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Uncertainty affects estimates of the power potential of tidal
currents, resulting in large ranges in values reported for sites
such as the Pentland Firth, UK. Kreitmair et al. (2019, R. Soc.
open sci. 6, 180941. (doi:10.1098/rsos.191127)) have examined
the effect of uncertainty in bottom friction on tidal power
estimates by considering idealized theoretical models. The
present paper considers the role of bottom friction uncertainty
in a realistic numerical model of the Pentland Firth spanned by
different fence configurations. We find that uncertainty in
removable power estimates resulting from bed roughness
uncertainty depends on the case considered, with relative
uncertainty between 2% (for a fully spanned channel with
small values of mean roughness and input uncertainty) and
44% (for an asymmetrically confined channel with high values
of bed roughness and input uncertainty). Relative uncertainty
in power estimates is generally smaller than (input) relative
uncertainty in bottom friction by a factor of between 0.2 and
0.7, except for low turbine deployments and very high mean
values of friction. This paper makes a start at quantifying
uncertainty in tidal stream power estimates, and motivates
further work for proper characterization of the resource,
accounting for uncertainty inherent in resource modelling.
1. Introduction
In tidal stream power resource assessment, numerical models are
used to predict extracted power from tidal flows. The results from
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such models can be used to optimize the turbine configuration for maximum power extraction allowing for

feedback between energy removal and natural flow conditions thereby taking into account environmental
impacts [1]. For computational efficiency, large-scale tidal models are often based on the nonlinear shallow
water equations, and depth-averaged models are employed. Three-dimensionality is important of course,
particularly at the location of the turbines or other obstacles where the wake and recirculation zones can
cause significant increase in the value of the bed roughness coefficient (perhaps by an order of
magnitude over the background level, e.g. [2]). The consequent vertical mixing owing to secondary flows
cannot be captured by depth-averaged models [3]. However, at the scale of the present study, vertical
heterogeneity has an almost negligible effect, and so two-dimensional models are sufficiently capable of
simulating bulk flow through the head-driven channels of the Pentland Firth and providing a sensible
estimate of the associated energy removal [1]. In these models, the bed roughness coefficient, commonly
applied uniformly throughout the flow domain, is generally used as a tuning parameter whose value is
altered until predictions of velocity vectors and water levels are in some level of agreement with field
observation; however, it is usually not possible to achieve perfect agreement. Consequently, there is
uncertainty associated with the correct value of bed roughness coefficient that should be applied in
depth-averaged models. Furthermore, the tuned value of roughness coefficient is usually well below the
value that corresponds to a boundary layer flow over a rough surface (e.g. [4]). Uncertainty arising from
the bed roughness coefficient, along with that from other sources (such as model limitations, lack of
knowledge of bed conditions, etc.), can give rise to large discrepancies in the estimates of power available
from potential sites. For example, predictions of the average power available from the Pentland Firth,
UK, vary from 0.62 GW [5] to 9 GW [6]. In recent years, several sensitivity analyses have been carried out
for different values of drag coefficient applied within the Pentland Firth. For example, in a power
resource assessment of the Pentland Firth, Adcock et al. [7] examined the sensitivity of tidal stream power
estimates to fixed, uniform values of bed friction coefficient Cd in the range 0.0025–0.010. Adcock et al.
found that no single value of Cd produced results which matched the field measurements of both tidal
phase and current magnitude, and settled on a value of Cd = 0.0050 as a compromise. In a similar study,
Gillibrand et al. [8] varied Cd from 0.004 to 0.02 and found Cd = 0.008 (again applied uniformly
throughout the domain) gave best agreement, while acknowledging the significant spatial heterogeneity
of the seabed within the Pentland Firth. The use of a single value for Cd, as is frequently used in tidal
stream resource modelling, is itself a simplification which generates uncertainty in the model predictions.

