Apo3L/DR3, tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL, also called Apo2L)/DR4, and Apo2L/DR5[252,253]. The intrinsic
apoptotic signaling pathway, also known as the mitochondrial pathway of apoptosis,
involves a variety of stimuli that act on multiple targets within the cell[254]. Two main
groups of normally sequestered pro-apoptotic proteins, such as cytochrome c, are
released in response to the stimuli[255]. The Bcl-2 family of proteins can regulate these
apoptotic mitochondrial pathways positively or negatively. This family includes four
anti-apoptotic proteins (Bcl-xL, Bcl-w, A1, and Mcl1) and two groups of proteins that
promote cell death (the Bax and the BH3-only families, such as PUMA) (Figure 8)[256].
The tumor suppressor protein p53 can regulate Bcl-2 family proteins, such as Bax,
Noxa, or PUMA (Figure 8)[257].

TPs can promote both the intrinsic and extrinsic pathways of apoptosis in CRC
cells. In the extrinsic apoptotic pathway, green TPs induce apoptosis in intestinal
epithelia mediated by caspase-8 through a FADD-dependent pathway. They can
increase caspase activities, block NF-κB activation, and lead to the activation of FADD
and recruitment of the Fas/CD95 domain[143,166]. Moreover, TPs can also directly bind
to Fas death receptor to initiate caspase-8, which mediates apoptosis[191]. In addition,
EGCG can prevent  TRAIL-induced tumor cell  death by antagonizing the TRAIL
pathway by decreasing the binding of DR4 and DR5 and activating autophagy (Figure
8)[258].  Usually,  autophagic flux is  involved in TRAIL-induced apoptosis,  and the
activation of  autophagy can protect  against  TRAIL-induced cell  death[258].  In  the
intrinsic  pathway,  p53  and  Bax  are  up-regulated,  and  the  permeabilization  of
mitochondria  is  mediated by TPs[234].  Fermented Pu-erh  tea  can induce  intrinsic
apoptosis by increased expression of Bax, caspase-9, and caspase-3 messenger RNA
and decreased expression of Bcl-2[148]. Green TPs can induce the expression of PUMA
by inhibiting the activities of ERK1/2[259,260]. The release of cytochrome c and the pro-
apoptotic protein Bax can be induced by TPs (Figure 8)[233].  Moreover, EGCG can
activate AMPK signaling to inhibit COX-2 by generating ROS, which are activation
signals upstream of AMPK, leading to pro-apoptosis and antitumor effects (Figure
8)[261].

The  NSAID  activated  gene  NAG-1  was  identified  a  pro-apoptotic  and
antitumorigenic protein with homology to members of the TGF-β superfamily[262]. In
the induction of NAG-1, even though the presence of a hydroxyl group may play a
pivotal role, the function of ECG, which lacks a hydroxyl group in the B ring, is more
potent than EGCG, indicating that the mechanisms by which the two types of TPs
induce NAG-1 are different[262]. EGCG can induce NAG-1 through a p53-dependent
mechanism (Figure 8)[262]. However, ECG-induced NAG-1 expression is mediated by
ATF3 in a p53-independent manner[262]. The over-expression of ATF3 may inhibit cell
growth and slow cell cycle progression from the G1 phase to the S phase[263]. In the
process of NAG-1 induction by ECG, thrombospondin-1 induced by ECG is an early
effector in the suppression of angiogenesis and modulation of the activity of TGF-
β1[262].

Modulation of gut microbiota
TPs  might  alter  the  human intestinal  and oral  microbiomes  that  are  relevant  to
intestinal dysbiosis, which has been associated with colorectal carcinogenesis[87]. On
the  one  hand,  TPs  can  modulate  the  composition  of  gut  microbiota.  A  study
demonstrated that green TPs could induce elevated levels of short-chain fatty acids
producing so-called “beneficial” bacterial genera, such as Faecalibacterium, Blautia,
Bifidobacterium,  Roseburia,  Eubacterium,  and Coprococcus,  and reduce the functional
markers of inflammation[87]. Short-chain fatty acids have potent anti-inflammatory
properties, including the promotion of colonic Treg expansion and the production of
bile  acid  products,  such  as  ursodeoxycholic  acid,  to  protect  hosts  from
inflammation[264].  Biofilms are massive bacterial invasions of the mucus layer and
consist of many different types of bacteria (and even fungi), such as Bacteroidetes, to
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Figure 8

