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Background: The polyproline II helix (PPIIH) is an extended
protein left-handed secondary structure that usually but not
necessarily involves prolines. Short PPIIHs are frequently,
but not exclusively, found in disordered protein regions,
where they may interact with peptide-binding domains.
However, no readily usable software is available to
predict this state. Results: We developed PPIIPRED to predict
polyproline II helix secondary structure from protein
sequences, using bidirectional recurrent neural networks
trained on known three-dimensional structures with dihedral
angle filtering. The performance of the method was evaluated in
an external validation set. In addition to proline, PPIIPRED
favours amino acids whose side chains extend from the
backbone (Leu, Met, Lys, Arg, Glu, Gln), as well as Ala and Val.
Utility for individual residue predictions is restricted by the
rarity of the PPIIH feature compared to structurally common
features. Conclusion: The software, available at http://bioware.
ucd.ie/PPIIPRED, is useful in large-scale studies, such as
evolutionary analyses of PPIIH, or computationally reducing
large datasets of candidate binding peptides for further
experimental validation.
1. Introduction
Polyproline II helices (PPIIHs) are an important class of secondary
structure which makes up approximately 2% of the protein
structure database (PDB) and are enriched in protein binding
regions [1,2]. PPIIH conformations are adopted by peptides
when binding to SH3, WW, EVH1, GYF, UEV and profilin
domains [3,4]. They play roles in a wide variety of contexts [5].
The absence of hydrogen bonding interactions that characterize
alpha helices has led to suggestions that water molecule
interactions may play a role in stabilizing the helix. However,
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the recent determination of a polyproline II helix structure without water molecules suggests that

neighbouring amide group interactions may be sufficient to allow helix formation [6]. While proline is
the key residue for PPIIH formation, other residues may impact on the stability of the helix [7] and
PPIIH may be seen in sequences lacking proline [8].

While there is a database annotating experimentally defined structures of PPIIH regions [9] and
several methods for assigning PPIIH regions to protein structures [10–13], there is no publicly
available tool for the prediction of PPIIH based on protein sequence.

Given that many PPIIHs occur in disordered protein regions which are under-represented in
structural databases, such a tool would be valuable. A neural network approach using windows of
7 and 13 residues was able to predict PPIIH secondary structure with about 75% accuracy in a dataset
with redundancy elimination of sequences with more than 65% identity [14]. A support vector
machine implementation using a 25% identity cut-off had an accuracy of 70% [15]. However, neither
of these methods is readily available for use, and to our knowledge, no more recent methods have
been developed to predict PPII helices. Accordingly, we set out to develop a predictor.

Here, we set out to develop a tool that could predict PPIIH from protein sequences, using
bidirectional recurrent neural networks (BRNN). These have previously been applied successfully
to predicting protein secondary structure [16–18] and other structural properties of proteins [19],
and they do not require prior definition of a window size for analysis. This modelling approach
has a natural representation of the peptide as a sequence, and the main advantage over other
neural network architectures is the ability of distant regions of protein sequence to influence the
prediction of another region. We developed a predictor, PPIIPRED, assessed its accuracy, and
investigated its utility in interpreting sequence properties. PPIIPRED is available at http://bioware.
ucd.ie/PPIIPRED.
2. Methods
The predictor was implemented using a bidirectional recurrent neural network (BRNN) architecture [20].
We trained five separate models on different partitions between the training set and validation set (which
is used to assess training progression but not for tuning the model parameters). These were then
ensembled to predict PPII instances in an independent test dataset. Performance was evaluated by
measuring the true positive rate and false-positive rate (FPR). Receiver operating characteristic (ROC)
curves were then used to plot the performance at different cut-offs ranging from 0 to 1. The count of
true positives (TPs) versus the log10 of the false positives (FPs) was also visualized to evaluate
performance, since the total number of FPs is much larger than TPs. See electronic supplementary
material for more details.
2.1. Training and test datasets
Protein structures were obtained from the PDB and PISCES databases [21–23]. PISCES was used to
extract redundancy reduced PDB stuctures (percentage identity �30%) and filtered for high-quality
structures only (resolution ≤2.5, R-value ≤0.25). We used the DSSP program [24] to assign dihedral
angles, and removed sequences for which DSSP does not produce an output due to missing entries or
formatting errors. We defined the set of PPIIHs, applying filtering rules used in the literature [1]. We
investigated both ‘strict’ and ‘less strict’ definitions. The strict criteria were
trans filtering