Kreitmair et al. [9] examined the effect of uncertainty in bottom friction on tidal power estimates by
introducing uncertainty as a (narrow) symmetric distribution about the mean bed roughness coefficient
in three analytical models, namely those of Garrett & Cummins [10], Vennell [11] and Garrett &
Cummins [12]. Using perturbation methods, Kreitmair et al. found that introduction of uncertainty in
bed roughness coefficient produces changes to expected power in the range of −5 to 30% for a strait
connecting two large oceans, depending on the relative strength of inertial to drag forces, and tidal
farm geometry. It is reasonable to expect that these changes are likely to be smaller for deep channels
such as the Pentland Firth (5–10%), where the hydrodynamics are less affected by bed resistance.
Furthermore, Kreitmair et al. estimated a standard deviation in power owing to bottom friction
uncertainty between 30 and 50% of mean power.

Focusingon the PentlandFirth, in this paper,we examine the effect of background friction uncertaintyon
estimates of the tidal power resource using a large-scale numerical model with realistic bathymetry. To this
end, a numerical probability distribution transfer between bed roughness coefficient and power dissipated
(effectively a numerical analogy to the ‘derived distribution approach’ [13–15] used in hydrological
engineering) is applied to a series of tidal turbine fences spanning sections of the Pentland Firth. The tidal
hydrodynamics are modelled using CG-ADCIRC, an open-source finite-element solver of the shallow
water equations [16–18]. The power is estimated using a locally enhanced bed roughness coefficient
approach, as used in models such as TELEMAC and MIKE 21. We examine the impact of bed roughness
uncertainty on the mean power removed from the Pentland Firth and the standard deviation in power.
We explore, in turn, how the effect of bed roughness uncertainty is altered by fence layout, changes in
mean bed roughness coefficient (and thereby the hydrodynamic balance in the channel between inertial
and drag forces), and changes in standard deviation of bed roughness uncertainty used as input.

This paper is structured as follows. Section 2 provides a brief description of the numerical model used
to determine the power extracted from the Pentland Firth. A probability density function (pdf) transfer
method is outlined by which it is straightforward to determine the power probability distribution from
an input bed roughness probability distribution. Section 3 presents our estimates of expected power and
its standard deviation for the Pentland Firth for different turbine fence configurations and mean and
standard deviation of the bed roughness distribution. Conclusions are drawn in §4.
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2. Methodology

2.1. Numerical model of the Pentland Firth
Numerical simulations for the Pentland Firth were performed using the Continuous Galerkin (CG)
version of the ADvanced CIRCulation model (ADCIRC). ADCIRC is an open-source finite-element
code used to solve the shallow water equations, following [18], for application on boundary fitted,
unstructured triangular grids. The depth-averaged shallow water equations solved by CG-ADCIRC
may be summarized as mass conservation:

@z

@t
þ @(hu)

@x
þ @(hv)

@y
¼ 0, (2:1)

where ζ is the free surface elevation, h = hs + ζ is the total depth, hs being the still water depth, (u, v) are the
depth-averaged velocity components in the x and y-directions, and t is time, and momentum
conservation (in conservative form):
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where f is the Coriolis parameter, p is the free surface pressure, g is acceleration due to gravity, α is the
Earth elasticity factor, η is the Newtonian equilibrium tide potential, ρ is the density of water, Mx,y

the depth-integrated momentum diffusion, Dx,y the depth-integrated momentum dispersion, Bx,y the
depth-integrated baroclinic forcings, τsx,y the applied free surface stresses and τbx,y the stresses at the
sea bed (see [18] for more details). The bed stresses are assumed to be quadratic in flow speed and
can be expressed by means of an (uncertain) bed roughness coefficient Cd via tb ¼ (1=2)Cdu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
.

In this study, only a single value for Cd is applied throughout the domain, in keeping with the
prevailing approach in the literature. In the derivation of these equations, it has been assumed that
the flow is essentially horizontal (i.e. uniform through depth, which is reasonable for a turbulent
boundary layer), vertical acceleration can be ignored, the pressure distribution is hydrostatic, the
seabed slopes are relatively small, turbulent eddies across different scales can be modelled using a
single eddy viscosity coefficient, and tides may be modelled as long waves.

