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Abstract

Lakes and impoundments are important sources of greenhouse gases (GHG: i.e., CO2, CH4, N2O), 

yet global emission estimates are based on regionally-biased averages and elementary upscaling. 

We assembled the largest global dataset to date on emission rates of all three GHGs and found 

they covary with lake size and trophic state. Fitted models were upscaled to estimate global 

emission using global lake size inventories and a remotely-sensed global lake productivity 

distribution. Traditional upscaling approaches overestimated CO2 and N2O emission but 

underestimated CH4 by half. Our upscaled size-productivity weighted estimates (1.25–2.30 Pg of 

CO2-equivalents annually) are nearly 20% of global CO2 fossil fuel emission with ~75% of the 

climate impact due to CH4. Moderate global increases in eutrophication could translate to 5–40% 

increases in the GHG effects in the atmosphere, adding the equivalent effect of another 13% of 

fossil fuel combustion or an effect equal to GHG emissions from current land use change.
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Introduction

Lakes and other surface waters are globally significant emitters of CO2, CH4, and N2O to the 

atmosphere (Cole et al. 2007; Tranvik et al. 2009; Bastviken et al. 2011; Deemer et al. 2016; 

Soued et al. 2016). Accurate estimates of greenhouse gas (GHG) fluxes to and from the 

atmosphere are important to understanding the global carbon (C) budget as well as making 

projections of the trajectory of climate change. Improvements in sensor technology (e.g., 

Eugster et al. 2011; Gonzalez-valencia et al. 2014; Maeck et al. 2014; Delwiche et al. 2015) 

and the use of statistically robust survey designs (Beaulieu et al. 2016; Wik et al. 2016) have 

improved the accuracy of GHG emission rate measurements in aquatic systems over the last 

decade. These advancements and the increasing number of observations made around the 

world have allowed limnologists to identify environmental variables that control GHG 

emission rates across a broad range of spatial scales. Despite improvements in our 

understanding of GHG emission rates and factors influencing them, this information has not 

been combined to inform estimates of global GHG emissions from lakes and impoundments 

(hereafter referred to as ‘lakes’).

Most traditional analyses of the global role of lakes as sources of GHGs to the atmosphere 

have scaled local or regional measurements to the globe by multiplying an average emission 

rate by the global area covered by lentic systems (Cole et al. 2007; Tranvik et al. 2009; 

Bastviken et al. 2011). For example, Tranvik et al. (2009) multiplied an average rate of CO2 

emission from lakes and impoundments, as determined from a literature review, by the 

global area of those systems (Downing et al. 2006) to calculate a global emission rate of 

0.81 Pg C y−1. Bastviken et al. (2011) attempted a similar analysis for CH4 emission by 

calculating mean emission rates and lentic area within four latitude zones. This global 

analysis indicated lake and impoundment CH4 emissions of 69 Tg y−1 of CH4-C or about 

0.85 Pg of C as CO2 emission equivalents (using a 34-times conversion factor for a 100-yr 

time-scale; Myhre et al. 2013). N2O is another, more potent GHG emitted from aquatic 

systems. Soued et al. (2015) offered a first-order approximation of the global emission of 

N2O by all inland waters using a similar traditional upscaling approach and suggested that 

lakes and impoundments could be emitting 0.63 Tg of N2O-N per year. In CO2 equivalents, 

this is approximately 0.08 Pg of C (using a 298 conversion factor for a 100-yr time-scale; 

Myhre et al. 2013).

Estimates of global GHG emissions based on this ‘traditional’ average emission-

extrapolated approach can be strongly biased if the emission rates are not derived from a 

representative sample of lakes, however. For example, estimates of CH4 flux from northern 

latitude lakes (i.e., Wik et al. 2016) were substantially reduced when more recent data from 

large glacial lakes in Alaska were included (Stackpoole et al. 2017). Moreover, studies are 

increasingly finding that aquatic GHG fluxes are related to certain local drivers, which could 

be used to improve upscaled emission estimates. For example, Lapierre et al. (2017) found 

that 31% of summer CO2 concentration variability in lakes of the United States is explained 

by chlorophyll a (chla), a proxy for system productivity, as well as color and alkalinity. 

Therefore, traditional regional estimates of CO2 emissions from these systems would be 

biased if the average value was not derived from lakes with a distribution of those variables 

similar to that of all lakes in the U.S. Similarly, Rasilo et al. (2015) report that diffusive CH4 

DelSontro et al. Page 2

Limnol Oceanogr Lett. Author manuscript; available in PMC 2020 March 26.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



emission rates are inversely related to lake size in boreal Canada. Estimates of diffusive CH4 

emissions for lakes across this biome would therefore be biased unless the published data 

were derived from a collection of lakes with a size distribution that mirrors the true size 

distribution of lakes in the boreal landscape. Ultimately, upscaling with models that 

explicitly incorporate such environmental drivers (i.e., size and productivity) is likely to 

produce more accurate regional or global emission estimates (see Downing 2009).

