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Abstract

Background—Fragment-based ligand design is used for the development of novel ligands that 

target macromolecules, most notably proteins. Central to its success is the identification of 

fragment binding sites that are spatially adjacent such that fragments occupying those sites may be 

linked to create drug-like ligands. Current experimental and computational approaches that 

address this problem typically identify only a limited number of sites as well as use a limited 

number of fragment types.

Methods—The site-identification by ligand competitive saturation (SILCS) approach is extended 

to the identification of fragment bindings sites, with the method termed SILCS-Hotspots. The 

approach involves precomputation of the SILCS FragMaps following which the identification of 

Hotspots, performed by identifying of all possible fragment binding sites on the full 3D structure 

of the protein followed by spatial clustering.

Results—The SILCS-Hotspots approach identifies a large number of sites on the target protein, 

including many sites not accessible in experimental structures due to low binding affinities and 

binding sites on the protein interior. The identified sites are shown to recapitulate the location of 

known drug-like molecules in both allosteric and orthosteric binding sites on seven proteins 

including the androgen receptor, the CDK2 and Erk5 kinases, PTP1B phosphatase and three 

GPCRs; the β2-adrenergic, GPR40 fatty-acid binding and M2-muscarinic receptors. Analysis 

indicates the importance of considering all possible fragment binding sites, and not just those 

accessible to experimental methods, when identifying novel binding sites and performing ligand 

design versus just considering the most favorable sites. The approach is shown to identify a larger 
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number of known binding sites of drug-like molecules versus the commonly used FTMap and 

Fpocket methods.

General Significance—The present results indicate the potential utility of the SILCS-Hotspots 

approach for fragment-based rational design of ligands, including allosteric modulators.

Keywords

allosteric pocket; cryptic pocket; orthosteric; competitive inhibitor; computer-aided drug design; 
fragment-based drug design

Introduction

While a large number of drugs target the active or orthosteric sites of proteins, current drug 

discovery efforts are also targeting allosteric sites on proteins. Targeting allosteric sites 

offers the potential of minimizing unwanted side effects, such as those that may occur when 

blocking a metabolically essential pathway, while affecting a useful therapeutic outcome.[1, 

2] Allosteric modulators may also overcome specificity issues associate with classes of 

proteins having similar active sites, which occurs with kinases.[3] Examples of drugs on the 

market that are allosteric inhibitors include the HIV non-nucleoside reverse transcriptase 

inhibitors, which are non-competitive inhibitors, such as rilpivirine.[4] Recently, allosteric 

modulators for a number of G-protein coupled receptors (GPCR) have been identified and 

efforts are ongoing to develop GPCR allosteric modulators into therapeutic agents.[5] As 

with kinases and reverse transcriptase, this is motivated by the similarity of the orthosteric 

sites of structurally and biologically similar proteins as well as the need to not completely 

block the physiological response associated with a specific GPCR but rather to modulate 

that response.

The rational design of allosteric modulators of proteins when an allosteric site has not been 

previously identified presents a number of challenges.[6] Proteins often undergo significant 

conformational changes as they interact with multiple partners including ions, small 

molecules, lipids, and other proteins. The heterogeneous environment is particularly 

challenging in the case of membrane bound proteins, such as GPCRs, that typically include 

hydrophobic transmembrane (TM) regions exposed to the lipid bilayer combined with the 

more hydrophilic extra- and intracellular regions that are comprised of a range of structural 

motifs. Accordingly, the ability to initially identify potential novel allosteric sites and also 

the design of ligands targeting those sites represents a significant challenge to computational 

methods.

A number of computational approaches have been presented to facilitate binding site 

identification and ligand design,[7–11] including the widely used FTMap by Vajda and 

coworkers.[12] Recent examples include the use of Fpockets[13] and Fragment Hotspots[14] 

to identify allosteric sites on acetylcholinesterase.[15] Efforts from the labs of Barril and 

Carlson have shown the utility of the CoSolvent or MixMD methodology in identifying 

allosteric sites.[16, 17] Notable are studies by Astex using both computational techniques, 

including the PLImap method, and experimental approaches to identify and characterize 

fragment binding sites.[18, 19] A similar approach has been applied by Caflisch and 
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coworkers.[20, 21] These efforts have led to the concept of “hot” versus “warm” spots 

associated with the occupancy of the sites by fragments and their binding affinities, where 

both the hot and weaker affinity warm spots are important for ligand design as the 

occupancy of warm spots can lead to “substantial increases in affinity.”[18, 19] In the 

context of ligand design fragment-based approaches have been applied, for example, The 

plant homeodomain (PHD) Zinc Finger domain and the BRPF1 bromodomain.[22, 23]

The site-identification by ligand competitive saturation (SILCS) methodology[24–26] is an 

approach in which multiple cosolvent molecules along with water are used simultaneously to 

map the functional group affinity pattern of proteins, termed FragMaps. The method was 

developed in the spirit of “site-identification” and has successfully characterized an 

allosteric site in Erk kinase[27] and identified a novel allosteric site in heme oxygenase[28] 

as well as been successfully applied in a number of ligand discovery and optimization 

studies.[29–34] While the SILCS approach can identify important binding sites, including 

pharmacophore features demarcating those sites,[35] it additionally has the advantage of 

allowing for large numbers of fragment-like molecules to be rapidly screened against the full 

3D structure of a protein, thereby allowing for the characterization of all potential binding 

sites based on the fragments that occupy those sites and their estimated affinities. As this 

approach identifies a collection of fragments for each site, it may be used to jump-start a 

ligand development project.

In the present study, we extend the SILCS approach to map all possible fragment binding 

sites on a protein, with the method termed SILCS-Hotspots. SILCS-Hotspots combines 

comprehensive fragment-screening based on the FragMaps and the SILCS-MC docking 

approach in conjunction with ligand clustering to identify and rank order fragment binding 

sites, termed Hotspots, on a protein. We note that this approach successfully identifies sites 

that encompass both the hot and warm spots discussed above. Analysis of the relative spatial 

locations of those Hotspots may be used to characterize putative allosteric and other ligand 

binding sites. The method is validated against 7 protein targets for which allosteric as well as 

orthosteric binding site ligands are known. These include the androgen receptor (AR), Map 

Kinase 7 (Erk5), Cyclin-dependent Kinase 5 (Cdk5), Protein-tyrosine-phosphatase 1B 

(Ptp1B), and the GPCRs, the β2 adrenergic receptor, the GPR40 fatty acid binding protein 

and the M2 muscarinic receptor. As the goal of the present study is to validate SILCS-

Hotspots for facilitating the design of allosteric as well as orthosteric ligands with drug-like 

characteristics, the target systems were selected as they contain such types of ligands in 

crystallographic-determined orientations. This in contrast to computational methods 

designed to recapitulate the locations of small molecules used in crystallographic studies to 

experimentally identify binding sites on proteins.[36] Accordingly, validation of the SILCS-

Hotspots method is based on its ability to identify fragment binding sites in the vicinity of 

those ligand binding sites as well as identify regions of the protein that can relax to allow for 

covalent linkage of fragments occupying the different Hotspots thereby supplying 

information that may a priori be used to facilitate the design of drug-like ligands. The power 

of the SILCS Hotspots approach is identifying all possible fragment binding sites that may 

be relevant to the design of drug-like molecules, not just those sites to which fragments bind 

that can be identified experimentally (e.g. those sites for which the affinity of the fragment is 

favorable enough to be observed). In all cases, the structures used for the SILCS simulations 
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did not contain an allosteric modulator in the site being analyzed indicating the ability of the 

method to potentially identify novel binding sites for allosteric modulators.

