
RESEARCH Open Access

Comprehensive pharmacogenomic
characterization of gastric cancer
Jason K. Sa1† , Jung Yong Hong2†, In-Kyoung Lee2, Ju-sun Kim2, Moon-Hee Sim2, Ha Jung Kim2, Ji Yeong An3,
Tae Sung Sohn3, Joon Ho Lee3, Jae Moon Bae3, Sung Kim3, Kyoung-Mee Kim4, Seung Tae Kim2, Se Hoon Park2,
Joon Oh Park2, Ho Yeong Lim2, Won Ki Kang2, Nam-Gu Her5, Yeri Lee5, Hee Jin Cho5, Yong Jae Shin5, Misuk Kim5,
Harim Koo5,6, Mirinae Kim5, Yun Jee Seo5, Ja Yeon Kim5, Min-Gew Choi3*, Do-Hyun Nam5,6,7* and Jeeyun Lee2*

Abstract

Background: Gastric cancer is among the most lethal human malignancies. Previous studies have identified
molecular aberrations that constitute dynamic biological networks and genomic complexities of gastric tumors.
However, the clinical translation of molecular-guided targeted therapy is hampered by challenges. Notably, solid
tumors often harbor multiple genetic alterations, complicating the development of effective treatments.

Methods: To address such challenges, we established a comprehensive dataset of molecularly annotated patient
derivatives coupled with pharmacological profiles for 60 targeted agents to explore dynamic pharmacogenomic
interactions in gastric cancers.

Results: We identified lineage-specific drug sensitivities based on histopathological and molecular subclassification,
including substantial sensitivities toward VEGFR and EGFR inhibition therapies in diffuse- and signet ring-type gastric
tumors, respectively. We identified potential therapeutic opportunities for WNT pathway inhibitors in ALK-mutant
tumors, a significant association between PIK3CA-E542K mutation and AZD5363 response, and transcriptome
expression of RNF11 as a potential predictor of response to gefitinib.

Conclusions: Collectively, our results demonstrate the feasibility of drug screening combined with tumor molecular
characterization to facilitate personalized therapeutic regimens for gastric tumors.
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Background
Cancer is a complex disease, with profound genomic al-
terations and diverse cellular hierarchy [1–4]. Advance-
ments in the field of genetics have enabled us to achieve
a comprehensive understanding of the tumor molecular
structure and the impacts of core oncogenic pathways
that are frequently dysregulated [3, 5–7]. However, the
development of effective treatments based on molecular

characterization of the tumor alone has been increas-
ingly recognized to be limited due to the co-existence of
multiple genomic aberrations within a given tumor. To
address this challenge, large-scale drug sensitivity pro-
files of conventional cancer cell-line models have been
employed to identify clinically relevant biomarkers that
could be therapeutically exploited [8–11]. While these
studies have provided unprecedented insights into the
biological signaling networks that govern dynamic cellular
responses to a broad range of therapeutics, the heteroge-
neous biological traits of patient-derived tumors hamper
the direct application of the current pharmacogenomic
atlas in the clinic. We have previously established a compil-
ation of chemical-genetic associations across a wide
spectrum of patient-derived tumor cell (PDC) models and
demonstrated its clinical feasibility [12, 13]. To further in-
terrogate the dynamics of pharmacogenomic interactions at
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a single tumor-lineage resolution, we established a library
of tumor cell models from surgically resected tumor speci-
mens or ascites-derived tumor cells from gastric cancers
and explored potential gene-drug associations for 60 mo-
lecularly targeted agents.
Gastric cancer is the third leading cause of cancer-

induced mortality worldwide [14–16]. The vast majority
of gastric tumors are diagnosed as adenocarcinomas and
can be subcategorized into distinct classifications based
on molecular, histological, and pathological features [3,
17]. The current standard regimen consists of surgical
resection followed by radio-chemotherapy. Although in-
tegrated molecular characterization of gastric adenocar-
cinomas through nationwide efforts of The Cancer
Genome Atlas Research Network has led to the identifi-
cation of major genetic aberrations and oncogenic path-
ways that contribute to the malignancy of gastric cancer,
the clinical application potential of molecular targeted
therapy remains obscure. To date, only two molecular
target agents, including trastuzumab (anti-HER2 mono-
clonal antibody) tested in the ToGA trial and ramuciru-
mab (anti-VEGFR monoclonal antibody) investigated in
the RAINBOW and REGARD trials have been approved
for clinical treatment of metastatic gastric cancer [18–20].
Numerous clinical trials on agents targeting major onco-
genic pathways, including HER2 (lapatinib, pertuzumab,
trastuzumab-emtansine), EGFR (cetuximab, panitumu-
mab, nimotuzumab, gefitinib), FGFR2 (AZD4547), VEGF
(bevacizumab, aflibercept), MET (onartuzumab, rilotuzu-
mab), and PI3K/AKT/mTOR (PAM; ipatasertib, everoli-
mus) have shown disappointing results despite promising
preclinical evidences [16]. The current limitations in ap-
plicability of molecular-guided therapy are presumably
due to inadequate patient stratification and the extensive
inter-tumoral heterogeneity of gastric tumors. To address
these challenges, we analyzed somatic mutations, copy
number alterations, and/or gene expression profiles of 131
gastric tumors as potential predictors of drug sensitivities
for 60 anti-cancer compounds to identify molecular deter-
minants that may aid in a paradigm shift towards person-
alized treatment of gastric cancer.

