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Introduction
The recently completed The Cancer Genome Atlas (TCGA) 
program has provided a comprehensive molecular characteri-
zation of 33 cancer types from more than 10 000 patients, and 
the database remains a valuable public resource.1 The different 
cancer types are generally defined by their tissue-of-origin. The 
project has revealed striking heterogeneity in the genomic and 
molecular profiles across patients within each cancer type. This 
heterogeneity is presented in several flagship publications (eg, 
see The Cancer Genome Atlas Network2,3 and Verhaak et al4) 
in the form of molecularly distinct subtypes, and these subtypes 
often correlate with clinical end points. However, leveraging 
molecular heterogeneity for personalized risk prediction on a 
more granular scale is limited by the number of patients with 
reliable clinical data for each cancer type.5 Moreover, the effects 
of individual molecular biomarkers on survival or other clinical 
outcomes are often small, and thus predictive analyses within a 
single type of cancer are underpowered.6

In 2013, TCGA began the Pan-Cancer Analysis Project, 
motivated by the observation that “cancers of disparate organs 
reveal many shared features, and, conversely, cancers from the 
same organ are often quite distinct.”7,8 The Pan-Cancer 
Analysis Project can also reveal differences in the effect of 
genomic changes across different cancer types, as demonstrated 
by the NOTCH gene family.7 This initiative has resulted in 
several studies across multiple cancer types that have revealed 
important shared molecular alterations for somatic mutations,9 
copy number,10 messenger RNA,11 and protein abundance.12 If 
these potential biomarkers have similar clinical effects across 

multiple types of cancer, then predictive models that are esti-
mated using pan-cancer data will have more power than mod-
els that are fit separately for each type of cancer. The TCGA 
Pan-Cancer Clinical Data Resource (TCGA-CDR)5 has 
facilitated pan-cancer models by curating and standardizing 
available data for 4 clinical outcomes (overall survival [OS], 
disease-specific survival, disease-free interval, or progression-
free interval) across all 33 TCGA cohorts.

We propose and implement a novel Bayesian hierarchical 
framework to predict survival from multiple molecular predic-
tors that are shared across multiple cancer types. An important 
feature of this approach is that it allows for borrowing informa-
tion across models for each cancer type under the assumption 
that shared molecular predictors are likely to have a similar 
effect on survival prognosis, but it also allows sufficient flexibil-
ity for the same biomarker to have different effects depending 
on the type of cancer. Moreover, the Bayesian framework pro-
vides a principled way to incorporate prior information from 
other studies or cohorts, which is well-motivated given the vast 
body of literature on molecular biomarkers in cancer.

Using our proposed framework, we developed a pan-cancer 
predictive model for OS, using the somatic mutation profile of 
each tumor as the primary predictors of interest. We used OS 
because it is unambiguously defined and is available for almost all 
types of cancer, despite short follow-up times.5 We focus on 
somatic mutations because they play a critical role in the develop-
ment of many cancer types,13 are available for all cohorts in the 
TCGA database, and are straightforward to compare across 
different tissues of origin. A pan-cancer analysis of somatic 
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mutations across 12 different cancer types from TCGA revealed 
several genes that have frequent mutations across multiple types 
of cancer.9 Their analysis also considered the marginal effect of 
each gene on OS, via cox proportional hazards models for (1) 
each cancer type separately and (2) for a fully joint model with all 
cancer types together; our approach aims to compromise between 
these 2 strategies. For our application we consider the somatic 
mutation status of 50 genes, and survival data for 5698 patients 
comprising 27 different types of cancer. We evaluate and compare 
several different potential models via a robust cross-validation 
approach to assess predictive accuracy for this data set.

The rest of this article is organized as follows. In the 
“Methods” section, we discuss how the data were collected and 
our approach to filtering out cancer types and genes. We also 
describe our modeling framework, how we selected the survival 
distribution we chose to use in our analysis, and our Gibbs sam-
pling algorithm to calculate the posteriors of the model param-
eters. In the “Results” section, we discuss the results of our model 
selection procedure and our approach to determining which 
genes were most predictive of survival. Using the results from 
these 2 processes, we show the resulting credible interval esti-
mates of our parameters and display survival curves. In the 
“Discussion” section, we discuss our results and future work that 
builds on this study for pan-cancer survival modeling.

Methods
Data acquisition and processing

We acquired clinical data for each patient via the TCGA-CDR,5 
which includes data for 33 cancer types and more than 11 160 
patients. We acquired genome-wide somatic mutation data 
through the TCGA2STAT package for R,14 which gathers data 
from the Broad Institute GDAC Firehose. The curated mutation 
data were available for 27 305 genes and 5793 patients with a 
binary indicator for whether there was a somatic nonsilent muta-
tion ( 0 = no, 1 = yes) within the coding region of each gene.