Figure 1a,b shows the unstructured, triangular mesh that was fitted to the Pentland Firth. The mesh
extends westward as far as the edge of the continental shelf in order to limit tidal reflections at the
driving boundary [19]. The mesh was originally produced and validated by Adcock et al. [7], after
convergence testing, with the size of the elements ranging from 300m at the location of the turbine
fences to 20 km far from the strait. This mesh sizing involved compromise between accuracy and
computational performance.

The model was forced at the open boundary by prescribing time-varying water levels with an M2 tide
which dominates in this region [20]. This ‘clamping’ approach does not allow for changes to thewater level
owing to extraction of power by the tidal turbines and may therefore give inaccurate results owing to the
incorrect calculation of mass flux at the open boundary [21]. However, [22] showed that little change to the
natural currents at the boundary occurs upon introduction of power extraction (e.g. a current velocity
increase of less than 3% for an unrealistically large deployment leading to a peak flow reduction of
25%), indicating that this boundary condition is adequate. The model was run for 2 days, following half
a day of ramping up, before the average power over an M2 tidal cycle was calculated.

2.1.1. Representation of turbines and fence configurations

Energy extraction by the turbines was implemented using a local increase in bed roughness coefficient,
equal to Ct, over areas representing the turbine fences. Figure 1b shows the areas considered to be
occupied by the turbines, indicated as strips labelled A–C. The increase in bed roughness is uniform over
these areas, with each strip being approximately 1.5 km in width. Three fence configurations are
considered in this paper: a ‘fully spanned channel’ configuration that deploys fences ABC, an
‘asymmetrically confined’ configuration that deploys fence A, and a ‘laterally unconfined’ scenario that
deploys fence B only.



(a)

(b)

Figure 1. (a) Mesh used in numerical solver and (b) close-up of mesh and fences deployed at location of interest in the Pentland
Firth, overlaid onto a Google Earth image of site (adapted from [7]).

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:191127
4

The average power removed from the flow by the turbine fences over a tidal cycle is determined by
calculating the dissipation due to the increase in roughness over the turbine fence area, i.e.

P ¼ 1
T

ðT
0

ð ð
Aturb

rCtjuj3 dA
� �

dt, (2:4)

where ρ is water density (taken to be 1027 kg m−3), T is the tidal period, Aturb is the plan area of enhanced
bed roughness and u = (u, v)T is the depth-averaged velocity vector in the presence of the roughness
increase. The over-bar notation for time-averaged power is omitted from here on.
2.2. Uncertainty propagation method
Uncertainty in the bed roughness coefficient Cd is introduced by means of a normally distributed pdf
with prescribed mean and variance {mCd

, s2
Cd
}. A normal distribution is chosen as it is assumed that

the bed roughness coefficient may be modelled as a non-skewed random variable where the causal
processes underlying the coefficient are additive, i.e. bed roughness is a sum of contributions from
skin friction, form drag, momentum transfer, and vegetation. The distribution is then symmetrically
truncated at Cd = 0 (to eliminate the possibility of encountering negative Cd values) and Cd ¼ 2mCd

(to
retain the same mean and symmetry properties as the parent normal distribution) and re-normalized.
Consequently, the variance of the truncated pdf is reduced when compared with that of the normal
distribution, and is designated by s�

Cd

2, which is termed the ‘input uncertainty’.
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P ¼ g(Cd , Ct ¼ C�t ); (b) symmetrically truncated normal distribution for Cd (input); and (c) corresponding pdf for P after
transfer through power function (output).
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To explore the impact of changes in mean bed roughness coefficient of the channel three values are
considered mCd

¼ {0:0025, 0:005, 0:016}, which we designate as low, medium and high channel drag
scenarios, respectively. These values are chosen from the literature, where the low value is often used
in depth-averaged tidal energy models (e.g. [23–25]). The high value of mCd

¼ 0:016 was taken from
[4], where it constitutes a ‘best guess’ for the true bed roughness coefficient of the Pentland Firth.