Methods
Gastric tumor specimens and in vitro cell culture
After receiving informed consent, gastric tumor specimens
or malignant ascites were obtained from patients undergo-
ing surgery at Samsung Medical Center (SMC) in accord-
ance with the Samsung Medical Center Institutional
Review Board. This study was conducted in compliance
with all relevant ethical regulations for human specimen
research. Portions of the surgical samples were enzymati-
cally dissociated using Liberase™ (Roche) and tumor cells
from malignant effusions were collected by centrifugation
at 300g for 10min, followed by washing with Dulbecco’s

phosphate-buffered saline. Patient-derived tumor cells
(PDCs) were cultured in neurobasal medium with N2 and
B27 supplements (0.5× each; Thermo Fisher Scientific) and
human recombinant basic fibroblast growth factor and epi-
dermal growth factor (20 ng/ml; R&D Systems). Human
gastric cancer cell-lines were purchased from the Korean
Cell Line Bank. All cell lines were cultured in RPMI 1640
medium supplemented with 10% fetal bovine serum and
Antibiotic-Antimycotic (penicillin and streptomycin; Invi-
trogen) at 37 °C in a humidified atmosphere with 5% CO2.
PDCs and all cancer cell-lines were tested for mycoplasma
contamination.

Exome sequencing
Tumors were subjected to target exome sequencing using
CancerSCAN, a targeted sequencing platform designed at
Samsung Medical Center. CancerSCAN covers a range of
exonic regions of specific genes that are associated with
cancer progression. Genomic DNA was sheared in Covaris
S220 sonicator (Covaris) to construct a sequencing library
using the SureSelect XT Reagent Kit, HSQ (Agilent Tech-
nologies), enriched for target genes. The library was puri-
fied and amplified with a barcode tag, and library quality
and quantity were determined. Sequencing was carried
out using the 100-bp paired-end mode of the TruSeq
Rapid PE Cluster kit and TruSeq Rapid SBS kit on a HiSeq
2500 sequencing platform (Illumina). The target exome
sequencing data of previous gastric cancer cases were
downloaded from the European Genome-phenome Arch-
ive (EGAS00001002515).

Mutation calls
The sequenced reads in FASTQ files were aligned to the
human genome assembly (hg19) using the Burrows-
Wheeler Aligner. The initial alignment BAM files were
subjected to sorting (SAMtools), removal of duplicated
read (Picard), local realignment of reads around poten-
tial small insertions/deletions, and recalibration of the
base quality score (Genome Analysis Toolkit). MuTect
was used to generate high-confidence mutation calls.
Variant Effector Predictor was used to annotate the
called mutations.

Copy number alteration
ONCOCNV was used to generate estimated copy num-
ber alterations in tumor specimens.

RNA sequencing
RNA-seq libraries were prepared using the Illumina Tru-
Seq RNA Sample Prep kit. Sequenced reads were mapped
onto hg19 using the Burrows-Wheeler Aligner. The initial
BAM files were sorted and summarized into BED files
using SAMtools and bedTools. The BED files were used
to calculate the reads per kilobase of transcript per million
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reads (RPKM) value for each gene, using the DEGseq
package.

Drug screening
PDCs were cultured in serum-free medium, dissociated
into single cells, and seeded in 384-well plates at 500 cells/
well in duplicate or triplicate for each treatment. The drug
panel consisted of 60 molecular target agents targeting
oncogenic signals (Additional file 1: Table S1). All drugs
were purchased from Selleckchem. PDCs were treated
with the drugs in a fourfold or seven-point serial dilution
series from 4.88 nM to 20 μM using Janus Automated
Workstation (PerkinElmer). After 7 days of incubation,
cell viability was analyzed using ATP monitoring system
based on firefly luciferase (ATPLite™ 1step; PerkinElmer).
Viable cells were estimated using EnVision Multilabel
Reader (PerkinElmer). Control cells treated with dimethyl
sulfoxide (DMSO) vehicle were used to calculate relative
cell viability for each plate and to normalize the data on a
per-plate basis. Dose response curve fitting was performed
using GraphPad Prism 5 (GraphPad) and was evaluated by
measuring the area under curve (AUC). In brief, each
plate was normalized to the mean value from the seven
serial conditions compared with DMSO control. The
AUC of each curve was determined using GraphPad
Prism (GraphPad Software), ignoring regions defined by
fewer than two peaks. Non-convergence or ambiguous
curves were excluded in every analysis. Two identical
PDCs and cancer cell-lines were screened every month to
validate and confirm the preservation of chemical activ-
ities of our drug library and high-throughput drug screen-
ing platform. Screening plates were subjected to quality
control measurement using z-factor scores, comparing
both negative and positive control wells [21].