We first matched the observations in the CDR data set with 
the mutation data obtained through TCGA2STAT. If any 
patients were present in one data set but not the other, that 
observation was removed from the study. We also removed any 
observations that had a negative survival time, a survival time 
entered as 0, or who were missing both a survival time and an 
entry for time-to-last-contact. We chose to eliminate 5 cancer 
types from our study due to high (> 90%) censoring rates, 
meaning patients survived longer than the duration of the 
study and their outcome status is unknown. These 5 types were 
pheochromocytoma and paraganglioma (PCPG), prostate ade-
nocarcinoma (PRAD), testicular germ cell tumors (TGCT), 
thyroid carcinoma (THCA), and thymoma (THYM). The 
TCGA-CDR also caution against using OS as an end point 
for these cancer types, due to the lack of observed survival 
events. One other cancer type, mesothelioma (MESO), did not 
have any somatic mutation data available through the 
TCGA2STAT pipeline, so it was also omitted from our 

analysis. The 27 cancer types remaining in our study can be 
found in Table 1 with their corresponding sample sizes.

We filtered the genes based on average mutation rate 
across the 27 cancer types, selecting the top 50 mutated 
genes. To determine the average mutation rate, we calculated 
the mutation rate of each gene for each cancer type and took 
the average by gene across all cancers. In this way, each can-
cer type was weighted the same in calculating the mean 
mutation rate. This also ensured that each gene would be 
represented across most cancers, not just within a few. As a 
result, certain genes that are highly mutated in particular 
cancers but not in others were excluded. The genes we incor-
porated in our study can be found in Table 2 with their cor-
responding average mutation rates. In total, we used mutation 
data from 5698 patients.

We considered the correlation of mutation status between 
genes across all cancers, for exploratory purposes and to inves-
tigate potential issues of multicollinearity for polygenic mod-
els. Figure 1 shows a pairwise correlation plot for all genes 
considered using mutation status across all patients included 
in this study. The Pearson correlation coefficients between 
genes were uniformly positive but relatively weak, ranging 
from r = .07−  to r = .32. Almost all pairwise associations 
(96%) were significant at the .05 level based on a Fisher exact 
test for independence. The positive correlations were expected 
as the total mutation burden can vary across patients; however, 
the relative weakness of the correlations suggests that each 
individual gene may provide unique information and multi-
collinearity is not a concern. These correlations may change 
considerably if one were to consider only a single type of can-
cer or a subset of related cancers.

Model

We propose a Bayesian hierarchical model for patient survival 
that incorporates binary mutation status variables and age 
across 27 cancer types. We centered the age covariate by sub-
tracting out the average age for each cancer type. This reduces 
collinearity of the age coefficient with the intercept terms, 
ensuring that the estimated effect of age is not influenced by 
one cancer having generally older patients and another cancer 
having generally younger patients. The multilayer nature of our 
model allows the effect of a mutation at each gene to vary by 
cancer type while simultaneously inferring the mean and vari-
ance of these effects. Thus, the model facilitates the borrowing 
of information across cancer types by shrinking the estimated 
effects toward a common mean. Our model can also accom-
modate censored observations, as discussed in the following 
subsection. We use the following notation in our framework: 
yij  is the (potentially censored) survival time for patient j  in 

cancer type i , j ni= 1, , , i = 1, , 27 . The xijp  is the centered 
age if p = 1  and is the mutation status for gene p −1, 
p = 2, ,51 . We consider 4 different likelihood models for 

survival:
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Table 1.  Cancer types included in study with their corresponding 
sample sizes.

Cancer type Sample size

Adrenocortical carcinoma (ACC) 89

Bladder urothelial carcinoma (BLCA) 129

Breast invasive carcinoma (BRCA) 964

Cervical squamous cell carcinoma and 
endocervical adenocarcinoma (CESC)

192

Cholangiocarcinoma (CHOL) 35

Colon adenocarcinoma (COAD) 141

Lymphoid neoplasm diffuse large B-cell 
lymphoma (DLBC)

47

Esophageal carcinoma (ESCA) 185

Glioblastoma multiforme (GBM) 286

Head and neck squamous cell carcinoma 
(HNSC)

279

Kidney chromophobe (KICH) 65

Kidney renal clear cell carcinoma (KIRC) 417

Kidney renal papillary cell carcinoma (KIRP) 158

Acute myeloid leukemia (LAML) 173

Brain lower grade glioma (LGG) 280

Liver hepatocellular carcinoma (LIHC) 195

Lung adenocarcinoma (LUAD) 212

Lung squamous cell carcinoma (LUSC) 174

Ovarian serous cystadenocarcinoma (OV) 231

Pancreatic adenocarcinoma (PAAD) 149

Rectum adenocarcinoma (READ) 63

Sarcoma (SARC) 247

Skin cutaneous melanoma (SKCM) 336

Stomach adenocarcinoma (STAD) 267

Uterine corpus endometrial carcinoma (UCEC) 248

Uterine carcinosarcoma (UCS) 56

Uveal melanoma (UVM) 80
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For each likelihood we consider a hierarchical linear model 
for λij:

Table 2.  Summary of genes and average mutation rate across all 
cancers.