Methods

SILCS-Hotpots Workflow

An overview of the SILCS-Hotspots workflow is shown in Scheme 1. The process is 

initiated by performing the SILCS GCMC/MD simulations from which the SILCS 

FragMaps are obtained. The SILCS FragMaps, which may be used in a number of ways, are 

the basis for the fragment docking from which the Hotspots are identified. Fragment docking 

uses the SILCS-MC approach to sample fragment locations and orientations in the full 3D 

region occupied by the protein and its surrounding environment. This leads to thousands of 

docked orientations of each fragment type. Two rounds of spatial clustering are then 

performed. In the first round a representative member of each fragment type in a region is 

identified, thereby defining fragment binding sites. In the second round, clustering is 

performed over all types of fragments, thereby identifying all the fragments that occupy a 

site, thereby defining a Hotspot. Metrics that may be used to define each Hotspot, as 

described below, are then calculated. This completes the Hotspots analysis. The final step in 

Scheme 1 represents a qualitative approach to identify novel allosteric binding sites using 

the identified Hotpots.

Protein System Preparation

SILCS calculations were initiated with the crystallographic structures listed and described in 

Table 1. The PDBs associated with soluble proteins AR, Cdk2, Erk5 and Ptp1B were 

initially processed using the CHARMM-GUI,[37] including all ligands. Missing residues 

were constructed per the CHARMM-GUI default protocol. Prior to the SILCS simulations 

all ligands were removed. For all soluble protein subjected to SILCS simulations, the χ1 

dihedral of side chains with solvent exposures of 0.5 Å2 or more were randomized by 

rotating the dihedral in 36° increments yielding 10 initial starting structures that only 

differed by the selected side chain orientations. The process was not performed for the 

membrane bound GPCRs. All protein systems, including the GPCRs in the equilibrated 

bilayers (see below), were then solvated with water, represented by the CHARMM TIP3P 

model, along with the following solutes at ~0.25 M concentration: benzene, propane, 

methanol, formamide, imidazole, acetaldehyde, acetate and methylammonium. The water 

and 8 solutes are simultaneously included in the simulation systems and each protein 

underwent this procedure 10 times to create 10 individual simulation systems. The 

simulation systems were created to be 15 Å larger than the largest dimensions of the proteins 

in the X, Y, and Z directions. The solutes were represented with the CHARMM General 

Force Field (CGenFF)[38] with the protein modeled using the CHARMM36m force field.

[39]

Preparation of the GPCR structures prior to the SILCS simulations was performed as 

follows. With the β2-adrenergic receptor, the nucleotide-free Gs heterotrimer was removed 

from the crystal structure (PDB ID: 3SN6) and the protein processed through the 

CHARMM-GUI.[37] Missing residues between TM5 and TM6 were constructed using 
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MODELLER.[40] The GPR40 GPCR crystal structures (PDB ID: 4PHU and 5KW2) had 

the T4 lysozyme fusion protein removed from the structures with the resulting termini 

simply treated at standard C- and N-termini as the omitted loops were not in the region of 

the allosteric binding sites. In the case of the M2 muscarinic receptor, the T4 lysozyme 

fusion protein was removed from the crystal structure (PDB ID: 3UON) and the resulting 

terminal residues linked via a standard peptide bond. All GPCR proteins were then inserted 

into a lipid bilayer of 120 × 120 Å containing 90% 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC) and 10% cholesterol using the MolCal suite of programs (SilcsBio, 

LLC).[41] This was followed by a protein-bilayer equilibration protocol adopted from 

CHARMM-GUI[42] and previously used in our laboratory for studies of the μ-opioid 

receptor and the β2-adrenergic receptor.[43, 44] Following the equilibration simulation, the 

aqueous solution was removed and the system, including the bilayer, overlaid with water and 

the solutes listed above and then subjected to the standard SILCS simulation protocol, as 

follows.

SILCS simulation protocol

The SILCS simulation protocol used our in-house oscillating μex Grand Canonical Monte 

Carlo (GCMC) program[45] and GROMACS[46] for energy minimization and molecular 

dynamics (MD) simulations in conjunction with the MolCal software suite (SilcsBio, LLC). 

Details of the SILCS simulation protocol have been recently published.[26] Briefly, the 10 

systems for each protein were subjected to SILCS oscillating μex GCMC/MD simulations. 

Following an initial equilibration, the GCMC/MD simulations involved repeated cycles of 

200,000 GCMC steps of the water and solutes followed by a 5,000 step steepest descent 

minimization and a 100 ps MD equilibration followed by a 1 ns production MD simulation 

of the entire system. Each system was subjected to 100 such GCMC/MD cycles yielding a 

total of 1 microsecond of simulation trajectories (10 × 100 ns of MD simulation) for each 

protein.

Calculation of the SILCS FragMaps used snapshots from the MD trajectories saved every 10 

ps from which the probability distributions of selected solute atoms that define the 

FragMaps were determined based on a 1 Å3 grid. The probability distributions were then 

normalized based on the expected probability distributions of the solute and water in 

aqueous solution alone. To correct for the presence of the volume occupied by the protein 

and bilayer, the solute probabilities were calculated relative to the number of water 

molecules in the system (e.g., 1 solute molecule relative to 55 water molecules corresponds 

to define 1 M solute), with concentrations calculated based on the individual functional 

group atom types rather than the solutes themselves as discussed in Ustach et al.[26] The 

normalized probability-based FragMaps were then converted to Grid Free Energies (GFE) 

based on a Boltzmann transformation for visualization and subsequent calculations. Selected 

FragMaps were combined into “generic” maps including Apolar (benzene and propane 

carbons), Hydrogen Bond Donor (formamide and imidazole protonated N atoms) and 

Hydrogen Bond Acceptor (formamide O, acetaldehyde O, and imidazole unprotonated N 

atoms) while the FragMaps for the methanol O, acetate C and methylammonium C or N 

were used directly. Ligand Grid Free Energies (LGFE), an approximation of the binding 
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affinity of ligands, is based on the summation of the GFE scores for the classified atoms in 

each ligand.[26]

SILCS-Hotspots Protocol

SILCS-Hotspots is based on the identification and characterization of fragment binding sites, 

termed Hotspots. Fragments included in the present study are shown in Figure S1 of the 

supporting information. Identification of the Hotspots is initiated using the SILCS-MC 

method[47] in which fragment posing and scoring applies Monte Carlo (MC) sampling in 

the field of the GFE FragMaps with the Metropolis criteria based on the ligand LGFE scores 

plus intramolecular contributions associated with the CGenFF dihedral, electrostatic and van 

der Waals (vdW) energies.[26] In SILCS-Hotspots, the system is partitioned into a set of 

14.14×14.14×14.14 Å3 sampling boxes that encompass the entire protein and surrounding 

region. At each sampling box SILCS-MC is performed, in which the fragment is randomly 

positioned within a sphere of radius 10 Å centered in the sampling box, with one of the 

rotatable bonds in the fragment randomly varied. The ligand is then subjected to 10,000 MC 

steps at 300 K of molecular translations and rotations up to 1.0 Å and 180.0°, respectively, 

and rotation of dihedrals about rotatable bonds of up to 180.0°. This is followed by 40,000 

MC simulated annealing steps from 300 to 0 K of molecular translations and rotations up to 

0.2 Å and 9.0°, respectively, and rotation of dihedrals about rotatable bonds of up to 9.0°. 

This process is repeated 1,000 times for each fragment in each sphere yielding thousands of 

docked orientations of each fragment in and around the entire protein. Pruning of this large 

number is performed using spatial clustering as described in the following paragraph 

(Scheme 1).[48]

Center-of-mass (COM) based clustering with 3 Å cluster radius is performed, where 

identification of the conformer with the largest number of neighbors is performed, with 

those members removed from the pool of conformations with the process repeated until no 

conformers remain.[48] The cluster radius of 3 Å is set empirically for this study, but it is 

adjustable. The sampling boxes in the SILCS MC are designed to overlap and the clustering 

is performed after pooling the fragment conformations from all sampling boxes together. 

This yields a collection of poses of each fragment.