Pharmacogenomic interactions of genetic variations
A list of genetic variations, including single nucleotide
variations, small insertions, small deletions, and copy
number alterations, were considered to evaluate drug re-
sponse interactions. For each drug candidate, drug sensi-
tivity data (AUC) were analyzed by comparing tumors
with the selected genomic alterations to those without
using the Wilcoxon rank-sum test. Samples with un-
known status of a given alteration were excluded from
the analysis.

Elastic net regression model-based analysis
We selected 41 gastric cancer cases with available RNA-
seq and drug response data. The input variables for the
elastic net regression model-based analysis consisted of
gene expression profiles with genomic alterations includ-
ing mutations and copy number alterations for tumors
whose genome data were available. We then trained the
standard elastic net regression using the glmnet R

package by combining input features and comparing to
individual drugs response. Afterwards, we employed
bootstrapping strategy for 100 times to extract reliable
and robust candidate features. During each bootstrap-
ping step, we randomly selected 80% of the tumors for
feature extraction. For each feature, the time of its ap-
pearance out of 100 bootstrapping and its average
weight were used as the final assessment.

Cell establishment and growth assessment against
gefitinib
Gastric cancer cell-lines were transiently transfected with
10 nM of siRNF11 using 6 μL of HiPerFect transfection re-
agent (Qiagen). Next day, the cells were seeded in 96-well
plates at 5000 cells/well, allowed to adhere overnight, and
treated with gefitinib for 72 h. Cell proliferation inhibition
was determined using CellTiter-Glo Luminescent Cell Via-
bility Assay (Promega) according to the manufacturer’s
protocol. The detected luminescent signals were used to cal-
culate the percentage of surviving cells and to obtain AUC
values.

Cellular growth assessment against AZD5363
Gastric cancer cell-lines with PIK3CA mutation (E542K
or E545K) or wild-type have been seeded in 96-well
plates at 5000 cells per well, allowed to adhere overnight
and treated with various concentrations (0.3 or 1 μM) of
AZD5363 for 72 h, and the cell viability was determined
using the Cell Titer Glo.

siRNA sequences
siRNA constructs for RNF11 (siRNF11#1: 5′-ACATCT
CCCTGCTTCACGAC-3′ and siRNF11#2: 5′-GGAAGA
GAUGGAUCAGAAA-3′) and control (siControl: 5′-
TAGCGACTAAACACATCAA-3′) were used in this study.

Immunoblot analysis
Total cell extracts were prepared using lysis buffer (20mM
HEPES [pH 7.4], 1% Triton X-100, 1mM EDTA, 1mM
MgCl2, 150mM NaCl, 10% glycerol, protease inhibitor,
and phosphatase inhibitor cocktail [Invitrogen]). Protein
concentrations were determined using micro-BCA protein
reagent (Pierce Biotechnology). Thirty micrograms of total
proteins were separated by sodium dodecyl sulfate
polyacrylamide gel electrophoresis and transferred onto
nitrocellulose membranes with 0.2-μm pore size (What-
man). The membranes were incubated with antibodies
against phospho-AKT (Ser473) (#4060, 1:1000; Cell Signal-
ing Technology (CST); RRID: AB_2315049), AKT (#9272,
1:1000; CST; RRID: AB_329827), phospho-mTOR
(Ser2448) (#2971, 1:1000; CST; RRID: AB_330970), mTOR
(#2972, 1:1000; CST; RRID: AB_330978), phospho-S6 ribo-
somal protein (Ser2235/236) (#2211, 1:1000; CST; RRID:
AB_331679), S6 ribosomal protein (#2217, 1:1000; CST;
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RRID: AB_331355), phospho-4E-BP1 (Thr70) (#13396, 1:
1000; CST; RRID: AB_2798206), 4E-BP1 (#9644, 1:1000;
CST; RRID: AB_2097841), phospho-EGFR (Tyr1068)
(#3777, 1:1000; CST; RRID: AB_2096270), EGFR (#2646,
1:1000; CST; RRID: AB_2230881), RNF11 (ab154831, 1:
1000; Abcam), or β-actin (AC-15, 1:5000; Sigma; RRID:
AB_476692). The ECL method (Invitrogen) was used for
protein detection.