Gene Mutation rate

TP53 0.383

TTN 0.302

MUC16 0.193

MUC4 0.124

CSMD3 0.117

LRP1B 0.117

PIK3CA 0.116

SYNE1 0.110

KRAS 0.108

FLG 0.106

RYR2 0.105

USH2A 0.100

PCLO 0.095

APC 0.095

DNAH5 0.095

MUC5B 0.089

FAT4 0.088

OBSCN 0.088

CSMD1 0.086

HMCN1 0.085

MUC17 0.085

ZFHX4 0.084

GPR98 0.081

ARID1A 0.081

LRP2 0.078

FAT3 0.078

AHNAK2 0.078

XIRP2 0.077

MLL2 0.077

APOB 0.077

SPTA1 0.077

PTEN 0.076

MLL3 0.076

PKHD1L1 0.074

FRG1B 0.074

DST 0.072

 (Continued)
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λij i ij i ij i ij ix x x= 0 1 1 2 1 51 51β β β β+ + + +

where βip  is the linear effect of age if p = 1  and mutation at 
gene p −1 on survival if p = 2, ,51  for a patient with cancer 
type i. This approach extends commonly used parametric 
Bayesian survival models,15 and to complete the Bayesian frame-
work we specify prior distributions for the unknown parameters. 

For the normal and log-normal models, we used an Inverse-
Gamma (0.01,0.01)  prior distribution for the residual variation 
of survival times within each cancer type, σ 2. For the Weibull 
model, we used a Uniform (0,5)  prior for the shape parameter, 
α. Under the assumption that a mutation at one gene or an 
increase in 1 year of age may affect survival differently depending 
on the type of cancer, the linear effect of age and each mutation, 
βip, was assumed to vary by cancer type. We assume

β β λip p p pNormal for  , = 0, 512( )

where β p  is the mean effect on survival across cancer types and 
λp  describes the extent to which the effects vary across the 
different types. Thus, βi0  gives the mean intercept and βi0  is 
an intercept that describes the baseline survival for type i . 
Similarly, β p  is the average effect on survival for age if p = 1  
and for mutation at a gene if p = 2, ,51 . For all coefficients 
and all models, we gave the mean effects independent and dif-
fuse normal priors: β p Normal(0,10000 )2 . The parameters 
λp

2  are important because they indicate the degree of effect 
heterogeneity across cancer types; we used Inverse-Gamma 
(0.01,0.01)  priors for each λp

2.

Parameter estimation

Depending on the survival model, we employed a different 
approach to infer the posterior for model parameters. The log-
normal and normal models were fit in R using an in-house 
Gibbs sampler. The sampler is described below; however, more 
details can be found in Appendix 1.

1.	 Initialize β p
(0), λp

2(0), σ 2(0). Initialize all censored observa-
tions at their time of last contact.

	 For samples t = 1,..., 20000, repeat the following steps:
2.	 Draw βip

t( )  from P ip
t t t t( | , , )( ) ( 1) 2( 1) 2( 1)β β − − −λ σ  for 

i = 1, , 27  and p = 0, ,51 .
3.	 Draw λp

t2( )  from P p
t

ip
t t( | , )2( ) ( ) ( 1)λ β β −  for p = 0, ,51 .

4.	 Draw β p
t( )  from P p

t
ip
t

p
t( | , )( ) ( ) 2( )

β β λ  for p = 0, ,51 .
5.	 Draw σ 2( )t  from P t

ip
t( | )2( ) ( )σ β  for i = 1, , 27  and 

p = 0, ,51 .
6.	 Generate survival times for censored observations using 

β βi
t

ip
t t

1
( ) ( ) 2( ), , , σ .
•• If assuming the data follows a normal distribution, gener-

ate survival times for censored observations from a nor-
mal distribution with mean β(t)i 0+ β βi

t
ij i

t
ijx x1

( )
1 51

( )
51+ +  

and variance σ 2( )t  that is truncated at the time of last 
contact for observation ij.