A second round of clustering is then performed on all the poses to identify the Hotspots, 

which may be populated by multiple fragment types. This is performed using the same 

clustering algorithm and a radius of 4 Å from which the Hotspots are identified that contain 

one or more members from the collection of fragments under study. The LGFE scores of 

each of the fragments in each Hotspot are then averaged with the Hotspots ranked based on 

the mean LGFE scores. For comparison, ranking was also performed on the most favorable 

LGFE score or ligand efficiency (LE = LGFE/# of non-hydrogen atoms) of the fragments in 

each Hotspot and the number of fragments in each Hotspot. Hotspots characterization also 

included the distance to the nearest crystallographic ligand non-hydrogen atom, with 

relevant Hotspots being defined as within 5 Å of the ligand non-hydrogen atoms, where the 

Hotspot position is based on the COM of all the fragments in the Hotspot. In the present 

study, only fragments with an LGFE scores of −2 kcal/mol or more favorable and within 6 Å 

of any protein Cα atoms were subjected to clustering for Hotspots determination; both 
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metrics are adjustable. It should be noted the Hotspots identification is sensitive to the two 

clustering radii, where the use of larger clustering radii will typically lead to a decrease in 

the total number of Hotspots identified with those sites being more spatially separated. The 

cluster radii as well as the LGFE cutoff of −2 kcal/mol and the 6 Å distance to protein Cα 
atoms were selected based on empirical observations in the present study.

Results and Discussion

Validation of the capability of the SILCS-Hotspots method to identify binding sites focused 

on known allosteric sites in seven well-studied proteins (Table 1). In addition, given the 

availability of orthosteric or active site ligands in some structures, analysis was extended to 

these species. In all cases, the structures used for the SILCS simulations did not contain an 

allosteric modulator in the site being analyzed. In the case of GPR40 for which two 

modulators binding to separate sites are known, to characterize the methodology against 

both sites, two separate SILCS simulations were performed using a crystal structure in 

which one of the sites was unoccupied in each case, with the ability of SILCS-Hotspots to 

characterize that site evaluated. An important part of the present SILCS-Hotspots method is 

the use of fragments known to occur in drug-like molecules to identify putative binding 

sites. This approach leads to the identification of binding sites that have a higher potential of 

being suitable as targets for the design of drug-like molecules. In the present study, the 

family of fragments was comprised of 90 mono- and bicyclic compounds. These include 

ring systems that commonly occur in drug molecules.[49] The fragments are shown in 

Figure S1 of the supporting information. We note that the SILCS-Hotspots procedure may 

be applied to any collection of fragments, including publicly available[18, 19, 50] and 

commercial fragment libraries, as well as to full-drug like molecules.

The output from SILCS-Hotspots comprises the location of the centers of the predicted 

fragment binding sites, termed Hotspots, along with the mean LGFE score for all the ligands 

in each site. In addition, the pose of each fragment in each Hotspot is output. Initial analysis 

focused on the Androgen Receptor followed by a more global analysis of all the target 

systems. Mapping of the Hotspots on that AR is shown on Figure 1. As may be seen the 

Hotspots encompass the entire protein, including occupying the totally occluded orthosteric 

site where dihydrotestosterone (DHT) binds, as well as the allosteric site to which 

flufenamic acid (FLA) binds. As expected, the sites are occupied by the different SILCS 

FragMaps that are used as the scoring function for the SILCS MC posing of the fragments. 

Close up views of the local ligand binding sites with the crystallographic orientation of the 

ligands of the Hotspots are shown in Figure 2. In the case of DHT, there are two Hotspots in 

the vicinity of the ligand that correspond with apolar, H-bond donor and H-bond acceptor 

FragMaps. The mean LGFE scores of the two Hotspots sites are −2.82 and −2.48 kcal/mol 

and these correspond to the 26th and 57th ranked sites, respectively. It should be noted that 

the starting structure (PDB ID: 2AM9) has testosterone in the orthosteric site, so 

identification of this site was expected as the use of the GCMC methodology in SILCS 

allows for sampling of the solutes and water during the SILCS simulations in such occluded 

sites, as required for proper energetic evaluation in such binding sites, as has been shown 

with the T4 lysozyme pocket mutant.[45] In the case of the allosteric modulator, FLA, there 

are three Hotspots that overlap with the ligand. These correspond to apolar, H-bond donor 
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and negative FragMaps. The mean LGFE scores of these sites are −3.47, −2.91 and −2.71 

kcal/mol, corresponding to rankings of 3, 17 and 34, respectively. These results show the 

capability of the SILCS-Hotspots method to identify fragment-binding sites that correspond 

to known ligand binding sites. However, the identified Hotspots are not typically the highest-

ranking sites, as is also the case for the remaining systems, as discussed below.

To understand the relevance of the ranking of the identified Hotspots, analysis of the mean 

LGFE scores of all sites as a function of their rank was undertaken (Figure 3). For the 

androgen receptor a total of 85 sites with mean LGFEs less then −2.0 kcal/mol were 

identified, with the most favorable being −3.64 kcal/mol. The top 11 sites have energies of 

−3.0 or less and these sites appear to comprise a specific class of sites as judged by the slope 

of that region in Figure 3. Sites less favorable than −3.0 kcal/mol appear to comprise a 

second regime with an approximately linear slope. While the criteria for defining the class of 

sites differ the present high- and low-slope sites appear to approximately correspond to the 

previously discussed hot and warm sites.[18, 19] With respect to the sites that coincide with 

the ligand binding sites (Table 1), only one that is in the FLA site is in the more favorable set 

with the rest in the second “low slope” regime (Figure 3). The range of LGFE scores for 

those sites is relatively small, from −2.48 to −2.82 kcal/mol.

The relevance of the ranking of the Hotspots for ligand design was further investigated by 

considering additional metrics including the number of fragments in each site, the most 

favorable LGFE of each site and the most favorable LE for the sites (Table 2). This analysis 

included the top 2 ranked sites as well as the sites in the vicinity of the DHT and FLA 

ligands. The number of fragments in each site adjacent to the ligands varied from 2 to 55 out 

of the 90 fragments considered in the study, compared to 11 and 3 for the 2 top ranked sites. 

The highest-ranking site close to a ligand, site 3, contained the most favorable fragment, 

with LGFE = −6.2 kcal/mol, more favorable than the values of −4.8 and −3.9 kcal/mol for 

sites 1 and 2, respectively. A similar trend was observed with the LE metric. Indeed, with 

respect to the most favorable fragment LGFE scores, sites 17, 26 and 34 have fragments 

more favorable than site 2 with that of site 34 being more favorable than that in the top 

ranked site. In combination, this analysis indicates that use of site ranking based on 

energetics or number of fragments is not sufficient to identify sites appropriate for directing 

ligand design. Instead, the characteristics and spatial relationship of the individual Hotspots 

need to be considering when identifying novel ligand binding sites and undertaking 

fragment-based drug design. Analysis of the additional proteins below yields similar results.

Examination of the specific fragments occupying selected Hotspots was next undertaken. 

The top scoring DHT and FLA sites, Hotspots 26 and 3, contain 25 and 47 fragments, 

respectively (Table 2). Of the top fragments in each site, fragments 50 and 83 occurred in 

both sites (Figure 4 and Figure S1). These fragments, adamantane and hexahydronaphthlene, 

are hydrophobic molecules and bind favorably to a significant number of sites (45 and 40 

Hotspots, respectively) on the AR. However, in addition fragments with significant amounts 

of polar character are also at those Hotspots. For example, at site 3 fragments 3, 9, 21, 29, 

and 31 bind with LGFEs of −5.1, −3.9, −2.6, −4.6 and −2.9 kcal/mol, respectively. Similarly, 

at site 26 fragments included 4, 42, 60, 80, 87 and 100 with LGFE scores −2.9, −4.2, −3.2, 

−3.5, −3.2 and −2.4 kcal/mol, respectively (Figure 4). Thus, while there is a tendency for 
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nonpolar fragments to be selected for a large number of Hotspots, diverse fragments are 

being selected for the individual sites dictated by their specific characteristics. This is 

important as specificity is largely dictated by electrostatic interactions.[70] Importantly, for 

ionizable groups with pKa values close to 7, multiple protonation states are considered in the 

Hotspots analysis, thereby allowing for identification of the preferred protonation as well as 

tautomeric state of a fragment for a given site. Importantly, the SILCS-Hotspots procedure 

typically identifies multiple fragments at each site, allowing for selection of the most 

appropriate fragments for ligand design based on synthetic, physiochemical or other 

considerations.