The pdf in bed roughness coefficient fCd (Cd) is used to generate a corresponding pdf in power fP(P)
by propagating fCd through power as a function of bed roughness coefficient and turbine drag coefficient,
P = g(Cd, Ct). The procedure is as follows. For each value of turbine drag Ct, the pdf in Cd is divided into
bins of equal width and the probability of a realization of Cd =Cd,i falling within each bin is determined
by integrating over the width of the bin. This gives the associated probability of a realization of power
P = Pi = g(Cd,i,Ct), as well as the associated probability density in power at this value through
fP(Pi) ¼ fCd (Cd,i)DCd,i=DPi, where ΔCd,i is the width of the bin in Cd and ΔPi the associated width in
P. Having determined the probability associated with a given value of power, the mean is given by
E[P] ¼ P

i Pi(Cd ¼ Cd,i)Pr(Cd ¼ Cd,i), and thenth-order (centred) statisticalmomentsmaybe calculatedusing

mP,n ¼
X
i

(Pi(Cd ¼ Cd,i)� E[P])nPr(Cd ¼ Cd,i), (2:5)

where n = 2 gives the variance, and n = 3 and n = 4 the skewness and kurtosis, respectively.
It may be noted that the pdf for power resulting from the uncertainty transfer is no longer a normal

distribution when the function P = g(Cd) is nonlinear. Figure 2a shows the transfer of a symmetrically
truncated normal pdf in Cd (shown in figure 2b) to the corresponding pdf in power (figure 2c). Though
the input pdf is symmetric, the output pdf exhibits a small positive skew owing to the nonlinear transfer.
3. Results
Power surfaces as a function of bed roughness coefficient Cd and turbine drag coefficient Ct, produced from
many runs of the numericalmodel, were used as transfer functions for the pdf. It should be emphasized that
the surfaces were determined systematically over a range of Cd and Ct values, and cubic spline interpolation
was used to refine the resolution of the surfaces. This method only required of the order of 2000 runs of the
model to obtain convergence (fewer runs than Monte Carlo simulations). Examples of the surfaces and
corresponding contour plots obtained for the three fence configurations are included for completeness in
figure 7 in appendix A. For each value of Ct, the corresponding curve in Cd is used as the transfer
function to determine expected values for power and associated standard deviations as functions of
turbine drag Ct. The effect of uncertainty in Cd on these parameters is now explored.

3.1. Expected power
Figure 3 shows values of deterministic power P and expected power E[P] (left-hand axes) as functions of
turbine drag coefficient scaled bymean bed roughness coefficientCt=mCd

for fully spanned, asymmetrically
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confined and laterally unconfined fence configurations. The change in expected power ΔE[P] is shown on
the right-hand axes. The results shown in different colours indicate different mean bed roughness
coefficients, mCd

¼ {0:0025, 0:005, 0:016}, corresponding to ‘low’, ‘medium’ and ‘high’ channel drag
scenarios. Results are shown for an input relative uncertainty of ŝ�

Cd
¼ 0:3. A range of ŝ�

Cd
values is

considered below to explore the effect of different input uncertainty values, chosen following [9]. For all
values of mCd

, uncertainty in Cd acts to increase the expected power slightly above the deterministic
value. That is, the mean power determined from a distribution of bed roughness coefficients is greater
than the power determined from the mean bed roughness coefficient. This is a result of the convex
dependence of power on bed roughness (i.e. Jensen’s inequality). Channels with greater mean bed
roughness coefficient values exhibit a larger increase in the expected power. This is not simply owing to
the fact that these channels have a greater s�

Cd
for a given input relative standard deviation

ŝ�
Cd
; s�

Cd
=mCd

, but because the relative importance of bed roughness in the dynamic balance of the
channel grows with increasing bed roughness. The more Cd dominates the dynamic balance (and hence
the flow velocities) in a channel, the greater the impact of uncertainty on power. This may be seen more
clearly from figure 4, which shows how the relative change in expected power divided by input relative
variance, i.e. DE[P]=(Pdetŝ