•• If assuming the data follows a log-normal distribu-
tion, generate survival times from a normal distribu-
tion with mean β β βi

t
i
t

ij i
t

ijx x0
( )

1
( )

1 51
( )

51+ + +  and 
variance σ 2( )t  that is truncated at the log of the time 
of last contact for observation ij .

Gene Mutation rate

DMD 0.070

MUC2 0.070

RYR3 0.070

NEB 0.069

MACF1 0.069

RYR1 0.069

PCDH15 0.068

DNAH9 0.066

ABCA13 0.066

FAT1 0.065

DNAH8 0.064

DNAH11 0.063

CSMD2 0.062

DNAH7 0.061

Table 2.  (Continued)

Figure 1.  Correlation plot for correlations between somatic mutation 

statuses across tissue types. Blank squares indicate nonsignificant 

correlation between 2 genes. Squares that contain a circle indicate 

significant correlations and the magnitude of the correlation is indicated 

by the color opacity.
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We ran the sampler for 20 000 iterations and used a 10 000 
iteration burn-in to ensure convergence of the parameters. In 
Appendix 2 of this article, we describe how we validated this 
model fitting procedure.

Posterior samples for the exponential and Weibull models 
were obtained using the Just Another Gibbs Sampler ( JAGS) 
software.16 For these models, we ran the sampler for the same 
number of iterations and employed the same burn-in as for the 
normal and log-normal models above. In all calculations based 
on the posteriors of our Gibbs sampler and our JAGS models, 
we thinned by every 10th iteration to speed up computing time 
and memory efficiency.

Model selection

To assess which of the normal, log-normal, exponential, and 
Weibull models was the best fit for the data, we calculated the 
log out-of-sample posterior predictive likelihood in a fivefold 
cross-validation procedure, as described below. Consider the 
kth  training-test partition of the data, k = 1, ,5  such that 
  

Y Y Yk k= { , }train test . Let p y X( | )  be the probability distribution 
for survival time. On each training fold, we fit the model and 
generated posterior samples for each parameter. For each pos-
terior sample after burn-in, we computed

P Y p y yo
t

i j
ij o

t

i j
i

 test

uncensored censored

| = |
( , ) ( , )

Θ Θ( ) ( )∏ ∏ Pr jj ij
c

o
ty> |Θ( )

where Θo
t  is a vector of all the tth -iteration posterior samples 

for the parameters of the probability distribution of survival 
and yij

c  is the censor time for the jth  patient in the ith  cancer 
type. After computing this quantity for each iteration, we com-
puted an estimate of the out-of-sample posterior predictive 
likelihood:

∫ ∑( ) ( ) ≈ ( )P Y P Y d
T

P Y
t

T
t  test train test| | 1 |0 0 0

=1

Θ Θ Θ Θ

where T is the number of sampling iterations after burn-in and 
thinning. As stated previously, we chose to thin by every 10th 
iteration to ease computing time. As a result, this value was 
calculated based on 1000 Gibbs sampling iterations. After cal-
culating the log-posterior predictive likelihood on each test 
fold, we took the average likelihood and compared the 4 mod-
els. More information on usage of the posterior predictive like-
lihood can be found in Vehtari and Ojanen.17

Forward selection

To assess the partial improvement of each gene in predicting 
survival, we constructed a forward selection approach that 
would allow us to see which genes were most important in pre-
dicting survival across all cancer types. In this way, we were able 

to determine the relative importance of each gene, and achieve 
a more parsimonious predictive model. For our forward selec-
tion approach, we used the same out-of-sample log-posterior 
likelihood metric described in the previous section on model 
comparison. Our forward selection method proceeded as 
follows:

1.	 Calculate the average log-posterior predictive likelihood 
for the null model (with age and cancer-type intercepts, 
but no genes) fit on each of the fivefolds.

2.	 For each gene, consider the model with only the inter-
cept, age, and that gene included. Calculate the log-pos-
terior predictive likelihood under this model using 
fivefold cross-validation.

(a) � Select the gene that produced the model with the 
highest log-posterior predictive likelihood. Call this 
model M1.

(b)	 � Compare the likelihood for this model with the 
null model; if the likelihood has increased, proceed 
by adding this gene to the model. Otherwise, stop.

3.	 For each remaining gene, add that gene separately to 
model M1  and calculate the resulting mean log-poste-
rior predictive likelihood using fivefold cross-validation.

(a) � Select from the resulting 2 gene models the gene 
that maximized the log-posterior likelihood. Call 
this model M2 .

(b)	 � Compare the log-posterior likelihood for M2  to 
M1. If the likelihood has increased, add the new 
gene to the model and proceed. Otherwise, stop.

4.	 Continue until the log-posterior predictive likelihood 
ceases to increase. At this point, the final model has been 
found.