�145 , aC� 70

dihedral filtering

�180 , C , �160

90 , C , 180

and �105 , F , �45

regularization filtering
Pn�1

k¼1 dk,kþ1

n
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Table 1. Training and test dataset compositions, strict (with non-strict in parentheses).

sequences PPIIH regions PPIIH residues non-PPIIH residues PPIIH residues

total dataset 9333 (10 211) 15 112 (25 755) 51 337 (90 249) 2 133 861 (2 237 843) 2.3% (3.9%)

training dataset 8387 (9169) 13 645 (23 245) 46 382 (81 440) 1 880 279 (2 019 181) 2.4% (3.9%)

rest dataset 945 (1040) 1465 (2504) 4948 (8789) 201 969 (218 201) 2.4% (3.9%)
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where

dk�1,k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Ci�1 �Ci)

2 þ (Fi �Fiþ1)
2

q
:

The less strict definition was identical to that for the strict definition, except that the requirement
of −105 <Φ <−45 was removed. Thus, dihedral angle filtering constructed a set of known PPIIH
structures, using either the ‘strict’ or ‘less strict’ criteria. Each residue of every sequence in the datasets
was labelled as either a PPIIH residue or a non-PPIIH residue (table 1). The number of sequences in
the dataset used in training the non-strict definition is larger, we require that all sequences have at
least one PPIIH region (three or more residues) for inclusion.

In addition to the amino acid sequences under investigation, the BRNN also considered alignments of
related sequences to that sequence, and derived statistics of each residue of the protein sequence.
Multiple sequence alignments (MSA) were extracted from the NR database (uniref 90) available in
March 2014. The alignments were generated by three runs of PSI-BLAST [25] with parameter e = 10− 3

(expectation of a random hit).
IUPRED was used to calculate a ‘long’ disorder prediction score [26] for each residue, and espritz [27]

was used to calculate the ‘NMR’ disorder score. We included these two disorder predictions for every
residue as input. Predicted disorder may provide information not only about the protein structural
state, but also about the context of the residue, since PPII helices are enriched in disordered regions [28].

Thus, the inputs to the BRNN for each protein sequence were the sequence itself, the length of the
sequence, the sequence alignment, and for each residue the IUPRED (long) disorder prediction score,
the espritz-NMR disorder score, and an input representing an explicit indication of the charge of the
residue (1 for R or K, 0 or − 1 for D or E). Each residue is labelled as either PPIIH or non-PPIIH.
PPIIPRED predicts a score between 0 and 1 for each residue indicating the propensity for PPIIH
formation. High scores indicate a higher probability of PPIIH formation.

The PPIIH dataset was split into training and test datasets, where every 10th sequence was assigned
to the independent test dataset, as shown in table 1. All the tests reported in this paper were run in
fivefold cross-validation, where assignment to each fold was random. The fivefold datasets were of
roughly equal sizes. The training and test datasets are available in electronic supplementary material.
3. Algorithms
We used a BRNN to learn the mapping between inputs I and outputsO (protein sequence to a PPIIH score
per residue). BRNNs have been used successfully to predict protein secondary structure [16], binding within
disorderedprotein regions [29], bioactivepeptides [30] and short linear protein binding regions [31]. Theyhave
the advantage over standard feed-forward neural networks that they can automatically find the optimal
context on which to base a prediction, i.e. the number of residues that are informative to determine a
property. Because of their recursive nature, BRNNs also have a relatively low number of free parameters
compared to other neural networks with similar input size. See Baldi et al. [20] for a detailed explanation of
the BRNN model, and electronic supplementary material, figure S1 which illustrates the topology.