Statistical analysis
Data are presented as the mean ± standard deviation (SD).
All statistical analyses were conducted by either Wilcoxon
rank-sum test (two-sided), Pearson’s correlation coeffi-
cient test, or Fisher’s exact test (two-sided) as relevant. All
statistical analyses were conducted using the R software
(https://www.r-project.org) or GraphPad Prism.

Results
Mutational landscape of gastric cancer
To explore the dynamics of pharmacogenomic interac-
tions in gastric cancers, we generated 131 surgically
resected gastric tumor specimens or malignant ascites
(Additional file 2: Table S2). To determine genomic vari-
ations, including single-nucleotide variants (SNVs), small
insertions/deletions (Indels), and copy number alter-
ations (CNAs; segments of the genome that are either
amplified or deleted), 102 tumor specimens were
subjected to targeted massively parallel sequencing, cov-
ering the full coding exons of major cancer-driver genes
(Additional file 3: Table S3). Mutations with variant al-
lele frequency of > 5% and > 20 reads were considered
(Additional file 4: Table S4). Forty-one tumors were
subjected to whole-transcriptome sequencing to curate
gene expression profiles. Tumors were classified into four
subgroups based on molecular profiles: Epstein-Barr Virus
(EBV)-positive, microsatellite instability (MSI)-high, high
copy number alterations (HCNA), and low copy number
alterations (LCNA) (Additional file 5: Figure S1). HCNA
tumors exhibited enrichment of TP53 mutation, whereas
LCNA and EBV-positive tumors were marked by high
prevalence of CDH1 and PIK3CA mutations, respectively
(Fig. 1a, b) [3, 22]. Notably, LCNA tumors showed recur-
rent genetic aberrations of NF1, suggesting potential
therapeutic opportunities for RAS/MAPK-targeted ther-
apies [23]. Furthermore, the HCNA group demonstrated a
significantly higher rate of HER2-positive tumors than the
other types. Compared with other large-scale gastric can-
cer datasets, our cohort constituted comparable levels of
major gastric cancer-driver genes, including somatic
mutations of TP53, ARID1A, PIK3CA, and APC (Add-
itional file 5: Figure S2) [3, 24, 25]. On note, our cohort
harbored higher frequency of CDH1-mutant tumors
and we suspect that this could be due to the higher
number of LCNA or genomically stable tumors,

which are marked by enrichment of CDH1 mutation
(Additional file 5: Figure S2).
Compared with traditional long term-cultured cancer

cell-line models, PDCs recapitulate the molecular prop-
erties and biology of diseases more precisely, prompting
their feasibility as a reliable model system for evaluating
the potential clinical response to various therapeutics
[26–28]. One hundred twenty-eight gastric PDCs were
cultured under serum-free conditions and were used in
a systematic drug sensitivity screening of 60 compounds
that target major oncogenic pathways, including receptor
tyrosine kinases (RTKs), poly(ADP-ribose) polymerase
(PARP), and histone deacetylase (HDAC) (Additional file 1:
Table S1 and Additional file 5: Figure S3A). Drug sensitiv-
ities were determined based on the area under curve
(AUC) of the dose-response curve after 7 days of treat-
ment (Additional file 6: Table S5). For most compounds,
the PDCs exhibited a wide range of sensitivities. Interest-
ingly, t-stochastic neighbor embedding (tSNE) analysis re-
vealed a hierarchical clustering of the RTK inhibitors,
confirming the validity of our systematic screening pro-
cedure and the target inhibitor quality assessment (Add-
itional file 5: Figure S3B). A number of PDC lines were
further subjected to exome sequencing to interrogate
whether they retained the spectrum of genomic aber-
rations observed in the matched tumor specimens.
Consistent with previous findings, major cancer-driver
alterations, including TP53, CDH1, PIK3CA, ERBB3,
and FGFR3 mutations were highly preserved in the
PDCs (Fig. 1c) [12, 13]. Collectively, these results sug-
gest that PDCs recapitulate tumor molecular proper-
ties and can serve as proxies for comprehensive
pharmacogenomic analyses in gastric tumors.