The order of the genes added to the model depended on 
which genes maximized the posterior likelihood at each step. 
Once a final model had been found, we investigated the effects 
of each mutation on survival through credible interval plots 
and survival curves, described further in the “Results” section.

Results
Model selection

The results of the comparison described in the “Methods” sec-
tion are shown in Table 3. We found that the log-normal model 
had the highest out-of-sample log-posterior likelihood out of 
the normal, exponential, and Weibull models. We assumed a 
log-normal distribution of survival for the remainder of our 
investigation.

In this model, the coefficients are inferred by borrowing 
information across cancer types. However, we considered an 
analogous log-normal model in which the coefficients were 
inferred independently for each cancer type to compare with 
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the model we selected here. We used the same uninformative 
prior on each coefficient as the one assumed for 
β β: (0,10000 )2

ij N . However, our in-house Gibbs sampler 
under this model failed to converge after 30 000 iterations for 
several coefficients. This demonstrates a drawback to not bor-
rowing across cancer types as our proposed model does. We 
also considered a Cox proportional hazards model for each 
cancer type alone. Similarly, the result did not converge for sev-
eral of the cancer types.

Forward selection

Table 4 displays the mean log-posterior predictive likelihoods 
for each step in the forward selection procedure. Every model 
is adjusted for patient age.

The log-posterior likelihood for the null model, meaning 
the model with only age as a predictor, was −5014.895. The 
model with TP53 added yielded a dramatic improvement, 
with a log-posterior likelihood value of −1009.63. The next 
gene to be added was FAT4, yielding a log-posterior likeli-
hood of −1009.135. At this point, the posterior likelihood 
stopped improving. DNAH5 was last to be added, and the 
model with TP53, FAT4, and DNAH5 as predictors led to a 
log-posterior likelihood of −1009.179. We validated conver-
gence of the forward selection procedure by running the pro-
cess several times to ensure we obtained the same result. 
Across all 27 cancers, TP53 was mutated in an average of 
38.3% of patients, the highest of all genes, and FAT4 in 8.8% 
(Table 2). The appearance of TP53 here is not surprising (see 
the “Discussion” section). However, we note that after the 
inclusion of TP53, the improvement in likelihood by FAT4 
was marginal. This final model from our forward selection 
procedure served as our basis of exploration for subsequent 
analysis.

We also used our forward selection approach without 
including TP53 as a potential covariate to see what genes 
would be added. Our results are given in Table 5.

Without including TP53 as a possible covariate, the first 
gene to be added was APOB, leading to a log-posterior likeli-
hood of −1011.321. The addition of ARID1A on top of APOB 
led to the highest log-posterior likelihood of all genes at 
−1011.694 though this metric ceased to increase at this point. 
Of the patients in our study, 7.7% had a mutation at APOB.

Credible intervals for model coeff icients

To understand the magnitude and direction of the partial effect 
of age and a mutation at a gene on patient survival, we com-
puted and visualized the 95%  credible interval based on poste-
rior samples for each βip. The intervals we show here were 
calculated from the multivariate log-normal model resulting 
from the forward selection procedure, with cancer type inter-
cepts, age, TP53, and FAT4 included as predictors. The credible 
intervals for each βip  can be found in Table 6.

Figure 2 displays the credible intervals across cancer types 
for each parameter in the model. Panel 2A compares the base-
line survival across the different cancer types. Panel 2B reveals 
the generally deleterious effect of age on patient survival, as 
indicated by the highlighted orange intervals. For most of the 
cancers, an increase in age led to a decrease in survival; however, 
the extent to which age has an effect is not homogeneous or 
precisely identified for every cancer. For breast cancer (BRCA), 
the impact of age is more certain, indicated by a narrower cred-
ible interval, compared with the effect of age on patients with, 
eg, uterine carcinosarcoma. Similarly, Figure 2C shows the esti-
mated effect of a TP53 mutation on survival across cancers, and 
the estimated effect was generally negative for most cancers. 
This, again, demonstrates a poorer prognosis for patients with 
a mutation at TP53. Breast cancer and head and neck squa-
mous cell carcinoma (HNSC) had estimated TP53 effects with 
credible bounds entirely below 0, and adrenocortical carcinoma 
(ACC) was nearly entirely below 0. FAT4 mutation credible 
intervals (Figure 2D) appeared to be more positive than those 
of TP53, with some intervals entirely above 0.

Credible intervals for mean mutation effect

We also studied the credible intervals for the mean effect of 
each covariate. The mean effect for each predictor, β p, was 

Table 3.  Out-of-sample posterior predictive likelihood.