Global analysis based on additional proteins studied

To assure that the observations from the SILCS-Hotspots approach are generalizable, the 

present study included six proteins of various classes in addition to the AR. These include 

two kinases, a phosphatase and three GPCRs (Table 1). These represent widely targeted 

proteins that are comprised of different structural motifs for which crystallographically-

characterized allosteric modulators are known. The kinases included both the active and 

inactive forms of CDK2 along with the inactive form of Erk5 and three GPCRs were studied 

given the significant role of this class of proteins as drug targets. In the case of the kinases 

and the β2 adrenergic and M2 muscarinic receptors the SILCS simulations were initially 

performed on the form (active or inactive) that the allosteric modulator does not bind and, to 

reiterate, the starting structures did not contain the allosteric modulator being used for 

validation.

Motivated by the trend seen in the Hotspots site mean LGFE scores as a function of rank for 

the AR (Figure 3), the same analysis was performed for all the proteins (Figure 5). The same 

general pattern is observed. The highest-ranking sites fall into the high-slope or hot 

classification where the differences in the mean LGFE scores changes rapidly with ranking, 

followed by a larger number of sites in which the differential in the mean LGFE score is 

lower and the LGFE scores are less favorable, the low-slope or warm classification. Figure 

5B shows the same plot for the top 20 ranked sites for each protein. The number of hot sites, 

sites that have a mean LGFE < −3.0 kcal/mol, for the proteins varies from as low as 3, with 

the β2 adrenergic receptor, up to 15 with the AR. The majority of proteins have a smaller 

number of hot sites, typically from 5 to 8. While these sites have more favorable overall 

affinities for the studied fragments, most sites found in the vicinity of the known ligands are 

warm sites consistent with the AR results. Visual inspection of the fragments and analysis of 

the contributions of the different types of FragMaps to the two classes of sites did not reveal 

any patterns that differentiate them.

Details of the number of Hotspots within 5.0 Å of each of crystallographic ligand sites are 

presented in Table 3 for the six additional proteins. The results are similar to those described 

above for the AR. In all but two cases, there are two or more Hotspots in the vicinity of the 

binding sites. The exceptions occur with the AN1 Site in the active form of CDK2, with no 

Hotspots identified and the second MFZ site on the inactive form of CDK2 for which only a 

single site is identified (see below). Based on the mean LGFE ranking there are a number of 

Hotspots in the top 10 while the majority of Hotspots are warm sites with mean LGFEs less 
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favorable than −3 kcal/mol. For the majority of Hotspots multiple fragments are present, 

though in a number of cases less than 5 fragments occupy the respective sites. These results 

further indicate the ability of the SILCS-Hotspots approach to identify potential allosteric 

and othosteric binding sites, though it is necessary to take into account all the Hotspots 

rather than just the most favorable sites, as previously discussed.17

While the ranking of Hotspots is based on the mean LGFE, by applying the approach to 

multiple proteins the predictability of other metrics, such as the minimum LGFE or LE and 

the maximum number of fragments in each site was tested. Presented in Table 4 are the top 

overall minimum LGFE, minimum LE and mean LGFE scores and the maximum number of 

fragments for all the Hotspots in each protein along with the top values for those Hotspots in 

the vicinity of crystallographic identified ligands. While the mean LGFE does not identify 

the most favorable Hotspot adjacent to any ligand, both the minimum LGFE and minimum 

LE metrics do in two cases each while the maximum number of fragments in a Hotspot does 

in one case. Thus, identifying Hotspots with highly favorable LGFE or LE scores for 

individual fragments or Hotspots with the maximum number of fragments may be of utility 

for identifying Hotspots to be exploited in ligand design. However, is as evident from the 

data in Table 3, the majority of the Hotspots located adjacent to known ligands do not have 

highly favorable values of these metrics, further indicating the need to consider all Hotspots 

when undertaking ligand design.

Active versus inactive form of CDK2 kinase and GPCRs

Kinases undergo significant conformational changes upon going from the inactive to active 

forms associated with in, out, and intermediate conformations of the DFG motif.[71, 72] 

While for many kinases crystal structures of multiple forms are known, for a large number 

of kinases crystal structures of only a single form is available. Accordingly, tests were 

undertaken to determine if application of the SILCS-Hotspots method to one form would 

yield information suitable for the other form. Towards this, we initially performed the SILCS 

simulations on the active conformation of CDK2 (PDB ID: 3MY5) with analysis being 

performed with respect to the allosteric modulators that target the inactive form of the 

kinase. The results under the CDK2 active section of Table 3 show that for the majority of 

sites there are two or more Hotspots adjacent to the ligands. However, there were no 

Hotspots in the vicinity of one of the orientations of the modulator 2ANb. To determine if 

this was associated with use of the active conformation of the kinase a second set of SILCS 

FragMaps was calculated starting from an inactive conformation (PDB ID: 1PW2) and 

subjected to Hotspots analysis. Results in Table 3 for the CDK2 inactive conformation show 

that Hotspots are identified adjacent to all the allosteric modulators, including 2ANb, though 

only a single Hotspot adjacent to the MFZb ligand (second conformation of MFZ ligand) is 

found.

To understand the structural contributions leading to the inability of the active form Hotspots 

analysis to identify the location of 2ANb, the two crystal conformations of the active and 

inactive structures and the two orientations of the 2AN ligand are compared. In the active 

form (Fig. 6A and C), the αC helix of CDK2 (residue 45 to 57) [73] is positioned directly on 

the 2AN ligands such that no Hotspots can occupy the region adjacent to 2ANb. However, 
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while the second orientation 2ANa is also partially occluded by the αC helix, the phenyl 

group is on the surface of the protein adjacent to three Hotspots. In the inactive 

conformation (Fig. 6B and D), the αC helix is shifted, opening the region to which the two 

conformations 2AN bind such that Hotspots are located adjacent to both the buried (2ANb) 

and surface exposed (2ANa) conformations. These results indicate that the SILCS-Hotspots 

approach cannot account for the large conformational change that the DFG motif undergoes 

such that it is suggested that allosteric ligand design efforts targeting the DFG motif region 

in the active versus inactive form of kinases need to be based on the respective 

conformations of the protein. However, as Hotspots are identified in the inactive form of 

CDK2 that are adjacent to modulators identified in other inactive crystal structures of the 

protein, the inclusion of protein flexibility in the SILCS methods can account for the 

structural variability among the individual forms of the protein.

Similar analysis was performed with the β2 Adrenergic and M2 muscarinic GPCRs. The 

SILCS FragMaps were calculated for the active form of β2 and the inactive form of M2 with 

the Hotspots analysis performed on those FragMaps (Table 1). Notably, analysis of the 

Hotspots adjacent to allosteric modulators on the opposite forms of the respective GPCRs 

showed that multiple Hotspots are in the vicinity of those ligands (Table 3). In addition, 

Hotspots are also identified adjacent to the orthosteric ligands when the alternate form of the 

receptors were used for FragMap generation. These results indicate that the ability to 

identify allosteric sites is, to some extent, independent of the state of the GPCR on which the 

FragMaps are calculated. However, we do note in previous studies on the β2 Adrenergic 

receptor that independent SILCS simulations of both the active and inactive forms yielded 

two sets of FragMaps that were able to distinguish agonists from antagonists, [44] indicating 

the potential utility of the method in the development of agonists versus antagonists for 

GPCRs given the availability of both states of the protein. In addition, the ability to 

distinguish between agonists and antagonists by active versus inactive form FragMaps, 

respectively,[44] indicates the need to target the correct form of the GPCR when performing 

ligand optimization using the SILCS methodology.