2
Cd
), varies as a function of turbine drag scaled by mean bed roughness

coefficient. As before, different colours indicate ‘low’, ‘medium’ and ‘high’ channel drag scenarios. Three
lines have been plotted for each mCd

corresponding to different values of input relative standard
deviation of ŝCd ¼ {0:1, 0:3, 0:5}. While there are some changes with increasing values of ŝCd (higher
values giving slightly higher values of DE[P]=(Pdetŝ

2
Cd
) ), these changes are small. This indicates that

changes in expected power owing to uncertainty are dominated by leading-order effects, despite the
complexity and nonlinearity of the numerical model. In their study of the effects of uncertainty in
analytic models of tidal stream power, Kreitmair et al. [9] found that changes in DE[P]=(Pdetŝ

2
Cd
) are a

result of higher-order statistical moments of the input pdf. The small changes in DE[P]=(Pdetŝ
2
Cd
) indicate

that these higher-order terms do not contribute greatly to variations in expected power.
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Comparison of behaviour for different fence layouts shows that there is little qualitative difference
caused by confinement of turbine fences. In all deployment scenarios, the change in expected power
increases with the mean bed roughness coefficient applied throughout the channel, and does so by
approximately the same proportion per unit input relative variance (figure 4). This suggests that there
is little bypass flow around the deployed turbines, even in the unconfined scenario where only fence
B is deployed. Of note is that the scenario with the shortest fence configuration (fence A deployed)
exhibits the greatest sensitivity to bed roughness uncertainty, followed by the next shortest (fence B),
and then the longest (fences ABC). This indicates that, the greater the total force due to turbine drag
in the channel, (and hence the importance of bed friction on dynamic balance in the channel), the
smaller the effect of uncertainty in bed roughness.

The main conclusion of this section is that changes in expected power are small, and only become
significant at very low values of turbine drag, i.e. few turbines deployed. In such instances, the change in
expected power can be a significant fraction of the deterministic power. For example, from figure 4b it
can be determined that the change varies between 0.2% of deterministic power for a low channel drag
scenario to 50% for a high channel drag scenario as the deployed turbine drag approaches zero.
However, near the optimum the change in expected power is of the order of 3% of deterministic power
for the high channel drag scenario of the asymmetrically confined fence deployment configuration (the
fence configuration most sensitive to uncertainty). While the effects on extracted power are small for any
but low values of turbine drag, the impact of uncertain bed roughness may be more important for
available power, i.e. the fraction of power available to the turbines for power generation [7,26], because
available power is optimized at total resistances lower than extractable power.

It may be noted that the results shown in figure 4 are in good qualitative agreement with fig. 4a of [9],
suggesting that the analytic models of Garrett & Cummins [10] and Vennell [11] used for analysis may
give good approximations to a more in-depth numerical analysis of bed roughness uncertainty effects,
provided an appropriate value for the non-dimensional channel drag parameter λ0 is determined.
3.2. Standard deviation in power
Figure 5 shows the standard deviation in power σP (left-hand axis) and the ratio of relative standard
deviation in power to that in bed roughness, i.e. (sP=Pdet)=ŝ�

Cd
, (right-hand axis) as functions of

turbine drag coefficient scaled by mean bed roughness coefficient Ct=mCd
, with the colours indicating

different values for mean bed roughness coefficient as before. In the cases shown, the input relative
standard deviation is ŝ�

Cd
¼ 0:3. Asterisks on the curves indicate the optimal value of Ct=mCd

(in the
deterministic cases), i.e. the relative turbine drag which maximizes power removed by the deployed
fences before introduction of uncertainty, as determined from the power surfaces in figure 7. It is
evident from this figure that the maximum standard deviation in power occurs at below-optimum
turbine deployments. It is further evident that different fence configurations do not affect the impact
of bed roughness uncertainty differently, as may be observed from the qualitatively similar behaviour
across all the configurations. The ratio of the relative uncertainties ŝP=ŝ

�
Cd

gives the factor by which
the relative input uncertainty is decreased or increased upon transfer through the power function.