These networks take the form

o j ¼ N (O) i j, h(F)j , h(B)j

� �

h(F)j ¼ N (F) i j, h(F)j�1

� �

h(B)j ¼ N (B) i j, h(B)jþ1

� �

and j ¼ 1, . . . , N,
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where ij (respectively, oj) is the input (respectively, output) of the network in position j, and h(F)j and h(B)j

are forward and backward chains of hidden vectors with h(F)0 ¼ h(B)Nþ1 ¼ 0. We parametrize the output
update, forward update and backward update functions (respectively, N (O), N (F) and N (B)) using three
two-layered feed-forward neural networks.

3.1. Encoding sequence and disorder information
The input ij associated with the jth residue contains protein sequence information and predicted disorder
information

i j ¼ (i(E)j , i(T)j ),

where, assuming that e units are devoted to sequence, and t to disorder information

i(E)j ¼ (i(E)j,1 , . . . , i
(E)
j,e )

and

i(T)j ¼ (i(T)j,1 , i
(T)
j,t ):

Hence ij contains a total of e + t components.
We used e = 22: beside the 20 standard amino acids, unknown or non-standard amino acids were

represented as a vector of zeroes, while the 21st input encodes the length of the sequence, and the
22nd input encodes the charge.

In a second set of tests, we used e = 43 where, alongside the previous 22 inputs we had a further 21
representing the frequency profile of the 20 amino acids in the MSA for the protein. The 21st input
represented the frequency of gaps, which provides information about the conservation of a site, and
proved helpful in preliminary tests.

In both cases, we used t = 2 for representing disorder information as predicted by IUPRED and
espritz. Hence the total number of inputs for a given residue is e + t = 24 in the first representation
(sequence and disorder) and e + t = 45 in the second representation (sequence, MSA and disorder). The
output is the predicted probability of the j-th residue belonging to a PPIIH.

3.2. Training, Ensembling
Training was conducted by fivefold cross-validation, i.e. five sets of training were performed in which a
different fifth of the overall set was reserved for validation purposes, i.e. to monitor the progress of the
training on data not used for tuning the parameters of the models. The training set was used to learn the
free parameters of the network by stochastic gradient descent. Two thousand passes through the entire
training set (epochs) of training were performed for each fold, with 1920 weight updates per epoch, and
the learning rate (which controls how fast the algorithm converges), starting from an initial value of
0.005, was halved whenever we did not observe a reduction of the error for more than 1000 epochs.

By the end of training, the five models of the network had errors of less 4.1% on the validation set,
indicating that the networks had converged to find good local optima. We averaged the results on the
five validation sets to get the overall fivefold cross-validation result. Alongside fivefold cross-
validation results, we also tested the ensemble of all five models on the independent test set which
we had set aside, to get an unbiased estimate of its performance. This ensemble is the final
implementation of PPIIPRED.
4. Results
4.1. Neural network outperforms a proline window
Since prolines dominate many but not all PPII helices, wewere interested in whether the machine learning
approach was clearly outperforming a much simpler ‘prolinewindow’method that assesses the frequency
of prolines in a fixed window around each residue as a direct prediction of the PPIIH state. We applied this
using a sliding window method with variable window sizes. The ROC curve in figure 1a shows the
performance of the ‘proline window’ predictions. Since the rarity of PPII residues results in a typical
excess of false positives over true positives at many predictor thresholds, we also investigated plots of
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Figure 1. Predictive performance of PPIIPRED. Solid Line: PPIIPRED predictions. Points: predictive power of the proportion of proline
alone in windows defined on a residue including between 0 and 9 residues to either side (i.e. windows of 1 to 19 in size); dashed
line: prediction based on disorder prediction alone (IUPRED); black: random expectation. The point on the PPIIPRED curve
corresponding to a cut-off of 0.2 is highlighted to enable cross-referencing between the images. (a) ROC curve showing
predictive performance on the test dataset at various cut-offs. (b) True positives versus log10 false positives.
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true positive versus log FPR (figure 1b). Although it may appear that the proline windows of size one, two
or three are reasonable classifiers, the significant imbalance between TPs and true negatives (TNs) will
result in a large number of false predictions when using this approach (figure 1b).