A longstanding challenge to upscaling based on environmental covariates is the limited 

availability of spatially explicit data sets on lake characteristics at the global scale. Recent 

advances in satellite imagery are beginning to address this issue, however. For example, 

Sayers et al. (2015) report the frequency distribution of chla in 80,000 lakes around the 

world, covering the northern and southern hemispheres. Since some metrics of productivity, 

such as chla and nutrients, are potentially good predictors of CO2, CH4 and N2O in lakes 

and impoundments (Beaulieu et al. 2015; Deemer et al. 2016; DelSontro et al. 2016; 

Lapierre et al. 2017), the Sayers et al. (2015) data set provide a powerful tool for upscaling 

GHG emission rates. Similarly, improved satellite imagery and analytical approaches have 

allowed for several estimates of the distribution of lake and impoundment sizes across the 

globe (Downing et al. 2006; Verpoorter et al. 2014; Messager et al. 2016).

In this research, we address several gaps in our current knowledge of GHG emissions from 

lakes and impoundments. First, we estimate GHG emissions from these systems by 

combining data on the global distribution of lake size and productivity with new empirical 

models linking GHG emission rates with these variables. Second, we provide global 

estimates of all three major GHGs (i.e., CO2, CH4, and N2O). This is important because, 

although they may be reported less frequently than CO2 fluxes, N2O and CH4 are more 

potent GHGs. On a 100-year time horizon, N2O and CH4 have ~265- and 28-times the effect 

of CO2 on atmospheric warming, respectively, and these values increase to 298 and 34 when 

indirect effects of these GHGs on the climate are considered (Myhre et al. 2013). Finally, we 

use this new analytical approach to assess the sensitivity of lentic GHG emission to expected 

future changes in lake and impoundment productivity.

Methods

The general approach was to perform a secondary analysis (sensu Kiecolt and Nathan 1985) 

of GHG fluxes and the factors influencing them (i.e., lake size and trophic status) and to 

upscale these relationships to global estimates following Downing (2009), while using a 

global, joint lake size and productivity distribution. Although several global size 

distributions have been published (Downing et al. 2006; Verpoorter et al. 2014; Messager et 

al. 2016), global productivity distributions are less well constrained so we derived a 

distribution using remotely sensed lake chla data from the best available source (Sayers et al. 

2015).

Data collection

We collected previously published GHG flux and ancillary data from 223 different studies 

for a total of 8233 system measurements from at least 54 countries (Table S1 in Supporting 

Information (SI)). About 7637 systems were natural lakes and 596 were considered 
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impoundments of some type. More data were available for CO2 than for CH4 and N2O 

(7824 unique systems for CO2 versus 561, 144 and 166 with diffusive, ebullitive and total 

CH4 estimates, respectively, and 309 for N2O). Because we aimed to upscale based on the 

premise that productivity and lake-size impact emissions, we also collected nutrient (total 

phosphorus (TP) and total nitrogen (TN)), chla, and surface area (SA) data when available. 

The vast majority of collected water quality and gas flux measurements were made during 

the warm, open water season and fluxes were in daily areal units of mg m−2 d−1. Flux data, 

sources, and ancillary variables are available in the SI or at figshare.com/s/

c6a4133f3595b67a9816. Our compilation dataset should not be considered exhaustive as we 

chose to use data from studies with large and/or easily accessible datasets as well as 

containing the ancillary data necessary for our approach (Table S1 in SI).

Data treatment

All CH4 and N2O flux data we compiled from the literature were used in our analysis. The 

compiled CO2 data set contained an order of magnitude more observations than the other 

GHG data sets, however, and was pruned prior to analysis to reduce the effect of outliers. 

There are two main concerns in data mining that results in large data sets: (1) analyzing the 

bulk of a dataset to determine “large patterns” (sensu Ramaswamy et al. 2000) and (2) 

determining outliers that represent aberrant observations (Yu et al. 2002; e.g., detect credit 

card fraud or irregularities in gene expression). Because we were interested in determining 

characteristic patterns exhibited in a significant portion of the CO2 emission rates, we 

pruned this large dataset using the approach of Ramaswamy et al. (2000). This approach 

defines outliers not by the distance from the mean but based on the distance defined by the 

kth nearest neighbor to the mean, where k is defined as a fraction of the dataset, above and 

below the mean observation. We thus limited the CO2 data to those observations within the 

5th and 95th percentiles of the distribution.. The efficacy of the Ramaswamy et al. (2000) 

pruning approach is illustrated by the fact that fitting to the CO2 outliers (i.e., using 

unpruned data) resulted in a biased regression analysis that predicted the three largest lake 

size bins to be net CO2 sinks, which is clearly unrealistic (c.f., Alin and Johnson 2007). To 

reduce heteroskedasticity and normalize model residuals, all data were log10-transformed 

prior to analysis and a constant was added to data sets containing flux values less than or 

equal to zero prior to log transformation.

We analyzed the relationship between emission rates and predictor variables using simple 

and multiple linear regression. Candidate predictor variables were lake size, chla, TP, and 

TN. For each gas and emission mechanism, multivariate models were constructed for all 

combinations of size and one other predictor variable, including their interaction. Variable 

selection was conducted using the partial t-statistic at a significance level of 0.05. The model 

with the greatest explanatory power (i.e., r2) and smallest model error (i.e., mean absolute 

error, root mean squared error) for each gas and emission mechanism was selected as the 

‘best’ model and used for all subsequent analysis and upscaling.