Comparison of SILCS-Hotspots with FTMap and Fpockets

Calculations were undertaken on the studied proteins to compare SILCS-Hotspots with the 

widely used FTMap[12] and Fpocket[13] methods. Presented in Table S2 are results on the 

number of sites identified by each method within 5 Å of the crystal ligand positions along 

with the ranking of the sites and the individual site COM to ligand minimum distance for the 

studied proteins. Overall, SILCS-Hotspots typically identifies more sites in the vicinity of 

the ligands than both FTMap and Fpocket. FTMap identifies one additional site in 3 cases 

including identification of a site close to the problematic 2ANb ligand in the active form of 

CDK2 discussed above. However, the method does not identify sites in 3 cases in which 

multiple sites are identified by SILCS-Hotspots. Fpockets in no case identifies more sites 

than SILCS-Hotspots and there are 5 cases where the method does not identify any sites 

adjacent to the ligands. It is interesting that both FTMap and Fpockets do not identify sites 

in the vicinity of the allosteric inhibitor FLA on the androgen receptor given that this site is 

exposed on the surface of the protein (Figure 2). Thus, SILCS-Hotspots identifies a larger 

number of fragment binding sites in the vicinity of the known ligands and typically identifies 
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more Hotspots in the region of those ligands than FTMap or Fpockets, information that is 

helpful for ligand design as discussed below. It is noted that FTMap and Fpocket require 

significantly less CPU time as compared to SILCS due to the need to perform the SILCS 

simulations prior to the Hotspots analysis. In addition, those methods overall identify a 

smaller number of sites than SILCS-Hotspots using the default protocols. Modification of 

those protocol may lead to identification of additional sites with the FTMap and Fpocket 

approaches.

Towards Ligand Design with SILCS-Hotspots

Ultimately, the utility of Hotspots analysis is to facilitate the design of a ligand with 

characteristics suitable for potential development into a therapeutic agent with the challenge 

of no previous knowledge of the location of the binding site of the ligands to be developed. 

In simple terms, this requires linking the individual fragments located in adjacent Hotspots 

to create larger ligands with two or more ring systems. Advantages of the SILCS-Hotspots 

approach are three fold. First, identifying a large number of Hotspots allows for spatially 

adjacent sites to be selected that may be linked to create drug-like molecules that are 

comprised of two or more ring systems that occupy multiple Hotspots. Second, the 

identification of multiple fragments that occupy each Hotspot allows those and related 

fragments to be considered for ligand development. Third, the inclusion of flexibility of the 

protein in the SILCS simulations allows for the protein to relax from which unhindered 

paths between Hotspots may be identified based on the exclusion maps that are not evident 

in the crystal structures. Such path may be used for covalently linking fragments into larger 

drug-like molecules. Towards automated ligand development, a number of fragment-linking 

computational approaches have been presented, many of which would be able to directly 

utilize the fragments from the Hotspots analysis.[74–77] In the remainder of this section a 

qualitative overview is presented based on the known crystallographic allosteric ligands and 

the Hotspots and fragments identified in the present study.

Analysis of the information content in the Hotspots approach was performed on ligands 

from the Androgen receptor, Erk5, and the GPR40 and M2 muscarinic GPCRs. The 

allosteric modulator from these systems were some of the largest in the studied systems and 

the proteins are from three diverse classes. The analysis includes visual presentation of the 

respective allosteric binding sites with the Hotspots and the ligand or selected fragments 

from the Hotspots analysis overlaid on the SILCS FragMaps and exclusion maps along with 

the protein backbone. For each Hotspot, all the fragments are shown if the total number is 

less than or equal to 5, with 5 selected fragments being shown when the number in that 

Hotspot was greater than 5. Use of the SILCS exclusion maps instead of the protein surface 

supplies information on the extent the protein may relax to allow for fragments in the 

different Hotspots to be linked. The utility of this is especially evident with the GPR40 

receptor.

Analysis was first undertaken on the Androgen Receptor allosteric inhibitor FLA (Figure 7). 

Three Hotspots are present in the vicinity of the ligand with two sites directly in contact with 

FLA (Table 2). Spatially, the sites are well separated containing a variety of fragments with 

different functionalities in each site, consistent with the types of FragMaps in each Hotspot. 
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Importantly, the regions between the FragMaps are unobstructed based on the SILCS 

exclusion map indicating the potential to chemically link those regions, although as this 

ligand is located on the protein surface the solvent accessible surface also shows 

accessibility between the Hotspots. Notable is the lack of FragMaps between the Hotspots 

indicating that these regions, which may be occupied by scaffolding elements in the 

designed ligands, do not contribute significantly to binding. However, analysis of the SILCS 

FragMaps at different contour levels may yield information on the types of linkers to insert 

between ring systems during ligand development.

Two Erk5 inhibitors were analyzed in the present study, with the larger, 4WG, being a 

competitive inhibitor of ATP. Shown in Figure 8A is the crystallographic binding orientation 

of the ligand along with the Hotspots and SILCS FragMaps and exclusion map. A total of 5 

Hotspots are within 5 Å of the ligand encompassing the full binding site. At each of these 

Hotspots, one or more fragments were present (Figure 8B). Heterocycle or cyclic groups 

containing polar atoms are present at sites 8 and 86, consistent with the functional groups in 

ligand 4WG. Hotspot 78 includes a piperazine which is not consistent with the aromatic ring 

adjacent to the site, though the presence of the positive FragMap consistent with that 

fragment is evident. This suggests the potential for including a charged moiety in that 

region. Hotspots 25 and 71 are beyond the extent of the ligand, again suggesting additional 

modifications that may be used to further improve ligand affinity and/or specificity. Analysis 

of the binding site in the crystal structure in the presence and absence of the solvent 

accessible surface (Figure S9) shows the central region of the ligand along with Hotspot 86 

are under the surface of the protein, but this region is accessible as defined by the exclusion 

map. Similar results are seen with the allosteric Erk5 ligand 4QX (Figure S10). Three 

Hotspots are present in the vicinity of the ligand, with those containing apolar rings systems 

as well as those that include polar functionality. Again, a portion of the ligand is under the 

surface of the protein (Figure S11) which would disallow connection between functional 

groups at the different Hotspots. However, the ability to connect these regions is evident 

when the SILCS exclusion map along with the Hotspots are analyzed. These results 

reinforce the utility of the poses of the fragments in the different Hotspots and the ability of 

the SILCS methodology to identify opening of the protein between those sites allowing them 

to potentially be combined into larger, drug-like molecules targeting novel allosteric binding 

sites.

A particular interesting example is the positive allosteric modulator, MK6, at site 1 in the 

GPCR GPR40. As may be seen in Figure 9 this ligand penetrates into the interior of the 

GPCR between two transmembrane helices. Three Hotspots are identified that overlay with 

the crystallographic orientation of the ligand with those sites containing rings with various 

degrees of polarity consistent with the type of functionality in the ligand. Notably when the 

ligand is overlaid on the crystal structure used to initiate the SILCS simulations the portion 

of the ligand that penetrates the interior of the protein is totally under the protein surface 

(Figure S12). As with Erk5 above, analysis of the exclusion maps reveals that a path 

between the Hotspots is accessible that would allow for covalent connectivity between 

functional groups occupying the different Hotspots. The allosteric modulator at site 2 of 

GPR40, 7OS, occupies a binding pocket on the surface of the protein that is largely 

accessible in the crystal structure used for the SILCS simulations (Figure S13). Two 
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Hotspots in that site are present, with the fragments occupying those sites corresponding to 

ring systems in the ligand.