PPIIHs share some properties with disordered regions of proteins, and are often found embedded
within them. Proline can interrupt alpha-helical or beta-sheet regions, and thus contribute to protein
disorder. We were interested to see whether a disorder scoring method could alone provide a
reasonable predictive power of the tendency to form PPIIHs. However, one standard method of
disorder prediction, IUPRED, had only very weak predictive power, only modestly exceeding random
predictions (figure 1).

The PPIIH predictor trained on the strict dataset and including PSI-BLAST alignments (from here on
termed PPIIPRED) performed very substantially better than the disorder or proline windowing
methodologies (figure 1), with an area under curve (AUC) of 0.91. At a cut-off of 0.5, it had a sensitivity
of 0.86, an Mathews correlation coefficient (MCC) of 0.26 and an accuracy (Q) of 82.3. MCC and accuracy
were higher at a cut-off of 0.2 (table 2). This performance compares favourably with previous methods of
[14,15], although it must be pointed out that these predictors were each evaluated on different validation
sets, and therefore no direct comparison is possible as their software is not made available. We noted that
the strict definition of PPIIH, despite having a smaller training set of true positives, performed somewhat
better than the network trained on a dataset with a less strict definition of PPIIH (table 2). We focused all
further attention on the networks trained using a stricter definition of PPIIH.
4.2. Alignments improve predictive power
We explored the performance of the method when the alignment data is absent. While sequences alone
do have reasonable predictive power, addition of alignments improves the predictions: a sensitivity of
0.23 without alignment rises to 0.38 when the alignments are included (table 2). While alignments
generated on the fly by PSI-BLAST offer flexibility of analysis, in some cases better alignment
accuracy can be obtained by using pre-computed alignment datasets. We wanted to check that
PPIIPRED would be relatively robust to alternative means of calculating alignments. We took a set of
pre-computed alignments generated for each sequence using the GOPHER approach [32]. These pre-
computed alignments performed well when substituted for the PSI-BLAST alignments in the
assessment of PPIIPRED, with an accuracy of 96.7 compared to 97.2 (table 2), suggesting that the
approach is relatively insensitive to the particular alignment strategy adopted. However, for users
studying a disordered protein region, which are often difficult to align well, it is important to check
by eye that the alignment is believable, otherwise the conservation information will only mislead the



Table 2. Performance statistics with threshold of 0.2. See electronic supplementary material for details on the calculation of
evaluation metrics. (TPs, true positives; FNs, false negatives; TNs, true negatives; FPs, false positives; Sens, sensitivity; Spec,
specificity; MCC, Mathews correlation coefficient, Acc, accuracy.)

training dataset and alignment TPs FNs TNs FPs Sens Spec MCC Acc

strict PPIIPRED (no alignment) 1135 3720 1 99 367 2170 0.23 0.34 0.27 97.15

strict PPIIPRED (PSI-Blast alignment) 1828 3027 1 98 759 2778 0.38 0.40 0.37 97.19

non-strict PPIIPRED (no alignment) 2429 6210 2 04 020 4765 0.28 0.34 0.28 94.95

non-strict PPIIPRED (PSI-Blast alignment) 3678 4961 2 02 741 6044 0.43 0.38 0.38 94.94

PPIIPRED (Gopher alignment) 1418 2523 1 52 831 2692 0.36 0.35 0.34 96.73

Table 3. Top-scoring regions of four or more residues.