Subgroup-specific drug sensitivities based on molecular,
histological, and pathological classifications
As gastric cancers can be subcategorized based on mo-
lecular, histological, and pathological features, we
evaluated the pharmacological landscape of distinct
subgroups of gastric PDCs within each subtype cat-
egory. Overall, we observed a wide range of drug sen-
sitivities within each class, demonstrating the highly
heterogeneous nature of gastric PDCs (Additional file 5:
Figure S4A and Additional file 7: Table S6). Molecular
variations across each subcategory potentially contrib-
ute to dynamic drug responses. Of note, diffuse-
subtype tumors were highly sensitive to multiple RTK
inhibitors targeting VEGFR, PDGFR, and FGFR path-
ways (cediranib, vandetanib, pazopanib, regorafenib,
AZD4547, and BGJ398), whereas mixed types were
mostly resistant (Fig. 2a). Furthermore, PDCs from
signet-ring type demonstrated considerable sensitiv-
ities to EGFR inhibitors, including AEE788, afatinib,
dacomitinib, and gefitinib, which were comparatively
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less potent in tubular subtype. HER2-positive tumors
were highly sensitive to PAM compounds, including
BEZ235 and PF-05212384, when compared with
HER2-negative tumors. Consistent with the heteroge-
neous pharmacological behaviors of gastric PDCs, path-
way enrichment analysis revealed enrichments of the
EGFR, VEGFR, and ERBB2-PI3K pathways in signet-
ring, diffuse, and HER2-positive tumors, respectively
(Fig. 2b). Moreover, tumors with high chromosomal in-
stability were considerably more sensitive to olaparib.

PARP inhibition therapy has demonstrated significant
therapeutic success in patients diagnosed with either ad-
vanced ovarian or metastatic breast cancer with germline
BRCA1/2 mutations [29, 30]. Therefore, we sought to
evaluate the prevalence of BRCA1/2 mutations in each
molecular gastric tumor subtype. Notably, BRCA2 muta-
tion constituted a significant proportion in HCNA tumors,
suggesting clinical application potential of olaparib for pa-
tients with high chromosomal instability and BRCA2 vari-
ation (Additional file 5: Figure S4B). Furthermore, we

Fig. 1 Mutational landscape of gastric cancer. a Mutational landscape of gastric cancers based on molecular subclassification; EBV-positive, LCNA,
and HCNA tumors. All mutations with variant allele frequency of > 5% and depth of > 20 reads are shown. b Ternary diagram depicting mutation
frequencies in EBV-positive, LCNA, and HCNA tumors. The size of each node represents the number of tumors with the respective mutation, and
the color spectrum indicates its relative frequency. c Three-dimensional bubble plot showing the frequency of non-synonymous cancer-driver
genomic mutations exclusively in tissue (black, left axis), in PDCs (blue, right axis), or in both (gray, upper axis). The position of each dot or
mutation is located on the quadrant based on its shared or private rate between primary tumor tissues and matched PDCs, and the distance
reflects the number of cases that harbor respective mutation
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found that majority of the BRCA2-mutant tumors were
CDH1 wild-type (Additional file 5: Figure S4B). Together,
these results underscore the significance of systematic
drug sensitivity screening to guide subtype-
specific targeted therapeutic opportunities in gastric
cancers.

Pharmacogenomic landscape of gastric cancer
Genomic variations, including somatic mutations and copy
number alterations, can be employed as reliable biomarkers
for predicting clinical response to targeted therapy [31–34].
To identify genomic correlates of pharmacological sensitiv-
ity in gastric tumors, we evaluated individual drug

Fig. 2 Gastric cancer subgroup-specific drug sensitivity. a Heatmap representation of drug sensitivities in gastric cancer based on molecular,
histological, and pathological subclassification. Only significant associations are marked based on sensitivity (red) or resistance (blue). Drugs were
clustered based on their known target classes. b Violin plots demonstrating pathway enrichment scores of each corresponding pathway. The
activity scores were measured using ssGSEA. Horizontal lines within the violin plots represent 0.25, 0.50, and 0.75 quantiles. P values in a, b were
derived from two-sided Wilcoxon rank-sum tests
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sensitivity profiles of PDC lines against each genomic or
molecular aberration (Fig. 3a and Additional file 8: Table
S7). Notably, tumors with KRAS amplification were consid-
erably more sensitive to BRAF inhibitors, including vemur-
afenib and dabrafenib, whereas ERBB2-mutant tumors
were therapeutically more susceptible to both EGFR (CO-
1686 and erlotinib) and PI3K inhibitors (AZD5363,
AZD2014, and everolimus). Somatic mutation in FGFR2
conferred increased sensitivity to multi-targeted tyrosine
kinase inhibitors, including FGFR- and VEGFR-targeting
compounds (Additional file 5: Figure S5). Previous studies
have presented molecular rationales for treating ALK-mu-
tated tumors with PAM pathway inhibitors [35–37]. How-
ever, we discovered that mutation in the ALK receptor
tyrosine kinase (ALK) gene was significantly associated with
global resistance to a broad range of therapeutics, including
those targeting the PI3K-AKT-mTOR (PAM) pathway
(e.g., BKM120, AZD2014, PF-05212384) (Fig. 3b). To
identify alternative therapeutic avenues for treating ALK-
mutated tumors, we conducted a genome-wide