Global lake size and productivity distribution

In order to upscale gas fluxes to global rates, it is necessary to know the worldwide joint 

distribution of lake size and production. Three size analyses are available that quantify the 
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global size distribution and abundance of lakes and impoundments (Downing et al. 2006; 

Verpoorter et al. 2014; Messager et al. 2016). These analyses were done with different 

methods and yield slightly different global surface area and size distributions. Downing et al. 

(2006) estimated the global size and abundance distribution of lakes using data on the largest 

systems and a Pareto function to model the remaining systems. This analysis covered 9 

logarithmic size categories from 0.001 to >100,000 km2 (Table S2). The Verpoorter et al. 

(2014) estimate was created by applying an automated algorithm to high resolution satellite 

imagery of lakes and impoundments, covered 8 logarithmic size categories, did not include 

the Caspian Sea, and could not resolve the smallest (< 0.002 km2) water bodies. We 

determined the total lake surface area within each of the 8 size categories by digitizing 

Figure 2b of Verpoorter et al. (2014). We then added a new category for the Caspian Sea 

using data from Downing et al. (2006) (Table S3). Messager et al. (2016) estimated the 

number and area of lakes and impoundments in 6 logarithmic size-categories (0.1 to >10,000 

km2) from their “HydroLAKES” database created by unifying several GIS databases and 

calculating areas of smaller lakes from Pareto distributions. We calculated the area of lakes < 

0.1 km2 to match the previous two distributions by subtracting the area listed for lakes from 

0.1 to >10,000 km2 in Table 1 of Messager et al. (2016) (2,672,900 km2) from their estimate 

of the total area of lakes >0.01 km2 (3,232,200 km2). We further modified the Messager et 

al. (2016) distribution by substituting the data in the largest size category (> 10,000 km2) 

with the canonical area of the largest systems reported in Table 2 of Downing et al. (2006) 

(Table S4).

We estimated the global distribution of lake productivity using satellite-based remote 

sensing measurements of chla on 80,000 lakes around the world, covering the northern and 

southern hemispheres (Sayers et al. 2015). The data divide the world’s lakes into 

productivity bins of 5 μg L−1 width (e.g., 0–5, 5–10, etc.; up to 100+). We used these data to 

calculate the proportion of global lake and impoundment surface area within each chla bin. 

We then propagated this chla distribution across the Downing et al. (2006), Verpoorter et al. 

(2014), and Messager et al. (2016) global size distributions mentioned above, except for the 

two largest size bins. We therefore assumed that each size bin would have the same chla 

distribution as derived for the world’s lakes, which is also supported by the lack of 

correlation globally between lake size and both chla and TP in our collected dataset (Figure 

S1 in SI). For the two largest size bins, however, we used literature data to determine the size 

and chla of the world’s 17 largest systems (Table S1). The joint size-productivity distribution 

is insensitive to error in individual lake chla estimates because the bins are of 5 μg L−1 

breadth. We defined the joint distribution of TP and system size by converting chla bins to 

TP bins using a regression relationship between TP and chla calculated using the global data 

of McCauley et al. (1989). The resulting joint size-productivity distributions for the 

Downing et al. (2006), Verpoorter et al. (2014), and Messager et al. (2016) lake and 

impoundment size distributions are presented in Tables S2–S4 in the SI .

Upscaling procedures

Size-Productivity Weighting (SPW) approach.—We used the size and/or productivity 

model that best explained the emission rates of the individual GHGs in our datasets to 

predict an areal emission rate and 95% confidence interval (CI) for each unique combination 
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of lake size and productivity represented in the three joint size-productivity distributions 

(i.e., Tables S2–S4). Next, we multiplied the predicted areal emission rate for each size-

productivity bin by the total surface area of the bin, then summed across productivity bins to 

find the total amount of gas emitted daily from each size class. Finally, summing daily 

emissions from all size classes and multiplying by 365 provided an annual global estimate of 

GHG emissions from lakes and impoundments according to the three different size 

distributions. These calculations were repeated using the lower and upper 95% CI of the 

predicted emission rates, resulting in a 95% CI for the emission estimate for each gas and 

lake size distribution. This 95% CI reflects uncertainty in the statistical models used to 

predict emission rates, but does not account for uncertainty in the flux estimates reported in 

the literature. Spatiotemporal variability (Tranvik et al. 2009; Bastviken et al. 2011) and the 

use of different measurement approaches (Deemer et al. 2016) can add multiple levels of 

uncertainty to flux estimates. This uncertainty is rarely quantified, however, and is not 

reflected in the 5 and 95% CI of the statistical models used in this secondary analysis.

Traditional approach.—The traditional approach to upscaling entails multiplying an 

average areal emission rate by a global lentic surface area estimate (e.g., Cole et al. 2007; 

Tranvik et al. 2009; Bastviken et al. 2011). We applied this approach to each GHG using the 

mean emission rate calculated from the collection of measurements used to derive the 

models described above and scaled that rate to the globe using each of the three global lake 

and impoundment size distributions described above (Downing et al. 2006; Verpoorter et al. 