protein role sequence mean PPIIPRED score

TM175 transmembrane protein 175 PPPA 0.95

CCD50 coiled-coil domain-containing protein 50 PPPPI 0.92

RB retinoblastoma-associated protein PPAPPPPPPP 0.92

PALM Paralemmin-1 EPAP 0.92

LKAM1 protein LKAAEAR1 PPPA 0.92

PP12C protein phosphatase 1 regulatory subunit 12C PPPAE 0.91

STIP1 stress-induced-phosphoprotein 1 TPPPPPPPK 0.91

WASL neural Wiskott-Aldrich syndrome protein PPPPP 0.91

FNBP4 formin-binding protein 4 PPPPPPPPPP 0.91

MCR mineralocorticoid receptor PPPPPPPP 0.91
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predictor, and a prediction performed without an alignment may be more accurate. Both options are
available to users on the website. The user may submit multiple sequences in FASTA format within a
single file, allowing a large number of predictions to be returned within one submission.

The output provides the user with numeric output of PPIIPRED scores for each residue of the user’s
submitted proteins. In addition, for individually submitted sequences, there is a graphic output
(electronic supplementary material, figure S3) which allows the user to easily compare the findings of
PPIIPRED against the backdrop of the predicted disorder in the sequence, using the IUPRED predictor.

4.3. High-ranking regions among human proteins
We used PPIIPRED to predict the highest scoring regions in the human proteome (cut-off = 0.5 and region
length >3). As expected, the top-scoring results are dominated by proline-rich regions (table 3). However,
these highest scores cannot be explained by proline composition alone, since PPPAE and PPPPP have
almost identical scores. The score provided is dependent also on sequence context and evolutionary
conservation, so that, for example, different scores were observed for PPPA in TM175 and LKAM1.

We were interested to explore higher confidence predicted PPII helices that were not markedly
dominated by proline. While PPIIH has been proposed not to propagate beyond one sequential non-
proline residue [33], we noted that one of the highest scoring proposed helices (table 3) terminates in
Ala-Glu. Table 4 shows the top-scoring regions where proline is less than 40% of the motif.

Among this set of top-ranking peptides in tables 1–3, there are representations of hydrophobic (A,L,V,
I,M), charged (E,K,R,D) and small polar (S,T) amino acids. By contrast, there is no representation of
amino acids with bulky side-chain rings (H,F,Y,W), which may disfavour PPIIH formation. Table 5
shows top-scoring proline-free predictions. It will be of interest to experimentally examine the
conformations of some of these proline-free predicted helices, particularly in the context of their larger
containing proteins and protein complexes, to determine if the predictions at this edge of the comfort
zone of the method have good predictive utility.



Table 4. Top-scoring regions with less than 40%.

protein role sequence mean PPIIPRED score

FGFR3 fibroblast growth factor receptor 3 MDKP 0.8728

CKAP2 cytoskeleton-associated protein 2 TPAV 0.868

TRML1 trem-like transcript 1 protein SLPA 0.8672

JIP2 C-jun interacting protein 2 EAPA 0.8667

PSD2 PH and SEC7 domain-containing protein 2 RPLL 0.8614

SMAL1 SWI/SNF-related matrix-associated regulator of A-like protein 1 SLPLT 0.8605

SNX14 sorting nexin-14 EPRS 0.8604

FBXL6 F-box/LRR-repeat protein 6 AAPA 0.8546

PLCB4 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-4 ALPS 0.8463

NIP7 60S ribosome subunit biogenesis protein NIP7 homologue RPLT 0.8456

Table 5. Top-scoring regions lacking proline.