comparative transcriptome analysis of ALK-mutant and
ALK-wild-type tumors. Interestingly, LEF1 was strongly
activated in tumors with ALK mutation, and single sample
gene set enrichment analysis (ssGSEA) consistently dem-
onstrated upregulation of the WNT signaling pathway
(Additional file 5: Figure S6). Collectively, these results
suggest potential therapeutic benefits of WNT-mediated
therapy in patients with ALK-mutated tumors.
Somatic mutations in PIK3CA, which encodes the

catalytic subunit of the phosphatidylinositol 3-kinase
(PI3K) complex, have been detected in a broad spectrum
of tumor types, including gastric cancer [3, 38–40].
These mutations promote the activation of proto-
oncogenic signaling pathways, rendering cells susceptible
to malignant transformation. Furthermore, previous
studies have shown that PIK3CA mutation is a key mo-
lecular determinant to AKT inhibition response in gas-
tric cancer cell-lines [41]. Although there are multiple
variations of PIK3CA mutation, the “hot-spot” mutations
are located within the helical (exon 9) or kinase (exon

Fig. 3 Pharmacogenomic interactions in gastric cancer. a Volcano plot representation of pharmacogenomic interactions in gastric cancer with
fold-change drug comparison (x-axis) and its significance (y-axis). Each node represents a single genomic alteration-drug interaction, and the size
is proportional to the number of tumors with the respective genomic variation. b Violin plots of drug AUC values for tumors with thegenomic
alteration compared to those without from selected gene-drug interactions. Horizontal lines within the violin plots represent 0.25, 0.50, and 0.75
quantiles. c Box plots of AZD5363 AUC values among tumors with different PIK3CA variations. Box plots span from the first to third quartiles, and
the whiskers represent the 1.5 interquartile range. d Cell proliferation assay of gastric cancer cell-lines. e Effects of AZD5363 on the PI3K/AKT/
mTOR signaling pathway in gastric cancer cell-lines with different mutations of PIK3CA or the wild-type gene. f Scatter plot of AZD5363 AUCs in
our cohort (left panel). The AUC of the PDC that was isolated from the indicated patient (right panel) is highlighted in a red circle. Dotted green
and orange horizontal lines represent relative resistance and sensitivity, respectively. T1-weighted contrast-enhanced magnetic resonance images
of tumor samples from the gastric cancer patient who received AZD5363 treatment. The red arrow indicates measurable or progressed tumor;
the orange arrow represents partial response. P values in a, b were derived from two-sided Wilcoxon rank-sum tests, the P value in c from
one-way ANOVA
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20) domains [42]. While previous studies have investi-
gated the potential associations between various PIK3CA
mutations and clinical prognosis [43–45], prediction of
pharmacological vulnerability based on these mutations
remains elusive. Interestingly, when we evaluated drug
sensitivities to PI3K compounds in PIK3CA-mutant tu-
mors, we found that SNVs that lead to E542K amino
acid substitution induced the most robust susceptibility
to an AKT inhibitor (AZD5363) compared to other
PIK3CA mutations (Fig. 3c). To functionally validate and
explore the AZD5363 and PIK3CA-E542K association
and its biological effects, we assessed therapeutic effi-
cacy of AZD5363 in PIK3CA-E542K-mutant, PIK3CA-
E545K-mutant, and PIK3CA wild-type gastric cell-lines.
Consistent with the previous findings in PDC models,
cytotoxic activity of AZD5363 was the most significant
in PIK3CA-E542K-mutant tumor cells (Fig. 3d and
Additional file 5: Figure S7A). Immunoblot analyses of
PI3K pathway downstream effectors, including phosphoryl-
ation of mTOR, S6K, and 4E-BP1, demonstrated robust in-
hibition in the presence of AZD5363 treatment (Fig. 3e).
Moreover, combinational treatment of AZD5363 with
Taxol further increased apoptotic activities (Additional file 5:
Figure S7B). Our findings were further corroborated by
clinical data; PDC progeny from a gastric cancer patient
with PIK3CA-E542K mutation exhibited profound response
to AZD5363, marked by partial clinical response (Fig. 3f).
Collectively, these findings suggest the clinical feasibility of
patient-derived pharmacogenomics as a potential predictor
in patient enrichment trials.