2014; Messager et al. 2016).

Results and Discussion

Nutrients and lake size drive aquatic CO2 emissions

Out of the diverse candidate models (Table S5), the model that best explained CO2 flux 

included lake size and TP as well as their interaction (Table S6). CO2 emission rates 

decreased with size across all productivity levels. CO2 flux was positively correlated with 

TP in the smallest systems (Figure 1a) and negatively correlated with TP in medium to 

large-sized systems, but chla was not included in the best CO2 model (Table S5). TP is likely 

serving as a proxy for watershed inputs of terrestrial materials. High TP concentrations in 

smaller lakes typically reflect large watershed inputs of water and solutes (Arbuckle and 

Downing 2001) including terrestrially-sourced CO2 and/or dissolved organic carbon (DOC) 

(Palviainen et al. 2016). Indeed, others have found that TP tends to covary with DOC in 

lakes (Lapierre and del Giorgio 2012) and that direct inputs of CO2 (Maberly et al. 2013; 

Weyhenmeyer et al. 2015) from the surrounding watershed, as well as inputs of biologically- 

and photochemically-degradable DOC (Lapierre et al. 2013), drives CO2 concentration in 

lakes. Thus, the positive correlation between CO2 flux and TP that we observed in the 

smallest lakes and impoundments could merely represent the impact of nutrient and C runoff 

from the watershed on C dynamics in the smaller systems, and the negative effect of TP in 

larger systems reflects enhanced primary production in pelagic waters that tends to be more 

important in those systems. Our results support previous findings that CO2 dynamics in the 

world’s lentic waters are directly impacted by activities in their watersheds (Tranvik et al. 

2009; Regnier et al. 2013) and that future changes in watershed properties, such as climate-
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induced changes to runoff (Milly et al. 2005), can alter the C balance of the world’s lakes 

and impoundments.

Productivity-driven aquatic CH4 emissions

The only factor retained in the best models for ebullitive and total (i.e., diffusive + ebullitive) 

CH4 emission rates was a positive effect of chla (Figure 1B; Table S6). Chla was also 

positively related to the diffusive CH4 emission rate, though the strength of the effect was 

stronger for large rather than small systems. While previous studies have reported a positive 

relationship between chla and CH4 emissions for lakes (Bastviken et al. 2004) and 

impoundments (Deemer et al. 2016), this is the first study to generalize the finding to lentic 

systems across the globe. This relationship could arise through several mechanisms, 

including the correlation between chla and the oxygen-poor and C-rich environments that 

favor CH4 production and often develop in eutrophic systems. There is also evidence that the 

labile C derived from autochthonous production is more readily converted to CH4 than more 

recalcitrant allochthonous C sources (West et al. 2012). Our findings suggest that the 

eutrophication of the world’s lentic ecosystems could increase global CH4 emissions.

Productivity and lake size influence N2O emissions

In aquatic ecosystems, N2O is produced primarily by the oxidation and reduction of nitrogen 

(N) via microbial nitrification and denitrification, respectively. Nitrous oxide is one of 

several N-species that can be produced by these processes and rates of N2O production are 

determined by the overall rates of de/nitrification and the fraction of de/nitrified N converted 

to N2O (i.e., the N2O yield; Davidson et al. 2000). In this study, we found that N2O emission 

rates exhibited a positive relationship with lake size and chla (Figure 1C, Table S6). Chla is a 

proxy for algal biomass which can serve as a labile carbon source for denitrification and 

consequent N2O production (Sirivedhin and Gray 2006; McMillan et al. 2010; Chen et al. 

2012). High algal biomass can also result in hypoxia in the hypolimnia of stratified lakes, 

further stimulating denitrification, an anaerobic process. Finally, chla may serve as an 

indicator of N loading, which can stimulate both algal growth (McCauley et al. 1989) and 

denitrification (Beaulieu et al. 2011). The positive relationship between N2O emission rate 

and lake size has not been previously reported and may be related to differences in the 

relative abundance of littoral and pelagic habitats along the lake size continuum. In general, 

well oxygenated pelagic habitats will favor nitrification, the aerobic oxidation of 

ammonium, and will be relatively more abundant in large lakes, whereas carbon rich littoral 

zones will be relatively more abundant in small lakes. Systematic differences in the rates of 

de/nitrification and/or the N2O yield among these habitats could account for the effect of 

lake size on N2O emissions. For example, the denitrification N2O yield decreases as the 

relative availability of C to N increases (Miller et al. 2008); therefore, littoral habitats, which 

represent a larger area in smaller lakes, may yield less N2O than pelagic habitats, which 

dominate larger lakes. Regardless of the mechanisms driving the relationship with lake size 

and chla, our analysis illustrates that these covariates can be used to improve global 

estimates of N2O emissions from lakes and impoundments.
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Upscaling global GHG emissions with size-productivity weighting (SPW)