Figure 8  Both extrinsic and intrinsic pathways converge in the same terminal execution pathway, which is initiated by the cleavage of caspase-3. In the
extrinsic pathway, FasL/FasR and tumor necrosis factor-alpha (TNF-α)/ tumor necrosis factor receptor (TNFR)1 associate with the adapter protein called Fas-
associated death domain (FADD), and procaspase-8 and TNF-α/TNFR1 also need to bind to TNFR-associated death domain to initiate the execution pathway[253]. In
the intrinsic pathway, all stimuli can change the inner mitochondrial membrane to initiate the mitochondrial permeability transition and release two main groups of
normally sequestered pro-apoptotic proteins, such as cytochrome c, from the mitochondria into the cytosol[255]. These proteins activate procaspase-9 and caspase-9
to activate the caspase-dependent mitochondrial pathway[253]. Tea polyphenols (TPs) can promote apoptosis of tumor cells. In the intrinsic pathway, TPs can up-
regulate p53, Bax, and PUMA, which are proteins that promote cell death. In addition, TPs can also induce the release of cytochrome c from the mitochondria into the
cytosol. In the extrinsic pathway, TPs induce apoptosis, mediated by caspase-8, through a FADD-dependent pathway. FADD: Fas-associated death domain; TRADD:
TNFR-associated death domain; TP: Tea polyphenol.

promote  the  formation  of  CRC[264].  TPs  can  induce  the  irreversible  elevation  of
Fimicutes,  reduction  of  Bacteroidetes,  and  elevation  of  FIR/BAC  to  reduce  the
formation of biofilms[87]. In addition, green TPs can also deplete Peptostreptococcaceae,
which has been previously linked to the CRC phenotype in a dose-dependent manner,
and related microbial genes may be modified[265]. Similarly, green TPs also can reduce
the abundance of Fusobacterium[87]. On the other hand, TPs are also metabolized by
esterase  and  glucosidase,  and  the  demethylation,  dehydroxylation,  and
decarboxylation activities of bacteria can further facilitate the absorption of TPs by
intestinal mucosa[265].

TPs might regulate the immune system through modulating the gut microbiota, in
the tumor microenvironment.  It  has been hypothesized that TPs may promote T
lymphocyte proliferation and reduce M2 macrophages. Besides, other immune cells
such as B lymphocytes, NK cells, neutrophils, eosinophils and dendritic cells may be
regulated to some extent respectively. However,  there is not enough evidence to
confirm these  speculations.  Further  research on the  specific  mechanisms of  TPs
regulating immune cells through gut microbiota should be undertaken. Not only that,
different forms of TPs might exert different impacts on lymphocytes. In bulk form,
TPs were shown to produce a statistically significant reduction in DNA damage in
lymphocytes[266,267]. In contrast, in NP form, TPs, although initially causing a reduction,
were shown to produce a statistically significant increase in DNA damage in the
lymphocytes[267]. This finding may support the notion that TPs can exert both anti-
oxidant and pro-oxidant functions. This study also suggested whether different forms
of  TPs  can  play  different  roles  in  other  immune  cells,  such  as  macrophages,
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granulocytes and different subtypes of lymphocytes. More investigations are also
required to be carried out in the future.

MPE
Nowadays, there is still a lack of MPE studies on TPs for prevention and treatment of
CRC. However, in actuality, MPE studies on TPs and CRC are worthy carrying out.
These studies can uncover many aspects, not only for different kinds of TPs but also
for different subtypes of CRC. In addition, whether other endogenous or exogenous
factors will impact the effect of TPs on CRC remains a question, and MPE studies may
deal with this issue. Moreover, the pharmaco-MPE, immuno-MPE, and microbial
MPE should be considered in the studies of impact of TPs on CRC. These are novel
and important directions for investigators in the future. MPE studies are beneficial to
understanding potential causal mechanisms of TPs acting on CRC. MPE studies are
also helpful  for  the diagnosis  and treatment of  CRC using TPs earlier  and more
precisely in clinic. Overall, MPE studies might represent an essential direction for
studying the TPs and CRC in the future,  to  satisfy  the  requirement  of  precision
medicine.

Epigenetic mechanism
Epigenetic gene silencing, which involves DNMTs and histone deacetylases (HDACs),
plays an important role in the formation and progression of CRC and can lead to the
silencing of some normally regulated genes, such as the mismatch repair and tumor
suppressor genes[268]. EGCG can promote the degradation of DNMT3A and HDAC3 to
disrupt the expression of genes by reducing the interaction between the E3 ubiquitin
ligase  UHRF1  and  DNM3A[268].  Thereby,  gene  silencing  actions  of  HDACs  and
DNMTs are inhibited by EGCG[268]. Butyrate (NaB), one of the principal products of
dietary  fiber  fermentation,  induces  differentiation  in  colon  cancer  cell  lines  by
inhibiting HDACs[269]. EGCG and EC can also inhibit NaB-induced differentiation in
the  human  colon  adenocarcinoma  HT29  cells[269].  The  effect  could  be  due  to  an
interaction between NaB and EGCG and EC that prevents the entry and cellular
action of NaB. EGCG and EC might inhibit H+-coupled monocarboxylate transporter
1-mediated NaB transport by altering lipid raft organization[269]. RXRα expression is
decreased  in  malignant  human colorectal  tumors  as  a  result  of  the  silencing  of
regulatory genes through the hypermethylation of CpG islands[270]. EGCG can restore
activity levels of the nuclear transcription factor RXRα and reduce RXRα promoter
methylation. Subsequently, nuclear β-catenin and cyclin D1 levels decrease, and cell
proliferation is disrupted[270].