Identification of molecular determinants that dictate drug
sensitivity to gefitinib
A substantial number of studies have demonstrated that
EGFR overexpression has been correlated with more ma-
lignant phenotypic state and dismal clinical outcomes in
gastric cancer patients, suggesting EGFR as a therapeut-
ically exploitable target [46–51]. We have previously
demonstrated the clinical feasibility of drug screening-
guided precision therapy and initiated a prospective
evaluation in gastric cancer patients to examine potential
responses to sunitinib, imatinib, and gefitinib [12] (Na-
tional Clinical Trial [NCT] #03170180). Therefore, we
sought to identify potential molecular or genomic deter-
minants that could aid in design of effective EGFR tar-
geted therapy, specifically utilizing gefitinib, in treating
gastric cancer patients. Previous studies have shown that
gene expression profiles can be applied to elucidate the
biological mechanisms that underlie complex cellular
signaling pathways that are associated with drug re-
sponse [12, 13, 52–55]. Therefore, we employed elastic-
net regression model-based analysis using gene expres-
sion profiles combined with previously known drug tar-
gets, protein-protein interaction networks, and genomic

features. As a result, we identified multiple transcrip-
tome molecules that were highly associated with gefi-
tinib response, including RNF11, NTPCR, and RNF220
(Fig. 4a). Among these, the transcriptional expression
level of RNF11 demonstrated the most robust correl-
ation (Fig. 4b). Moreover, RNF11 showed direct correla-
tions with other EGFR inhibitors, including AEE788,
dacomitinib, and lapatinib as well (Additional file 5:
Figure S8). RNF11 encodes ring finger protein 11, and
earlier studies have postulated that RNF11 interacts with
SARA and ESCRT-0 subunits STAM2 and Eps15b to
delay the degradation of EGF-activated EGFR [56]. Inter-
estingly, small interfering RNA (siRNA)-mediated knock-
down of RNF11 in two different RNF11high gastric cancer
cells (SNU5 and NCI-N87) conferred increased sensitivities
to gefitinib (Fig. 4c, d and Additional file 5: Figure S9A).
Consistently, silencing of RNF11 combined with gefitinib
attenuated phosphorylation level of EGFR and its down-
stream molecule, phospho-AKT, further corroborating that
RNF11 has potential as a molecular predictor of intrinsic
resistance to EGFR inhibitors (Fig. 4e and Additional file 5:
Figure S9B). Overall, our results provide a therapeutically
exploitable genomic marker of drug sensitivity that may
aid in the design of future biomarker-driven clinical trials
in EGFR-targeted therapy.

Discussion
The fundamental principle of precision oncology is that
molecular characterization of the tumor enables optimal
patient-tailored therapy [57, 58]. With the exponential
increase in systematic tumor genome sequencing efforts
in recent years, molecular aberrations that govern essen-
tial cellular programs that are therapeutically exploitable
have been identified [34, 59, 60]. However, substantial
evidence highlights the current limitations in predicting
successful clinical therapies on the sole basis of compu-
tational data [61, 62]. Therefore, systematic evaluation of
tumor genome and simultaneous assessment of drug
sensitivities have become the next step towards addressing
precision oncology therapy. In the present study, we gener-
ated a drug sensitivity dataset based on 131 patient-derived
tumor specimens that was molecularly annotated to ex-
plore dynamic pharmacogenomic interactions in gastric
cancers. Consistent with previous genomic characterization
of gastric cancers based on molecular classification, we ob-
served enrichments of PIK3CA and TP53 somatic muta-
tions in EBV-positive and HCNA-subtype gastric tumors,
respectively, whereas CDH1 and NF1 aberrations were
evident in genomically stable (LCNA) tumors. We also
identified lineage-specific drug associations, for example,
between EGFR inhibitors and signet-ring tumors, and
VEGFR compounds and diffuse-type tumors. Consistent
herewith, the recent REGARD clinical trial revealed that
the VEGFR2 antagonist ramucirumab showed
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prominent clinical benefits in diffuse tumors com-
pared with intestinal-type tumors based on subgroup
analysis [20]. Furthermore, we found that tumors with
high chromosomal instability (HCNA) were consider-
ably more sensitive to PARP inhibition treatment and
harbored higher frequency of BRCA2 mutations. Tar-
geting BRCA1/2-deficient cancers using PARP inhibi-
tors has been the archetype of synthetic lethality
based on the inhibition of DNA damage repair (DDR)
pathway. The first-in-class PARP inhibitor, olaparib,
has been the most extensively studied compound of
DDR inhibitors, and the therapeutic landscape of ola-
parib has been rapidly expanding [63]. Previous phase
II clinical trial showed that olaparib with paclitaxel
demonstrated greater overall survival benefits in pa-
tients with metastatic gastric cancer, specifically those
with low ataxia telangiectasia mutated (ATM) expres-
sion level [64]. Unfortunately, the subsequent phase
III trial failed to attain its primary objective [65]. The
current limitation on PARP inhibition therapy neces-
sitated assessment of additional biomarkers to achieve
successful clinical outcomes in gastric cancer. In such
context, our results suggest that patients with high

chromosomal instability and BRCA2 mutation could
potentially benefit from olaparib treatment.
Moreover, through large-scale pharmacogenomic ana-