Table 1. Standard deviation in power and ratio of relative standard deviation in power to relative input standard deviation for
three different values of ŝ�

Cd ¼ {0:1, 0:3, 0:5} at optimal and half-optimal turbine drag values (columns) and different fence
configurations and mean bed roughness coefficients (rows).

σP (GW) σP/Pdet (%)

1=2C�t,det C�t,det 1=2C�t,det C�t,det

ABC mCd ¼ 0:0025 0.07, 0.23, 0.4 0.06, 0.18, 0.3 2, 6, 10 2, 5, 8

fully mCd ¼ 0:005 0.1, 0.33, 0.55 0.09, 0.26, 0.43 3, 10, 17 2, 7, 13

spanned mCd ¼ 0:016 0.13, 0.41, 0.71 0.11, 0.32, 0.55 6, 19, 35 4, 14, 24

A mCd ¼ 0:0025 0.003, 0.008, 0.014 0.002, 0.007, 0.012 3, 9, 16 2, 7, 12

asymmetrically mCd ¼ 0:005 0.003, 0.01, 0.017 0.003, 0.008, 0.014 4, 14, 24 3, 11, 19

confined mCd ¼ 0:016 0.003, 0.01, 0.017 0.0025, 0.008, 0.014 6, 22, 44 5, 17, 32

B mCd ¼ 0:0025 0.031, 0.09, 0.15 0.026, 0.08, 0.13 2, 6, 12 2, 5, 9

laterally mCd ¼ 0:005 0.044, 0.13, 0.22 0.037, 0.11, 0.18 3, 11, 19 3, 8, 15

unconfined mCd ¼ 0:016 0.050, 0.16, 0.27 0.042, 0.13, 0.22 6, 20, 38 5, 16, 28

Table 2. Ratio of relative standard deviation in power to relative input standard deviation for three different values of
ŝ�
Cd ¼ {0:1, 0:3, 0:5} at optimal and half-optimal turbine drag values (columns) and different fence configurations and mean

bed roughness coefficients (rows).

ŝP=ŝ
�
Cd (%)

1=2C�t,det C�t,det

ABC mCd ¼ 0:0025 20, 20, 20 15, 15, 15

fully mCd ¼ 0:005 33, 33, 34 24, 24, 24

spanned mCd ¼ 0:016 60, 62, 64 44, 45, 46

A mCd ¼ 0:0025 29, 29, 29 23, 23, 23

asymmetrically mCd ¼ 0:005 42, 43, 44 33, 33, 34

confined mCd ¼ 0:016 64, 67, 73 49, 51, 54

B mCd ¼ 0:0025 21, 21, 20 17, 17, 16

laterally mCd ¼ 0:005 34, 35, 34 27, 27, 27

unconfined mCd ¼ 0:016 61, 63, 67 48, 49, 51
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This ratio is smallest for small values of mCd
but increases to above unity for low values of Ct=mCd

(low
turbine deployments) for the high value of the bed roughness coefficient mCd

¼ 0:016 (dashed green
lines). This is owing to the shallow gradient of the power curve with respect to bed roughness
coefficient Cd generally acting to decrease uncertainty upon transfer through to power. However, at
low levels of turbine deployment and in channels with high mean bed roughness (i.e. long and
shallow channels) uncertainty is amplified as the gradient with respect to Cd is steeper. The results
shown on the right-hand axis of figure 5 are in good agreement with results shown in fig. 5 of
Kreitmair et al. [9], again dependent on choice of value for λ0.