Model Log-posterior likelihood

Log-normal −3667.139

Normal −3918.152

Exponential −7053.263

Weibull −6889.945

Table 4.  Results from forward selection procedure.

Covariates in model Mean log-posterior likelihood

Age, no genes −5014.895

Age, TP53 −1009.63

Age, TP53, FAT4 −1009.135

Age, TP53, FAT4, DNAH5 −1009.179

Table 5.  Results from forward selection procedure without TP53.

Covariates in model Mean log-posterior likelihood

Age, no genes −5014.895

Age, APOB −1011.321

Age, APOB, ARID1A −1011.694
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assumed constant across cancer types and the individual effect 
by tumor varied around this mean. The results for β p  are given 
in Table 7 and shown in Figure 3.

These results indicate the effect of each covariate averaged 
across cancers; therefore, if a predictor was more potent in one 
cancer and less so in another, this may not necessarily be rep-
resented in estimates for the mean effect. This substantiates 
why we chose to allow the effect of each covariate to differen-
tiate by tumor type. The credible intervals for age and TP53 
mutation status coincide with the βip  interval results as both 
had entirely negative or nearly entirely negative interval esti-
mates for their respective means. The interval for FAT4 also 
coincides with the βip  intervals; however, its comparably large 

width demonstrates a lack of certainty on its effect with age 
and TP53 in the model.

Survival plots

To visualize the impact of age and a mutation at each of TP53 
and FAT4, we show here survival curves computed based on 
each combination of predictor values. The full collection of 
survival curves, for any cancer type and any combination of 
predictors, are available online at http://ericfrazerlock.com/
surv_figs/SurvivalDisplay.html. The plots displayed in Figure 4 
are for a combination of covariates for patients with ACC, for 
which we had data on 89 tumors. In our data set, patients with 

Table 6.  Credible intervals for model coefficients across each cancer type.