Other factors
Some  enzymes  are  modulated  by  TPs  and  as  a  result  prevent  the  growth  and
metabolism of CRC. Telomerase, as a cancer-associated enzyme, has a major function
in the maintenance of telomeres and the extension of cellular life span, as well as
DNA repair and anti-apoptotic activities[271,272]. EGCG can block telomerase and limit
the growth of tumor cells[273]. By inhibiting telomerase activity, STAT3 and STAT1
interactions are induced to reduce the cancer stem cell phenotype[274]. EGCG can also
inhibit topoisomerase II activity, and Ardisia compressa tea more effectively inhibits
topoisomerase II activity and thus suppresses the proliferation of cancer cells[275]. Class
II topoisomerase inhibitors inhibit either the DNA binding or DNA cleavage step of
the enzymatic reaction; thus, DNA breaks are not generated, and tumor cells with
defective decatenation checkpoints fail to arrest their cell cycle in the G2 phase and
enter the M phase[276].

Moreover, green TPs have been reported to inhibit tumors by preventing protein
carbonylation in the tumor tissue environment,  which depends on the pH of the
medium surrounding the tissue, the type of tumor, the stage of dysregulation of lipid
peroxidation, and the stage of carcinoma development[277].

CONCLUSION AND FURTHER DIRECTION
Overall, most studies, both in vitro and in vivo, support the notion that drinking tea
can be beneficial to health and that TPs play a predominant role in the promotion of
health. Worldwide, many scientists have indicated that TPs can inhibit the growth
and metastasis  of  CRC in  a  comprehensive  multi-process  mechanism.  Diet  and
lifestyle not only play an important role in the onset of CRC but also enhance or
diminish the impact of TPs on CRC. TPs can inhibit the proliferation of tumor cells by
the  modulation  of  signaling  pathways,  such  as  the  MAPK  pathway,  PI3K/Akt
pathway, Wnt/β-catenin pathway, and JAK/STAT pathway. TPs can exert their anti-
oxidative or pro-oxidative properties to suppress the growth of CRC. Meanwhile, TPs
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can promote tumor cell apoptosis by facilitating extrinsic and intrinsic apoptosis. TPs
have also been shown to be able  to  induce cell  autophagy by inhibiting TRAIL-
mediated  apoptosis.  In  addition,  TPs  can  also  modulate  the  components  of  gut
microbiota  to  improve  immunity,  regulate  immune  cells  and  decrease  the
inflammatory  response  by  increasing  beneficial  bacteria,  and reducing  harmful
bacteria. Inflammation is also inhibited by suppressing the expression of COX-2 in a
multilevel process. Finally, TPs serve a role in epigenetic mechanisms by promoting
the degradation of DNMT3A and HDAC3 and restoring RXRα activity levels. TPs can
also  decrease  chemoresistance  in  combination  with  chemotherapy  medicines.
Therefore, TPs have widespread roles in the prevention and treatment of CRC.

At present, the properties and application of EGCG are attaining increasing interest
but there are not enough studies to determine whether other TPs can be applied in the
same way.  Therefore,  further  investigation should be carried out  to  confirm the
specific mechanisms of each TP. In addition, because of the poor oral bioavailability of
TPs, it is difficult to judge the specific amount of TPs that should be recommended to
the population to promote health. To date, many clinical trials have been conducted to
demonstrate the function of TPs in the mitigation of many diseases, such as obesity
and breast cancer[278,279]. However, more randomized, double-blind, crossover, and
placebo-controlled  clinical  trials  with  large  samples  from  multiple  centers  are
required to identify the effect and concentration of TPs in even more diseases. The
route of injection may affect bioavailability. A novel study examined transdermal
EGCG[280] and additional studies are required to identify the efficacy and risk. The
interaction of TPs and other foods and lifestyle on CRC should be discussed more
deeply in the future. Although MPE studies have made great progress on CRC, there
is  still  a  lack  of  relative  investigations  between  different  subtypes  of  CRC  and
different kinds of TPs. MPE can satisfy the requirement of precision medicine and
provide a novel direction for further research. It will be helpful to prevent and treat
CRC using TPs by gaining more precise information for clinical application. Overall,
TPs, as newly applied biological agents, still  have many unknown fields that are
waiting to be explored. Not only animal studies but also epidemiological studies will
be indispensable.
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