protein role sequence mean PPIIPRED score

MDFIC MyoD family inhibitor domain-containing protein EALA 0.7965

RAI1 retinoic acid-induced protein 1 EEAA 0.7522

CTND2 Catenin delta-2 KKKK 0.7486

MACF1 microtubule-actin cross-linking factor 1 RAAS 0.706

KIF24 kinesin-like protein KIF24 RAAL 0.6989

NOLC1 nucleolar and coiled-body phosphoprotein 1 EEKL 0.6954

LIMD1 LIM domain-containing protein 1 LEAS 0.68825

ARHG2 Rho guanine nucleotide exchange factor 2 EAVA 0.68

RU17 U1 small nuclear ribonucleoprotein 70 kDa MEAA 0.6691

ZFHX3 zinc finger homeobox protein 3 RSLS 0.6677
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5. Discussion
The PPIIPRED tool offers support to those seeking to make sense of functional and evolutionary change
in sequences that are likely to form polyproline II helices. This is superior to simply scanning a protein
sequence by eye to identify proline-rich regions, since PPIIPRED clearly outperforms a simple proline
windowing approach. It is useful to consider how reliable or interpretable the predictions may be in a
typical analysis. Residues with a PPIIPRED score of greater than 0.2 account for 37% of true positives
and 1.3% of false positives (figure 1b). In our test set, this translates to 1828 true positive residues and
2778 false positives. Thus, assuming that a researcher interested in predicting PPIIH within a protein
was investigating a dataset similar in structural composition to the PDB test set, one false positive
may be expected for every two true positives, at this cut-off, and to detect around a third of the true
positives. In a practical setting, there may be a greater proportion of true positives, since many
researchers interested in PPIIH are already focusing on regions of disorder, where the frequency of
PPIIH is relatively high. Nevertheless, these statistics give a realistic indication of the utility of
applying the predictive method to proteins in realistic conditions of interest to biologists. While this
highlights the difficulties of interpreting predictions of a relatively rare structural state with modest
predictive power, these predictions are of value in many biological contexts, so long as the users
remain aware of the reasonable limitations of the predictions, in terms of how many false positives
are typically expected for every true positive.

It is of interest to evaluate to what extent there are regions that have a high predicted PPII propensity,
that also have a high alpha-helical or beta-sheet propensity. Interpretation of such findings from a
machine learning predictor of PPIIH states are complex, since the dataset used in training comprises
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fixed structures rather than structural ensembles, so that each residue is only found in one state.

A potential consequence is that the method may to some extent use information from lack of alpha-
helical or beta-sheet propensity to increase the likelihood that a residue is PPIIH. Thus, it is not clear
to what extent the training algorithm of PPIIPRED may militate against residues with an alpha-helical
or beta-sheet propensity, simply as a consequence of the training set provided. Careful analyses of
results from structural ensembles would be required in order to tease apart these questions, and give
insights into the more detailed behaviour of the PPIIPRED predictor.

Electronic supplementary material, figure S2 gives an indication of the contribution of different amino
acids to human proteome predictions at various cut-offs of PPIIPRED. Clearly, the most highly predicted
residues are almost all prolines, but at the cut-off of 0.2, which was previously discussed, there is a very
substantial contribution of different amino acids. The preferred amino acids in these predictions match to
some extent the previously known information regarding PPII propensity, with a preference among
negatively charged residues for E over D in PPIIHs, previously noted in PPIIH [7]. However, the
preference for methionine over leucine noted by Kentsis et al. [7] is not seen here, suggesting that their
experimental investigation of different amino acids in the context GGxGG may not have general
relevance to PPIIH formation in all contexts. In comparing other similar pairs of amino acids, a
preference is also seen (electronic supplementary material, figure S2) for lysine over arginine, and for
glutamine over asparagine. While glycine has a key role in PPIIH formation in the context of triple-helical
collagens, it is avoided in the predicted PPIIH helices (electronic supplementary material, figure S2).
Triple helical collagen structures are not well represented on the structure databases or in this training set,
and are best predicted by other prediction approaches looking for the strong triplet periodicity of
extended collagen regions. All PPIIHs have an exact triplet periodicity. However, the bulk of regions in
this training set are short, so while it is possible that the BRNN may have used and incorporated some
signal relating to short-range periodicity in refining the prediction, this is hard to assess. One potential
application of PPIIPRED may be in defining candidate PPIIH regions, in which triplet periodicities of
possible functional importance may be assessed, such as any amphiphilic tendencies of the helices.
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