The global lake and impoundment size distribution chosen for upscaling impacted the global 

emission estimates for all three GHGs. With the traditional upscaling approach, the 

Verpoorter et al. (2014) distribution produced global emission rates ~22% higher for each 

gas than when using the Downing et al. 2006 distribution, which in turn produced rates 

~35% higher than when using the Messager et al. (2016) distribution (Table 1). This pattern 

is consistent with the total surface areas predicted by each distribution. We found a similar 

pattern when comparing the SPW approach across the three size distributions, except for 

CO2 emissions. Despite the fact that Verpoorter et al. (2014) reports ~22% more total lake 

and impoundment area than Downing et al. (2006), there is only a 4% difference in the 

global CO2 emissions estimated by SPW from these two distributions. This is because the 

Verpoorter et al. (2014) distribution estimates less surface area in the smallest class (<0.01 

km2) than the Downing et al. (2006) distribution, and these small systems support the 

highest CO2 emission rates (Figure 1A). The surface area discrepancy in the small size bins 

between Verpoorter et al. (2014) and the other distributions made more of a difference in the 

CH4 and N2O emission estimates, with the Verpoorter et al. (2014) model reporting 

significant emission peaks around the 1 km2 size bin that are not present in the other models 

(Figures 2, S2 and S3). Ultimately, all three distributions have their limitations and 

criticisms (Verpoorter et al., 2014; Messager et al., 2016; Feng et al. 2016); therefore, as the 

Downing et al. (2006) size distribution provides estimates falling between the two other 

distributions, we used it in the following sections for comparison between our upscaling 

approaches and with literature values that also used the Downing et al. (2006) distribution.

We found differing trends for each GHG when comparing the traditional upscaling approach 

to the SPW approach (Table 1). The traditional approach, when applied to our data, 

produced annual emissions ~50 and ~80 % higher than the SPW approach for CO2 and CH4, 

respectively. Even the upper 95% CI of the SPW approach was lower than the corresponding 

traditional approach estimate for these two gases, except for diffusive emission of CH4 

(Table 1). For N2O, the SPW approach predicted ~35% higher annual emissions than the 

traditional approach. Differences between the SPW and traditional approaches can be 

attributed to the effect of lake size and productivity on GHG emission rates. These 

relationships are explicitly incorporated into the SPW approach, whereas they are ignored by 

traditional published calculations. Consequently, we would expect that a simple 

multiplication of an average emission rate by global lake and impoundment area (i.e., the 

traditional approach) would yield an inaccurate GHG emission estimate unless the systems 

sampled to calculate the average emission rate exhibited a size and productivity distribution 

identical to that of the true distribution that exists worldwide.

Lack of a representative mean emission rate is likely what caused previous global estimates 

to diverge from that found using the SPW approach. Tranvik et al.’s (2009) estimate of 810 

Tg y−1 CO2 is 62% higher than our mean CO2 estimate, suggesting that lakes in their dataset 

were smaller and more productive than those in our global dataset. Soued et al.’s (2015) 

N2O emission estimate of 0.63 Tg y−1 is nearly twice the mean rate we calculated, 

suggesting that the lakes in their dataset must have been larger and more productive than 

those in our global dataset. Contrary to the other gases, our SPW approach resulted in a 
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mean total CH4 emission rate double that of the literature-derived CH4 emission rate of 69 

Tg y−1 from Bastviken et al. (2011), although our lower 95% CI estimate is equivalent to 

their estimate. The difference in estimates thus suggests that systems included in the 

Bastviken et al. (2011) emission rate were much less productive than those in our global 

dataset. Our new estimate of CH4 emissions from lakes exacerbates the discrepancy between 

top-down estimates of natural global CH4 emissions, derived from atmospheric sampling, 

and bottom-up estimates that are derived from in situ flux measurements, with bottom-up 

exceeding top-down estimates by ~60% (Saunois et al. 2016). Saunois et al. (2016) suggests 

that much of the discrepancy could be attributed to uncertainty in the areal extent of inland 

waters, as demonstrated by the difference in SPW emission estimates from the three lake-

size distribution models (Table 2). Furthermore, difficulty in differentiating wetlands from 

small/shallow lakes may lead to those systems being double counted in bottom-up estimates. 

Finally, the accuracy of reported CH4 emission rates for lakes is sensitive to how ebullition, 

the dominant CH4 emission pathway in many systems, is measured and integrated into a 

system-scale estimate. System-scale ebullition rates can be greatly overestimated if 

investigators focus on emission hot spots without accounting for lake areas with low 

ebullition rates. This highlights a major limitation of using the traditional approach for 

global estimates in which point measurements are merely averaged and scaled upwards. In 

general, CO2 and CH4 fluxes can vary by a few orders of magnitude with size or 

productivity (Figure 1) so that a few divergent fluxes could easily skew a predicted global 

rate using the traditional approach (Table 1). Upscaling emissions based on predictors of 

GHG emission rates, as we did with the SPW approach, should result in a more accurate 

estimate of global fluxes and one that can be upscaled to diverse regions with divergent lake 

size and productivity distributions.