Cancer Intercept Age FAT4 TP53

1 ACC (7.616, 8.347) (−0.033, 0.007) (−0.347, 0.67) (−1.146, 0.020)

2 BLCA (6.677, 7.379) (−0.059, −0.005) (−0.162, 0.732) (−0.654, 0.180)

3 BRCA (8.675, 9.021) (−0.036, −0.015) (−0.233, 0.771) (−0.590, −0.037)

4 CESC (7.757, 8.313) (−0.030, 0.011) (−0.226, 0.849) (−0.558, 0.691)

5 CHOL (6.402, 7.381) (−0.047, 0.019) (−0.745, 0.547) (−0.537, 0.739)

6 COAD (7.348, 8.134) (−0.044, 0.010) (−0.317, 0.614) (−0.533, 0.377)

7 DLBC (7.65, 8.721) (−0.037, 0.031) (−0.266, 0.812) (−0.633, 0.765)

8 ESCA (6.412, 7.284) (−0.033, 0.005) (−0.339, 0.539) (−0.537, 0.351)

9 GBM (5.657, 6.036) (−0.043, −0.017) (−0.462, 0.655) (−0.053, 0.624)

10 HNSC (7.225, 7.906) (−0.042, −0.013) (0.016, 0.957) (−0.991, −0.222)

11 KICH (8.662, 9.781) (−0.074, −0.003) (−0.308, 0.832) (−1.000, 0.180)

12 KIRC (7.724, 8.054) (−0.052, −0.025) (−0.443, 0.685) (−0.858, 0.358)

13 KIRP (7.941, 8.611) (−0.016, 0.034) (−0.406, 0.727) (−0.893, 0.431)

14 LAML (6.213, 6.666) (−0.053, −0.025) (−0.347, 0.843) (−1.079, 0.028)

15 LGG (7.676, 8.306) (−0.072, −0.038) (−0.282, 0.909) (−0.369, 0.429)

16 LIHC (6.761, 7.257) (−0.024, 0.008) (−0.154, 0.94) (−0.668, 0.108)

17 LUAD (7.188, 7.742) (−0.032, 0.010) (−0.174, 0.634) (−0.603, 0.122)

18 LUSC (6.549, 7.36) (−0.054, −0.003) (−0.229, 0.628) (−0.189, 0.695)

19 OV (6.963, 7.568) (−0.048, −0.015) (−0.280, 0.906) (−0.334, 0.356)

20 PAAD (6.302, 7.071) (−0.039, 0.004) (−0.476, 0.572) (−0.588, 0.238)

21 READ (7.376, 8.58) (−0.056, 0.025) (−0.196, 0.962) (−0.556, 0.606)

22 SARC (7.37, 7.844) (−0.032, −0.004) (−0.294, 0.842) (−0.326, 0.386)

23 SKCM (7.537, 7.927) (−0.032, −0.011) (−0.181, 0.425) (−0.266, 0.515)

24 STAD (6.495, 7.033) (−0.034, 0.003) (0.044, 0.796) (−0.244, 0.452)

25 UCEC (8.467, 9.097) (−0.038, 0.008) (0.061, 1.212) (−0.786, 0.099)

26 UCS (6.270, 7.518) (−0.079, −0.007) (−0.269, 0.835) (−0.627, 0.537)

27 UVM (7.268, 8.046) (−0.069, −0.010) (−0.303, 0.909) (−0.856, 0.574)

http://ericfrazerlock.com/surv_figs/SurvivalDisplay.html
http://ericfrazerlock.com/surv_figs/SurvivalDisplay.html
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ACC ranged in age from 14 to 83 years, with a median age of 
49. The mutation rates for patients with ACC are as follows: 
50.6% had no mutations in FAT4 or TP53, 10.1% had muta-
tions in just FAT4, 19.1% had mutations at just TP53, and 
4.49% had mutations in both. The impact of the negative coef-
ficient of TP53 is demonstrated in these plots, as prognosis 
seems to worsen over 5 years if a patient has such a mutation. 
The deleterious effect of age is also visible, which is to be 
expected. The seemingly positive effect of FAT4 is also appar-
ent, with calculated survival curves appearing higher compared 
with those for patients with no mutations at TP53 and FAT4.

Discussion
In this article, we propose a novel Bayesian hierarchical model 
for survival of patients with cancer based on age and mutation 
status. This model is unique in its ability to allow the effect of 
each covariate to vary by cancer type. This framework is 
motivated by the assumption that similar genetic profiles may 
have similar, though not necessarily identical, effects on 
patient survival across tissues of-origin. This work may be 
extended to allow for other clinical covariates to be added to 
the model, such as stage and grade, and allows the user to 
adjust the effect of each predictor by cancer type as informed 
by prior knowledge.

To determine which genes were most important in survival 
prediction, we used a forward selection procedure that added 
TP53 and FAT4 to our model. The inclusion of TP53 led to a 
dramatic improvement in the model fit, while each additional 
gene reduced the log-posterior likelihood by a marginal 
amount. This indicates that TP53 is largely the most predictive, 
which is natural given its high mutation rate across cancer 
types (see Table 2). In particular, robust effects for TP53 were 
observed for BRCA and HNSC; the basal-like subtype for 

Figure 2.  Credible intervals by cancer type for the intercept (panel A), Age effect (panel B), TP53 effect (panel C), and FAT4 effect (panel D).

Table 7.  Credible intervals for mean of model coefficients.

Covariate Mean effect

Intercept (7.213, 7.870)

Age (−0.037, −0.008)

FAT4 mutation status (0.031, 0.480)

TP53 mutation status (−0.316, 0.056)
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BRCA2 and the human papilloma virus–negative subtype for 
HNSC18 are almost universally TP53-mutated and have rela-
tively poor outcomes. Moreover, there is a vast literature on the 

mechanistic role of TP53 in cancer progression as an agent of 
DNA repair19 and in maintenance of genome integrity. It was 
also encouraging to see TP53 added to the model as it is con-
sidered a tumor driver gene.20 FAT4 appears to be much less 
predictive than TP53, given its marginal increase in the log-
posterior likelihood (from −1009.63 to −1009.135). It is of 
note that the credible intervals for coefficient in the model 
were largely positive, despite the existence of literature con-
cluding FAT4 functions as a tumor suppressor.21,22 A potential 
explanation is that mutations in FAT4 contribute to the devel-
opment of certain cancers, but these cancers are comparatively 
less aggressive than those that arise from mutations in TP53 or 
other driver genes. An analysis without TP53 achieved compa-
rable predictive performance under our hierarchical model via 
the inclusion of APOB, suggesting that even genes with lower 
mutation rates can improve performance. Using the most fre-
quently mutated genes across genome sequencing cohorts 
often also includes known false positives. Comparing our list of 
genes with Bailey et al,20 we found that 19 of 50 were on known 
false-positive lists. However, it was encouraging to see that 
these known false positives did not make the final survival 
model. However, our gene set also did not include some known 
tumor driver genes due to our approach of restricting the genes 
of interest to those with mutations across the pan-cancer 
cohort.

In addition, we considered the possibility of collinearity 
between mutation status variables, prompting us to investigate 
the correlation levels between variables across all cancer types 

Figure 3.  Visual display of the credible intervals for � …βp, = 1, ,3p .