The final system subject to analysis is the allosteric binding site of the M2 muscarinic 

receptor (Figure 10). The ligand, 2CU, includes a central bicyclic, chlorinated heterocycle 

linked in an extended fashion through polar chains to cyclopropyl and piperazine moieties at 

each end. Hotspots are adjacent to the cyclopropyl, the heterocycle and the chlorine atom, 

identifying the locations of three of the important functional groups that could drive binding. 

These Hotspots coincide with rings with polar functionalities consistent with the FragMaps 

as well and the functional groups in the ligand (Figure 10A). Notable is the lack of Hotspots 

in the vicinity of the piperazine ring. This is due to the omission of Hotspots beyond a cutoff 

of 6 Å from protein Cα atoms as defined in the present analysis. However, the FragMaps 

indicated by the arrow in Figure 10A clearly show that a positively charged group would be 

desirable in this region. This information would indicate the need to adjust the cutoff 

distance and/or consider positively charged groups during ligand design.

Summary

SILCS-Hotspots analysis identifies a significant number of putative fragment binding sites 

in and around the entire protein. This represents a significant extension of the SILCS 

methodology that was previously limited to a single site on a target protein. While a subset 

of these Hotspots have more favorable mean LGFEs ranging from −3 to −4.8 kcal/mol, the 

majority of the Hotspots have mean LGFE scores of −3 kcal/mol or higher, which may be 

considered analogous to the previously described hot and warm spots, respectively.[18, 19] 

This predicts that proteins have a number of potential sites that may be targeted in fragment-

based ligand design that can exploit multiple low affinity fragment binders to create high 

affinity drug-like ligands. Indeed, such sites may not be accessible to experimental methods 

used to identify fragment binding sites due to their low affinity,[36] though these sites are 

indicated to be of utility for ligand design in the present study. Along this line, recent 

crystallographic studies have identified larger numbers of fragment binding sites than in 

earlier studies. In these more recent studies, smaller, more polar compounds, termed 

MiniFrags, were used leading to the identification of an average of 10 fragment binding sites 

on a collection of 5 proteins.[18, 19] Moreover, those efforts have shown that multiple 

fragments bind to the same site, consistent with the results of the present study. Indeed, of 

the proteins selected in the present study, CDK2, has each of its ligands bound to two 

different sites on the protein. Clearly, to effectively perform fragment-based ligand design it 

is necessary to identify sites that are in the vicinity of each other allowing for the building of 

larger, more drug-like molecules. SILCS-Hotspots analysis allows for a range of putative 

sites to be identified for which a range of fragment affinities are predicted. However, it is 

noted that the Hotspots analysis does not definitively identify allosteric sites given the large 

number of sites encompassing the entire protein. At this stage of development of the 

methodology, user intervention is required to select potential allosteric sites based on the 

spatial relationship between the Hotspots and the potential to covalently link those sites to 

create larger, drug-like ligands.
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A second aspect of going from individual fragments to larger ligands with drug-like 

characteristics is the ability to covalently link those fragments. While several of the allosteric 

ligands analyzed bind to pockets that are already present on the protein surface in the 

absence of the ligand, a number of the ligands, notably those binding to the kinases and the 

GPR40 GPCR, are in binding pockets that are not present in the crystal structures used to 

initiate the SILCS simulations that do not contain those ligands. The inclusion of protein 

flexibility in SILCS identifies regions of the protein that can undergo local conformational 

changes, defined in the context of SILCS exclusion maps, information that may be used to 

identify paths allowing for covalent connections between fragments. With Erk5 paths 

between fragment binding sites that are accessible in the crystal structures that include the 

ligands are not accessible in the incorrect form of the protein used in the SILCS simulations. 

In the case of GPR40, binding site 1 occupied by a positive allosteric modulator is not even 

present in the crystal structure used for SILCS-Hotspots analysis. These results speak to the 

ability of SILCS-Hotspots to not only identify a range of putative fragment sites but also to 

identify paths between those sites that are often not evident in crystal structures allowing the 

covalent connectivity between fragments to be made as required to design larger, drug-like 

ligands.

In addition to identification of fragment binding sites, the SILCS-Hotspots approach as 

applied to an individual fragment may be applied on full ligands that are more drug-like. For 

example, if no binding site for a known ligand for a protein has been identified SILCS-

Hotspots may be used to sample the entire 3D structure to identify possible binding sites for 

the ligand. Alternatively, it may be of interest to see if alternate sites for a ligand may exist 

beyond, for example, the orthosteric site of a protein. Emphasizing the importance of such 

capabilities is the protein CDK2 for which 2 binding sites exist for each of the three 

allosteric modulators studied (Table 1). However, identification of binding sites for larger 

ligands is best performed targeting the form of the protein to which they bind (e.g., active or 

inactive form of a GCPR), as shown in previous studies from our laboratory showing 

specific SILCS FragMaps for the active and inactive forms of the β2-adrenergic receptor to 

differentiate between agonists and antagonists, respectively.[44] Such limitations are also 

evident with the kinases as seen in this study and are likely present when applying SILCS 

FragMaps to ligand optimization.[26]
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Highlights

• The Site Identification by Ligand Competitive Saturation (SILCS) is extended 

to screen 100s of fragment-like molecules to identify fragment binding sites 

the encompass the entire protein and the specific fragments that bind to those 

sites.

• The SILCS Hotspots method is shown to recapitulate the binding sites of 

known drug-like ligands to both allosteric and orthosteric sites on seven 

proteins.

• Inclusion of protein flexibility in the SILCS simulations allows for 

identification of fragment binding sites beneath the protein surface along with 

accessible regions between fragment-binding sites as required to create 

covalent links between the individual sites in order to create drug-like ligands.

• Both weak and strong fragment binding sites are shown to contribute to the 

binding sites of known allosteric and orthosteric ligands and, as such, both 

classes of sites should be considered during ligand design.
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Figure 1). 
Androgen receptor (transparent cartoon representation) showing the SILCS-Hotspots (VDW 

spheres, colored by LGFE ranking, red: most favorable, blue: least favorable) along with the 

SILCS FragMaps (mesh representations) and, as indicated by arrows, the orthosteric ligand, 

dihydrotestosterone (DHT, central region of figure, see arrow) and the allosteric modulator, 

flufenamic acid (FLA, top of figure, see arrow). SILCS FragMaps are shown for generic 

apolar (green, −0.9 kcal/mol), generic H-bond donor (blue, −0.9 kcal/mol), generic H-bond 

donor (red, −0.9 kcal/mol), negative (orange, −1.5 kcal/mol) and positive (cyan, −1.5 kcal/

mol) groups.
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Figure 2). 
Crystallographic orientations of dihydrotestosterone (DHT, left) and flufenamic acid (FLA, 

Licorice representation, atom colored) overlaid on the Androgen receptor (cartoon) along 

with the SILCS-Hotspots (VDW spheres, colored by LGFE ranking, red: most favorable, 

blue: least favorable) and the SILCS FragMaps (see Figure 1 legend).
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Figure 3). 
Hotspots-site mean LGFE score as a function of the site rank order for the Androgen 

Receptor. Hotspots associated with the dihydrotestosterone (DHT, red circles) and 

flufenamic acid (FLA, blue squares) ligand binding sites are shown. Hotspots-site mean 

LGFE scores are the averages over the LGFE scores of all the fragments bound to each 

hotspot.
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Figure 4). 
Example fragments that bind to the Androgen receptor as identified by SILCS-Hotspots 

analysis. A) Two nonpolar ligands that bind to a large number of Hotspots. Selected polar 

ligands that bind to Hotspots 3 B) and 26 C) that comprise part of the FLA and DHT binding 

sites on the Androgen receptor.
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Figure 5). 
Hotspots-site mean LGFE score as a function of the site rank order for the studied proteins. 