lyses, we suggested inhibition of WNT signaling as a
therapeutic option for ALK-mutant tumors. Further-
more, we found significant therapeutic vulnerabilities of
PIK3CA-E542K mutant tumors to AKT inhibition ther-
apy. Of note, we have previously performed the first and
largest prospective molecular-guided targeted therapy in
patients with gastric cancer, aligned with eight pre-
specified genomic biomarkers and ten independent
biomarker-associated clinical trials (The VIKTORY Um-
brella Trial) [66]. Consistent with previous observations,
we discovered that patients with PIK3CA-E542K mutant
tumors demonstrated the most robust response to AKT
inhibitors when compared with patients harboring
E545K, E545G, E453K, or other mutant type tumors.
Our findings were further experimentally validated
where AZD5363 demonstrated potent cytotoxic activ-
ities in PIK3CA-E542K-mutant gastric cancer cell-lines,
subsequently downregulating PI3K pathway encoding
molecules, including phosphorylation of mTOR, S6K,
and 4E-BP1. These results collectively suggest that the

Fig. 4 Transcriptome correlates of gefitinib sensitivity. a Elastic-net regression results of transcriptome features that predict pharmacological
response to gefitinib. The bottom scatter plot represents drug response for gefitinib-treated tumors. The upper heatmap shows the top extracted
features in the model. The left bar graph shows the averaged weight of each predictive feature. The number of appearances in 100 bootstraps is
indicated in parentheses. b Scatter plot revealing a linear correlation between gefitinib AUC and RNF11 transcriptome expression. Correlation
coefficients and P values were obtained by Pearson correlation analysis. c Immunoblot analysis of RNF11, p-EGFR, EGFR in gastric cancer cell-lines.
β-Actin was used as a loading control (left panel). Cell proliferation assay in EGFR-activated gastric cancer cell-lines (right panel). Cancer cells were
exposed to gefitinib for 72 h, and then, cell viability was measured. d Gastric cancer cell-lines with high (SNU5; left panel) and low (SNU638; right
panel) RNF11 expression were transiently transfected with 10 nM of siRNF11 and treated with gefitinib for 72 h the next day. The results are
represented as the mean ± SD of triplicate wells and are representative of three independent experiments. e Immunoblot analysis of EGFR
signaling-related molecules, including p-EGFR, EGFR, p-AKT, and AKT in gastric cancer cell-lines that were transiently transfected with 10 nM of
siRNF11 and treated with gefitinib for 4 h the next day. P values in c, d were derived from two-sided Student’s t tests
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current pharmacogenomic atlas of PDC models support
the clinical feasibility of molecular-guided targeted ther-
apy in hopes of expediting personalized treatment.
Lastly, we identified molecular determinants, including

RNF11, of the therapeutic response to gefitinib treatment.
RNF11 has been presented as a proto-oncogene, delaying
the degradation of EGF-activated EGFR signaling pathway
components. Previous phase II and III clinical trials using
EGFR-targeted agents (cetuximab, panitumumab, nimotu-
zumab, gefitinib) in gastric cancer were terminated due to
insignificant survival advantage [49, 67–69]. However, re-
cent reports suggested the clinical feasibility of EGFR-
mediated therapy, especially for patients with EGFR ampli-
fication in gastric tumors, and revealed potential mecha-
nisms underlying EGFR therapeutic resistance [70].
Notably, we discovered that signet-ring cell-type tumors
demonstrated considerable sensitivities to EGFR inhibi-
tors, while tubular types were widely resistant. Con-
versely, siRNA-mediated knockdown of RNF11
sensitized tumor cells, including tubular-type tumors
to gefitinib. These results suggest a potential combin-
ational strategy to circumvent EGFR-mediated thera-
peutic resistance.
In conclusion, integration of tumor genome and drug sen-

sitivity data is the next step towards precision oncology ther-
apy. As molecular target agents, including trastuzumab and
ramucirumab, are currently being used in combination with
cytotoxic chemotherapeutic compounds (5FU/CDDP and
paclitaxel, respectively) to treat gastric cancer patients [18,
19], we believe that the results in this study provide oppor-
tunities to design effective clinical trials and combinational
therapeutic strategies in hopes of facilitating clinical applica-
tion towards personalized treatment in gastric cancer.

Conclusions
In summary, we have established a systematic framework
for genetic prediction of anticancer drug response using
patient-derived resources that are molecularly, clinically,
and pharmacologically annotated. Through comprehensive
pharmacogenomic analyses, we identified lineage-specific
drug sensitivities and gene-drug interactions that are well
represented within clinical context, including VEGFR inhib-
itors with diffuse-type tumors and PIK3CA-E542K muta-
tion with AKT inhibition therapy. Furthermore, we
suggested RNF11 expression as a predictive biomarker for
gefitinib treatment in gastric cancer.
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