Our analysis implies an evolving view of the “active pipe” model (sensu Cole et al. 2007), 

which describes how lakes and impoundments store terrestrially-carbon in sediments and 

emit CO2 to the atmosphere (Figure 3). As traditional approaches used improved databases 

for the calculation of CO2 emissions, the global role of lakes was amplified substantially 

(i.e., Cole et al 2007 vs Tranvik et al. 2009). Application of the SPW approach used here 

modulates the estimated role in emissions from 0.81 Pg y−1 (Tranvik et al. 2009) to 0.5 Pg y
−1 when weighting global estimates by the size- and productivity-distributions of the world’s 

lentic systems. Although the difference between the SPW estimate and the estimate of 

Tranvik et al (2009) seems small, it is 1.5-times the amount of C buried annually by the 

world’s oceans and ⅓ of the C delivered annually to the world’s oceans from the continents. 

Accounting for important drivers of GHG fluxes can make a substantial difference in the 

evaluation of the role of lakes and impoundments in global GHG flux and atmospheric 

effects.

The relative contribution of different lake size classes to GHG emissions differed among the 

three gases. The smaller size classes had greatest global CO2 emissions, which can be 

attributed to the large cumulative surface area of small systems and the negative relationship 

between CO2 emission rates and lake size (Figures 1A and 2). Areal CH4 emissions were 

predicted by chla, which has a similar distribution across most lake sizes (Figure S1), 

therefore global CH4 emissions scale with the total surface area in each size class (Figure 

2B). Areal N2O emission rates, on the other hand, increased with system size, so global N2O 

DelSontro et al. Page 9

Limnol Oceanogr Lett. Author manuscript; available in PMC 2020 March 26.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



emissions were positively related to productivity and size, which explains why the SPW 

approach produced a higher emission estimate than the traditional approach for that GHG. 

Finally, in all GHG emission distributions, the size bin in which the US Great Lakes fall is 

easily visible by the spike in emissions in the second to largest size class (Figure 2). 

Previous studies have reported that GHG emissions are greatest for large systems (Alin and 

Johnson 2007) or small ones (Holgerson and Raymond 2016), yet the nature of these 

relationships had not been heretofore thoroughly resolved. Our analysis shows that, in terms 

of GHG emissions, the relative importance of large and small aquatic systems depends upon 

which gas is being considered.

Global C emissions from lakes and impoundments and their atmospheric potential

We combined the traditional and SPW emission results of the three GHGs, as well as those 

from the literature, into total CO2-equivalent (CO2eq) emissions (using 100-yr timeframes 

for CH4 and N2O conversions, including indirect effects; Myhre et al. 2013) in order to 

evaluate the role that lakes and impoundments play in the global C cycle and their potential 

impact on atmosphere and climate. While the traditional approach suggested a doubling of 

the literature value for aquatic CO2eq emissions, global CO2eq emissions based on our SPW 

approach were remarkably similar to the previously reported estimates (Table 2). The 

combined literature total of 1.74 Pg C y−1 falls within the 95% CI range of the SPW 

estimate for each lake size distribution, but is closest to (just 10% lower than) the Downing 

et al. (2006) estimate of 1.92 Pg C y−1 (Table 2). Moreover, the 95% CI for all three lake 

size distributions overlap suggesting (1) that we are close to constraining the true aquatic C 

emission value, and (2) that using the middle estimate found with the Downing et al. (2006) 

distribution is justified for comparative purposes.

Interestingly, even though the upscaling estimates using the Verpoorter et al. (2014) and 

Messager et al. (2016) distributions were somewhat higher and lower than the Downing et 

al. (2006) estimate, respectively, all three distributions revealed that CH4 has the greatest 

atmospheric influence of the GHGs being emitted from lakes and impoundments. On 

average, CH4 accounts for 75% of total CO2eq emissions, while CO2 and N2O account for 

23% and 2%, respectively (Table 2). Despite CO2 being emitted from lakes and 

impoundments at rates about four times higher than CH4 (Table 1), the enhanced climate 

change potential of CH4 implies that it is responsible for three times more of the radiative 

forcing by lentic systems globally than CO2. Although N2O is about 300-times more potent 

in the atmosphere than CO2 (on a 100-yr time scale), aquatic N2O emissions from lakes and 

impoundments appear to have a small effect.

Ultimately, we found a global CO2eq emission estimate similar to that reported in the 

literature, but the traditional approach used to calculate those literature values misattributed 

the majority of the CO2eq emission to CO2. By using an approach based on the drivers of 

GHG emission rates, we found that CH4 may be the dominant climate change-related gas 

being emitted from lentic systems. Similar results were indicated in a recent global synthesis 

of emissions of all three GHGs from impoundments (Deemer et al. 2016) and together these 

findings support the conclusion that the productivity of lakes and impoundments plays an 

important role in the alteration of Earth’s climate. However, because productivity enhances 
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GHG emissions but the global chla distribution used in our analysis did not exceed 100 μg L
−1 (Tables S2–S4), our estimate of the global role of lakes and impoundments is 

conservative. Furthermore, as a result of ongoing global change, the warming of lakes 

globally has already been observed (O’Reilly et al. 2015), as has the continued 

eutrophication of inland waters, despite concerted efforts to thwart it (Smith et al. 2014). If 

eutrophication leads to shifts in the GHG balance of lentic systems towards the more potent 

CH4, then we will consequently see an increase in the impact that these systems have on the 

climate.