Figure 4.  Survival curves under different covariate combinations for adrenocortical carcinoma with ages overlaid. Estimates for 30-year-old patients are 

shown in black, 50-year-olds in orange, and 80-year-olds in blue. The 95% error bounds are shown in dotted lines.
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(Figure 1). Based on this plot, we concluded mutation statuses 
across all cancer types were not highly associated. However, the 
results may look different if one is not considering the cancers 
in aggregate. With that in mind, we propose in future work 
sorting genes differently to meet the interest of the researchers, 
ie, exploring genes that are known to be highly mutated in a set 
of related cancers. In such an instance, it may be necessary to 
consider collinearity between variables and adjust accordingly.

We also assessed the predictive quality of our model by cal-
culating survival curves for each cancer type based on combina-
tions of age and mutation status based on our model. These 
plots demonstrated the largely negative effect of increasing age 
and a TP53 mutation and the less noticeable effect of FAT4. 
Irrespective of mutation status, the survival curves demonstrate 
the clear effect age has on survival prognosis, which does not 
come as much of a surprise. We created a web-based app that 
allows users to toggle with cancer types and predictors to see 
what 5-year prognosis is predicted to be. Such a tool may be 
interesting for academic purposes only.

In our study, we used the TCGA2STAT R package to 
import TCGA somatic mutation data due to its convenience in 
data dissemination, providing somatic mutation data in a 
ready-to-use format for statistical analysis. Although the pack-
age does offer convenience, we were not able to acquire data for 
MESO, which is available through the TCGA Multi-Center 
Mutation Calling in Multiple Cancers (MC3) data set and 
through the National Cancer Institute’s (NCI) Genome Data 
Commons. In the interest of ease of future replication of this 
study, using the TCGA2STAT data set may make it simpler 
for scientists to acquire the same data we used. We also did not 
distinguish the genes we used based on driver mutation status, 
false-positive status, or otherwise.

In future studies, it would be interesting to apply the model 
to a subset of the 27 cancer types we selected to group cancers 
that may be more similar in genetic nature or otherwise. 
This may elucidate genes unique to predicting patient survival 
outcome to specific cancer groupings. Interactions between 
covariates could also be included in the model to assess their 
relationship to OS. It would also be interesting to investigate 
alternate approaches to selecting genes to incorporate in the 
model, possibly incorporating prior knowledge on driver 
mutation status or false-positive status, or achieving variable 
selection through a sparsity inducing prior, as is done in Maity 
et al23 using horseshoe priors.
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Appendix 1
Additional model f itting algorithm details

We used an in-house Gibbs sampler to estimate the parameters 
of our proposed log-normal and normal survival models. At 
each iteration of our sampler, we drew a sample of a parameter 
from its respective conditional posterior distribution. The con-
ditional posterior distributions for each parameter are outlined 
below:
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βi  is the vector of coefficients for the ith  cancer type, 
Xi  is the design matrix for the ith  cancer type, yi  is the vec-

tor of survival times for the ith  cancer type with the censored 
observations replaced by their time of last contact, β  is the 
vector of coefficient parameter means, and λ 2  is the vector of 
variances for each coefficient parameter.24
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where β p  is the average coefficient for covariate p  across all 
cancer types, τ 2 2= 10000 .
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Appendix 2
Validation study

In fitting the normal and log-normal models, we ran our own 
Gibbs sampling algorithm to generate posteriors for each of 
the parameters. To validate that our sampler was running prop-
erly, we generated true values for each parameter that we used 
to generate simulated data. Using these data, we computed 
posteriors for each parameter, calculated 95% credible intervals, 
and checked whether the true value of the parameter was con-
tained within the interval. The entire algorithm in more detail 
is outlined below:

1.	 For i  in 1, ,1000  iterations,

•• Initialize a counter at 0 to store the number of iterations 
out of 1000 for which a parameter has been contained in 
its calculated credible interval.

•• Generate values of predictors from N (0,1)  to be stored 
in matrix X  and generate “true” values for each parame-
ter, 
� �
�

β β λ σ0 0 0
2

0
2, , ,  from its respective prior distribution.

	 – � Based on initial values of parameters, generate sur-
vival times from a normal distribution with mean 
X


β0  and variance σ 0
2 . Generate censor times from 

the same distribution.
	 – � Replace survival times for observations whose censor 

time is less than its survival time with not available (NA) 
to indicate that that observation has been censored.

•• Using simulated data, run the algorithm as described in 
the “Methods” section. We chose to generate 2000 poste-
rior samples.

•• Once samples have been generated, calculate 95% credi-
ble intervals for each parameter.

	 – � Using the “true” values, check if the calculated credi-
ble interval covers the true value of the parameter. If 
so, update the counter for this parameter by one.

2.	 Ensure that for approximately 95% of the 1000 itera-
tions, the credible interval covered the true value of the 
parameter.