A) Data for all the sites identified in each protein and B) for the 20 top ranked sites for each 

protein. Hotspots-site mean LGFE scores are the averages over the LGFE scores of all the 

fragments bound to each hotspot.

MacKerell et al. Page 26

Biochim Biophys Acta Gen Subj. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6). 
CDK2 backbone cartoon structures for the A) and C) active conformation (PDB ID: 3MY5, 

cyan cartoon) and B) and D) inactive conformation (PDB ID: 1PW2, blue cartoon) for two 

approximately orthogonal orientations of the protein. Included are the two orientations, a 

and b, of the allosteric modulator 2AN (from PDB ID 3PXF) along with the SILCS-

Hotspots for the respective conformations (vdW spheres, colored based on mean LGFE 

score, red most favorable, blue least favorable). Protein structures were aligned prior to 

visualization as described in Table S1 of the supporting information.
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Figure 7). 
Androgen receptor (cartoon, cyan) with A) the allosteric modulator flufenamic acid (FLA, 

CPK, atom color) or B) selected Fragments for selected Hotspots (labeled and colored by 

rank). Shown are the SILCS exclusion maps (tan, solid surface), protein backbone (cyan, 

cartoon representation), selected Hotspots (vdW spheres, coloring based on mean LGFE 

scores, Table 3), and SILCS FragMaps with cutoff energies for visualization: Positive (cyan, 

−1.2 kcal/mol), Negative (orange, −1.2 kcal/mol), Apolar (green, −1.2 kcal/mol), H-bond 

donor (blue, −0.9 kcal/mol) and H-bond acceptor (−0.9 kcal/mol). Fragments shown include 

1, 3, 9, 21, and 29, for site 3, 3, 11, 31, 42, 84 for site 17, and 48, 49, 61, 63c and 74 for site 

34 (Figure S1 supporting information).

MacKerell et al. Page 28

Biochim Biophys Acta Gen Subj. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8). 
Erk5 (cartoon, cyan) with A) the competitive inhibitor 4WG (CPK, atom color) or B) 

selected Fragments for selected Hotspots (labeled and colored by rank). Shown are the 

SILCS exclusion maps (tan, solid surface), protein backbone (cyan, cartoon representation), 

selected Hotspots (vdW spheres, coloring based on mean LGFE scores, Table 3), and SILCS 

FragMaps with cutoff energies for visualization: Positive (cyan, −1.2 kcal/mol), Negative 

(orange, −1.2 kcal/mol), Apolar (green, −1.2 kcal/mol), H-bond donor (blue, −0.9 kcal/mol) 

and H-bond acceptor (−0.9 kcal/mol). Fragments shown include 4b, 7b, 29, 71 and 84 for 

site 8, 38, 41, 45, 76 and 88 for site 25, 7b and 29 for site 71, 4b for site 78, 5 and 6 for site 

86, (Figure S1 supporting information).
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Figure 9). 
GPR40 (cartoon, cyan, PDB ID 5KW2) with A) the positive allosteric modulator MK6 

(CPK, atom color) or B) selected Fragments for selected Hotspots (labeled and colored by 

rank). Shown are the SILCS exclusion maps (tan, solid surface), protein backbone (cyan, 

cartoon representation), selected Hotspots (vdW spheres, coloring based on mean LGFE 

scores, Table 3), and SILCS FragMaps with cutoff energies for visualization: Positive (cyan, 

−1.2 kcal/mol), Negative (orange, −1.2 kcal/mol), Apolar (green, −1.2 kcal/mol), H-bond 

donor (blue, −0.9 kcal/mol) and H-bond acceptor (−0.9 kcal/mol). Fragments shown include 

6, 11, 15, 37, and 45 for site 27, 6, 35, 48, 74 and 77 for site 57 and 5 for site 61 (Figure S1 

supporting information).
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Figure 10). 
Allosteric binding site of the M2 muscarinic receptor showing the A) crystallographic 

orientation of allosteric modulator 2CU (CPK) and B) selected fragments from the Hotspots 

analysis. Included are the SILCS exclusion maps (tan, solid surface), protein backbone 

(cyan, cartoon representation), the three Hotspots (vdW spheres, coloring based on mean 

LGFE scores, Table 3), and selected SILCS FragMaps with cutoff energies for visualization: 

Positive (cyan, −1.2 kcal/mol), Negative (orange, −1.2 kcal/mol), Apolar (green, −1.2 kcal/

mol), H-bond donor (blue, −0.9 kcal/mol) and H-bond acceptor (−0.9 kcal/mol). Fragments 

shown include 3, 37, 41, 45 and 84 for site 33, 6, 49, 61, 76 and 83 for site 66, and 4b, 52b, 

63c and 88 for site 77 (Figure S1 supporting information).
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Scheme 1). 
Workflow defining the SILCS-Hotspots process
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Table 1)

Summary of protein structures and associated ligands.
a

System PDB RMSD Ligand/Comment

Androgen receptor

2AM9
b TES (O, testosterone)[51]

2PIX 0.54 DHT (O, dihydrotestosterone, IC50 ∼10 nM) [52]

FLA (A, flufenamic acid, inhibitor, IC50 ∼ 50 μM)

CDK2

3MY5
b CDK2/cyclinA complex with DRB (O): active form[53]

1PW2
b,c 4.65 Apo CDK2: inactive form[54]

3PXF 4.59 2AN (A, 2 2AN molecules bound, a and b, Kd ∼37 μM)[55]

5FP5 4.47 1Y6 (A, 2 1Y6 molecules bound, a and b) [56]

5FP6 3.95 MFZ (A, 2 MFZ molecules bound, a and b)[56]

Erk5

4IC8
b Apo Erk5 (inactive) [57]

5BYY 3.75 4WG (O, IC50 =∼0.2 μM, undefined protein conformation)[58]

4ZSG 3.45 4QX, (A, IC50 =∼5 μM, undefined protein conformation)[58]

PTP1B

2F6F
b S295F mutant with no ligands (Mg+2 and Cl−)[59]

1T48 2.75 BB3 (A)[60]

2NT7 1.50 9O2 (O)[61]

3CWE 1.07 825 (O, phosphonic acid analog and Mg2+)[62]

β2 Adrenergic Receptor (GPCR)

3SN6
b P0G (O, Gs protein complex, active form) [63]

5X7D 2.75 CAU (O, carazolol, inactive form) [64]

8VS (A, inactive form) [64]

GPR40: Free fatty acid receptor (GPCR)

4PHU
b 2YB (A, TAK-875, Partial allosteric agonist, site 1)[65]

5KW2
b 6XQ (A, Lilly: Full allosteric agonist, site 2)[66]

5TZY 2.04 vs 4PHU MK6 (A, Partial positive allosteric agonist, site 1, ∼1 nM)[67]

1.59 vs 5KW2 7OS (A, AgoPAM: Full allosteric agonist, site 2, ∼2 nM)

M2 muscarinic receptor (GPCR)
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System PDB RMSD Ligand/Comment

3UON 
b QNB (O, antagonist: inactive form)[68]

4MQT 2.55 2CU (A, PAM: ∼1 μM, active form)[69]

IXO (O, active form)[69]

a)
The first structure listed under each protein was used to initiate the SILCS simulations, unless noted. RMSD in Å between protein structures used 

for the SILCS simulations and the structures used for identification of ligand binding sites are reported (Table S1 supporting information). 
Comments includes ligands in the structures with allosteric modulators indicated by (A) and active-site or orthosteric ligands indicated by (O).

b)
Used for the SILCS simulations and visualization. These structures do not contain the allosteric binding sites. Two different structures were used 

to initiate the CDK2 and GPR40 SILCS simulations as described in the text.

c)
Aligned with 3MY5 structure for visualization and analysis.
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Table 2)

Summary of SILCS-Hotspots sites identified in the Androgen Receptor including the top 2 ranked sites and 

those adjacent to the orthosteric (DHT) and allosteric (FLA) binding sites.