To estimate the potential impact of continued eutrophication on the GHG emissions of lakes 

and impoundments, we incremented our joint size-chla distributions (Tables S2–S4) by 1, 5 

and 10 μg L−1 and calculated the CO2eq emission of these simulated conditions using the 

SPW models. This analysis suggests that these moderate levels of enhanced eutrophication 

could increase the atmospheric effect of GHGs emitted from lakes and impoundments by 5, 

26 or 42 %, respectively (Table S7). This increased emission would be equivalent to around 

1 Pg CO2eq y−1 or about 13% of the effect of the current global emission of CO2 by the 

combustion of fossil fuels, and about equal to the excess CO2 emissions to the atmosphere 

from global land use change (Ciais et al. 2013).

Further improvement of aquatic C emission upscaling

The accuracy of our predicted GHG emissions from lentic systems is limited in part by the 

availability of data on the global distribution of key limnological variables. For example, 

while the Sayers et al. (2015) chla distribution represents an important advancement in the 

mapping of limnological variables at the global scale, the distribution has a maximum chla 

value of 100 ug L−1, whereas GHG flux rates have been reported from hypereutrophic 

systems with chla concentrations in excess of 700 μg L−1 (Figure S1). Therefore, we are 

likely underestimating GHG emissions because the most eutrophic lentic systems are not 

accounted for. This bias could be significant for some regions, such as the 1.1 million km2 

Southern Plains ecoregion of the United States where 25% of the lakes have chla in excess 

of 100 ug L−1 (USEPA 2017). This effect is also likely to be more important for N2O and 

CH4 than CO2 emissions because chla was a stronger covariable for those GHGs. In this 

study, we estimated TP from the Sayers et al. (2015) chla distribution, thereby allowing us to 

upscale CO2 emissions using the CO2~TP model, which explained more of the variation in 

CO2 emission rates than the CO2~chla model. However, CO2 emission estimates could be 

improved by better global mapping of TP in lakes and impoundments. Another source of 

variability in modeled global emission estimates arises because of the disagreement among 

published global lake and impoundment distributions. We used three distributions for our 

analyses, but others can be found in the literature (e.g., Feng et al. 2016). Further, these 

distributions tally only permanently wetted environments and ignore the likely large 

influence of seasonally flooded ecosystems. Until a consensus is reached on the global area 

and size distribution of lakes and impoundments, the global lentic GHG emission estimate 

will remain sensitive to the chosen surface area distribution model.

The accuracy of the emission estimate is also limited by methodological constraints, 

particularly for CH4. Ebullition can be the dominant CH4 emission pathway, especially in 
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smaller systems, yet our ability to accurately measure this flux is hampered by its 

spatiotemporal variability and difficulty in assessing system-wide estimates of it (e.g., 

Beaulieu et al. 2016). Much work is still needed to sufficiently address this issue. The 

geographic distribution and temporal resolution of reported GHG emission rates also limits 

the representativeness of global annual estimates. A substantial fraction of the global data is 

from studies in the boreal biome, and more measurements are needed across a range of lake 

sizes and trophic levels from poorly-studied regions of the world. In addition, the global flux 

models we found may not be the best ones for lakes or impoundments on a regional basis. 

For example, differing emission drivers have been found for CO2 emissions from lakes 

across various regions of Canada (Lapierre and del Giorgio 2012) and the United States 

(Lapierre et al. 2017). Another important gap is the relative lack of data that represent annual 

emissions (cf., Jones et al. 2016). Most available data in our analysis represent the open 

water/summer season and do not include large emissions that can occur during ice-out 

(Michmerhuizen et al. 1996; Striegl et al. 2001; Karlsson et al. 2013) or turnover (Kankaala 

et al. 2007; Schubert et al. 2012; Beaulieu et al. 2015). For example, the ventilation of 

accumulated gases during ice-out constitutes 18% and 27% of annual emissions for CO2 and 

CH4, respectively (Denfeld et al. In revision). While not directly considered here, our 

approach for scaling daily rates to annual rates may somewhat compensate for this. As 

previous publications have done, we multiplied daily rates by 365 to arrive at annual rates, 

which implicitly assumes that emissions continue to occur during periods of ice cover. While 

this assumption is likely inaccurate, ice-out emissions represent GHGs that were produced 

and stored during periods of ice cover; therefore, our assumption that emission occurs year-

round may compensate for the poor coverage of ice-out emission in the literature. 

Nevertheless, improved temporal resolution of measurement campaigns will reduce 

uncertainty in upscaled emission estimates. Finally, predictive models may be further 

improved through the inclusion of other environmental covariables that predict GHG 

emission rates from lakes and impoundments at the global scale. For example, global maps 

of climate, land use, and soil variables are available and could be used for upscaling if 

empirical relationships with GHG emissions could be demonstrated.

Conclusions

Here we offer the first joint global analyses of all GHGs emitted from both lakes and 

impoundments. We found that lake size and productivity are important drivers of emission 

rates and used these drivers in creating new, global estimates of GHG fluxes from lakes and 

impoundments. This analysis indicates that lentic systems are important sources of GHGs 

driving climate change, but concludes that CH4 emissions may be of disproportionate 

importance due to their link with lake/impoundment productivity and the high potency of 

CH4 as a GHG. Although we expect improvements in a global understanding as data 

availability evolves, we suggest that linking emission rates with important drivers is a path to 

a more accurate understanding of the global GHG role of lentic waters. Our study shows that 

GHG emissions from lakes and impoundments are equivalent to ~20% of global fossil fuel 

CO2 emission (9.3 Pg C-CO2 y-1; Le Quéré et al. 2016) and that emissions will rise even 

further with the continued eutrophication of Earth’s lentic ecosystems.
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Scientific Significance Statement

Releases of greenhouse gases (GHG; carbon dioxide, methane and nitrous oxide) into the 

atmosphere drive global climate change. Knowing the amount of GHGs released is 

important for predicting how much and how fast the climate will change. GHGs are 

released from natural and constructed lakes but current knowledge ignores differences in 

emission rates from lakes of differing size and productivity. Our challenge was to 

estimate the effects of lake size and productivity on GHG emission and combine this with 

global lake size and productivity distributions to calculate accurate annual GHG 

emissions. We found that past estimates have been inaccurate and that the effects of 

aquatic GHG emissions on the atmosphere is nearly 20% that of fossil fuel emissions, but 

will increase as waters become more productive.
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Figure 1. 
Size-productivity weighted (SPW) models for GHG emissions from lakes and 

impoundments. (A) CO2 emissions best explained by surface area (SA), trophic status via 

TP, and the interaction between the two. (B) A linear relationship with chla, also a trophic 

state proxy, is the best model for total CH4. (C) SA and chla (but no interaction) best explain 

N2O emissions.
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Figure 2. 
Annual emissions (Tg Gas y−1) and total surface area (km2) per lake size bin according to 

the Downing et al. (2006) distribution using the size-productivity weighted (SPW) approach 

for (A) CO2, (B) total CH4, and (C) N2O.
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Figure 3. 
Evolving view of the ‘active pipe’ model first proposed by Cole et al. (2007). Values 

represent annual transport of C (Pg) and emissions to atmosphere are for lakes and 

impoundments.
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Table 1.

Global annual GHG gas emissions according to the traditional and size-productivity weighted (SPW) 

approaches and three different global lake and impoundment size distributions.

Lake Size Distribution

Gas Data source Upscaling approach
1
–

†
emission mechanism

Downing et al. 
2006

Verpoorter et al. 
2014

Messager et al. 
2016

CO2 (Tg CO2-C y−1)

Tranvik et al. (2009) Traditional 810 -- --

This work
Traditional 740 899 542

SPW 503 (468–541) 525 (491–562) 244 (227–262)

CH4 (Tg CH4-C y−1)

Bastviken et al. 
(2011)

Traditional - Diffusion 7 -- --

Traditional – Ebullition 41 -- --

Traditional - Total 69 -- --

This work

Traditional - Diffusion 43 52 32

Traditional - Ebullition 140 170 102

Traditional - Total 204 248 149

SWP - Diffusion 28 (17–48) 34 (21–57) 18 (11–13)

SWP - Ebullition 67 (39–115) 84 (49–144) 47 (28–81)

SPW - Total 112 (71–177) 139 (89–221) 78 (50–124)

N2O (Tg N2O-N y−1)

Soued et al. (2015) Traditional 0.63 -- --

This work
Traditional 0.22 0.27 0.16

SPW 0.3 (0.19–0.45) 0.38 (0.24–0.55) 0.26 (0.16–0.38)

1
SPW estimates include lower and upper 95% confidence intervals in parentheses.

†
If not reported, emission mechanism is diffusion.
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Table 2.

Global carbon emissions (Pg C-CO2eq y−1 for each GHG) from lakes and impoundments and individual 

contributions to total radiative forcing from aquatic water bodies

Lake Size Distribution
Total Area (x 

106 km2)
Literature 

Total
a

Traditional 
Approach SWP (95% CI)

b CO2
c
 (%) CH4

c
 (%) N2O

c
 (%)

Downing et al. 2006 4.42 1.74 3.29 1.92 (1.37–2.79) 26.1 71.8 2.0

Verpoorter et al. 2014 5.36 -- 4 2.30 (1.62–3.36) 22.9 75.0 2.1

Messager et al. 2016 3.23 -- 2.41 1.25 (0.86–1.84) 19.6 77.8 2.6

a
Sum of estimates for CO2 from Tranvik et al. (2009), CH4 from Bastviken et al. (2011), and N2O from Soued et al. (2016) (also listed in Table 1) 

and converted to CO2-equivalents.

b
Size-productivity weighted (SPW) estimate with lower and upper 95% confidence intervals (CI) in parentheses.

c
Individual GHG contributions based on SPW approach estimates.
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