Site Hotspot Rank
Minimum Distance to 

Ligand Mean LGFE # of Fragments Most favorable LGFE Most favorable LE

1 NA −3.65 11 −4.8 −0.77

2 NA −3.60 3 −3.9 −0.49

DHT 26 0.8 −2.82 25 −4.3 −0.53

57 3.6 −2.48 2 −2.9 −0.34

FLA 3 0.9 −3.47 47 −6.2 −0.86

17 1.2 −2.91 16 −4.1 −0.60

34 1.6 −2.71 55 −5.1 −0.59

Distances are in Å and energies in kcal/mol. Hotspot rank is based on the Mean LGFE. LE is the ligand efficiency based on the LGFE/# of non-
hydrogen atoms. NA indicates that the top 2 ranked sites are not adjacent to the ligands.
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Table 3)

Summary of SILCS-Hotspots sites identified in the kinases CDK2 (active and inactive forms) and ERK5, the 

PTP1B phosphatase, and GPCRs including the β2-adenergic receptor, GPR40 and the M2 muscarinic 

receptor.
a

Site Hotspot Rank Distance Mean LGFE # of Fragments Min. LGFE Min. LE

CDK2, active

2ANa, A, surface 12 2.7 −3.0 29 −6.3 −0.74

49 3.5 −2.5 1 −2.5 −0.23

2ANb, A, buried No adjacent Hotspots

1Y6a, A, upper surface 19 4.9 −2.8 1 −2.8 −0.35

65 2.7 −2.4 11 −2.7 −0.51

72 4.2 −2.3 6 −2.7 −0.27

78 1.1 −2.2 3 −2.6 −0.40

1Y6b, A, buried 5 1.4 −3.2 54 −5.6 −0.76

92 4.2 −2.1 1 −2.1 −0.30

MFZa, A, surface 8 4.9 −3.1 15 −5.8 −0.73

12 2.7 −3.0 29 −6.3 −0.74

49 3.0 −2.5 1 −2.5 −0.23

MFZb, A, buried 5 1.7 −3.2 54 −5.6 −0.76

92 3.0 −2.1 1 −2.1 −0.30

CDK2, inactive

2ANa, A, surface 22 3.5 −2.7 3 −3.0 −0.43

33 1.5 −2.6 7 −3.2 −0.61

70 0.9 −2.2 1 −2.2 −0.28

2ANb, A, buried 6 4.2 −3.1 4 −3.5 −0.37

22 2.0 −2.7 3 −3.0 −0.43

1Y6, A, upper near V226 50 3.2 −2.5 2 −2.6 −0.47

51 2.4 −2.5 6 −3.2 −0.41

1Y6, A, lower near G13 34 2.5 −2.6 13 −3.3 −0.56

70 4.4 −2.2 1 −2.2 −0.28

MFZ, A, surface 6 1.7 −3.1 4 −3.5 −0.37

22 4.2 −2.7 3 −3.0 −0.43

MFZ, B, buried 34 1.9 −2.6 13 −3.3 −0.56

ERK5

4QX, A 29 0.9 −2.6 18 −3.5 −0.57

66 3.6 −2.3 2 −2.5 −0.25

71 3.7 −2.3 2 −2.4 −0.42

4WG, O 8 0.9 −3.1 7 −4.3 −0.72

25 4.1 −2.7 14 −3.6 −0.45
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Site Hotspot Rank Distance Mean LGFE # of Fragments Min. LGFE Min. LE

71 2.5 −2.3 2 −2.434 −0.42

78 2.6 −2.2 1 −2.2 −0.36

86 0.8 −2.1 2 −2.1 −0.35

PTP1B

BB3, A 5 1.0 −3.3 2 −3.8 −0.64

16 3.0 −2.7 6 −3.1 −0.45

50 1.6 −2.4 41 −3.6 −0.48

65 4.5 −2.3 4 −2.5 −0.35

902, O 24 0.6 −2.6 3 −2.7 −0.53

30 2.3 −2.6 7 −3.2 −0.54

32 1.9 −2.5 21 −4.7 −0.52

825, O 24 1.3 −2.6 3 −2.7 −0.53

32 4.8 −2.5 21 −4.7 −0.52

β2 adrenergic receptor (GPCR)

CAU, O 20 1.7 −2.7 1 −2.7 −0.53

31 1.5 −2.6 22 −3.7 −0.42

41 1.3 −2.5 2 −2.5 −0.25

47 3.5 −2.4 6 −2.9 −0.59

56 2.0 −2.2 1 −2.2 −0.22

67 3.3 −2.0 1 −2.0 −0.29

8VS, A 23 3.0 −2.7 17 −4.3 −0.47

58 1.2 −2.2 2 −2.2 −0.41

60 2.1 −2.2 2 −2.2 −0.23

GPR40 (GPCR)

MK6, A, Site 1
b 27 1.2 −2.9 22 −4.9 −0.58

57 1.1 −2.3 8 −2.7 −0.45

61 0.9 −2.1 1 −2.1 −0.36

7OS, A, Site 2
c 12 1.5 −3.1 12 −5.3 −0.65

29 2.2 −2.7 9 −3.7 −0.57

M2 muscarinic receptor (GPCR)

2CU, A 23 2.3 −3.0 12 −3.9 −0.65

28 3.2 −2.9 43 −4.7 −0.71

41 2.0 −2.8 2 −3.3 −0.33

63 3.4 −2.5 4 −2.8 −0.25

75 3.2 −2.4 32 −3.2 −0.50

IXO, O 3 2.1 −3.8 2 −3.9 −0.65

10 0.8 −3.3 32 −6.3 −1.06
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Site Hotspot Rank Distance Mean LGFE # of Fragments Min. LGFE Min. LE

27 3.8 −3.0 57 −5.1 −0.68

a)
Sites are defined by the allosteric (A) or orthosteric (O) ligands that occupy those sites in the crystallographic structures (Table 1). For certain 

ligands there are two sites on the protein, with information on both sites including additional identification information such as adjacent protein 
residue numbers. Distances are in Å and energies in kcal/mol. LE is the ligand efficiency based on the LGFE/# of non-hydrogen atoms.

b)
SILCS simulation initiated from 5KW2 with ligand in site 2 in the crystal structure.

c)
SILCS simulation initiated from 4PHU with ligand in site 1 in the crystal structure. In both cases the ligands were removed prior to the SILCS 

simulations.
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Table 4)

Comparison of the minimum LGFE, minimum LE, and mean LGFE scores and the maximum number of 

fragments over all the fragments that were docked against each protein versus those in the Hotspots in the 

vicinity of experimentally determined ligands.

Minimum LGFE Minimum LE Mean LGFE Maximum # of fragments

Androgen Receptor All fragments −6.2 −0.86 −3.6 65

Near ligand −6.2 −0.86 −3.5 55

CDK2, active All fragments −6.3 −0.93 −3.7 56

Near ligand −6.3 −0.76 −3.2 54

CDK2, inactive All fragments −6.0 −0.89 −4.8 40

Near ligand −3.5 −0.61 −3.1 13

Erk5 All fragments −4.9 −0.72 −3.9 37

Near ligand −4.3 −0.72 −3.1 18

PTP1B All fragments −6.5 −1.09 −4.4 41

Near ligand −4.7 −0.64 −3.3 41

β2 adrenergic receptor All fragments −5.6 −0.93 −4.1 45

Near ligand −4.3 −0.59 −2.7 22

GPR40 (4PHU) All fragments −5.7 −0.71 −4.8 52

Near ligand −5.3 −0.65 −3.1 12

GPR40 (5KW2) All fragments −6.5 −0.98 −3.6 62

Near ligand −4.9 −0.58 −2.9 22

M2 muscarinic receptor All fragments −6.4 −0.95 −3.6 62

Near ligand −4.7 −0.66 −2.9 22

Energies in kcal/mol. Instances when the Hotspots top ranked values correspond to the overall top value are highlighted.
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