Quantitative values for standard deviation are given in table 1 (left columns show absolute values
and right columns give standard deviation as a fraction of the deterministic power). These are given
at optimal and half-optimal turbine drag values, determined for a given combination of fence
configuration, mean bed roughness coefficient, and input uncertainty. For cases of high input
uncertainty (ŝCd ¼ 0:5), the standard deviation becomes a significant fraction of the deterministic
power, up to 44% in the high mean channel drag scenario applied to the asymmetrically confined
turbine deployment. However, for a fully spanned channel with small input uncertainty, the standard
deviation in power is as low as 2% of deterministic power.
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Figure 6. Expected power removed and 90% confidence levels (shaded) in the fully spanned (a,d,g), asymmetrically confined (b,e,h)
and laterally confined (c,f,i) fence deployment scenarios as a function of scaled turbine drag coefficient Ct=mCd for different values of
mean bed roughness coefficient mCd ¼ {0:0025, 0:005, 0:016} (blue, red and green, respectively) and input relative standard
deviation ŝCd ¼ {0:1, 0:3, 0:5} (top to bottom).
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Table 2 lists the ratio of the output relative standard deviation ŝP ¼ sP=Pdet to the input relative
standard deviation ŝCd . It is evident that this ratio remains largely unchanged as input uncertainty is
varied, i.e. the value stays the same across the input relative standard deviation values of
ŝ�
Cd
¼ {0:1, 0:3, 0:5}. Significant (on the order of a few per cent) changes in the ratio occur only for

large values of mean bed roughness coefficient, as noted before. This further confirms the result of
§3.1 that the statistical behaviour is dominated by leading order effects and higher order effects begin
to contribute appreciably only as mCd

is increased. Notably, however, near the optimum uncertainty is
generally reduced. In practice, any realistic deployment of tidal turbines will not be near the optimum
for extracted power. This is both because it would lead to unacceptable environmental change and
because of the diminishing returns as more turbines are added [27].
3.3. Confidence intervals
The expected power from the different fence configurations is plotted in figure 6 with shaded regions
illustrating the 90% confidence bands as functions of the relative turbine drag for input relative
standard deviations of ŝCd ¼ {0:1, 0:3, 0:5} (rows of panels). Needless to say, with growing input
uncertainty, the resulting confidence limits on power widen and begin to span a significant range. For
example, in the very extreme case of high input uncertainty and high bed roughness for the fully
spanned channel (green line, panel g) the confidence limits at optimum span as much as 2 GW for an
expected power of 2.3 GW. This covers a significant portion of the range of power estimates quoted in
the introduction (0.62-9 GW).
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4. Conclusion

In this paper, we have explored the effect of bed friction uncertainty on power estimates of removable
power from tidal stream turbines deployed in the Pentland Firth. Having previously examined this
using perturbation methods in three idealized tidal stream power models [9], the present study
analyses the effect of an uncertain bed roughness coefficient in a realistic model for the Pentland Firth.
To this end, we have used a numerical method for transferring the probability distribution of an input
variable through a numerically generated surface. While sensitivity studies have been conducted in
the past exploring the effect of changes to bed roughness coefficient on extracted power, the approach
presented in this paper is able to determine the effect of a distribution of coefficient values, giving rise
to changes in the mean power, a measure of standard deviation in power values, and confidence
bands. Higher-order statistical moments can easily be calculated using this method and may be of
interest in other applications including flood risk.

Ourconclusionsare as follows. Theeffect of uncertaintyonexpectedpower is small except for lowvalues of
turbine drag or for high values ofmean bed roughness coefficient. Near optimal levels of turbine deployment,
the increase is as little as 3% even for the most sensitive fence configuration. This echoes the conclusion of the
previous study by Kreitmair et al. [9] which stated that for a channel reminiscent of the Pentland Firth, the
change in expected power would only be on the order of a few per cent. The previous study further
concluded that about ±3 GW could be attributed to bed roughness uncertainty. The present paper limits
this estimate to ±1 GW at the 90% confidence limit in the extreme case of high input relative uncertainty of
ŝCd ¼ 0:5 and high mean channel drag. Comparing this interval with the range of power estimates for the
Pentland Firth from the Introduction, i.e. 0.62–9GW, only a fraction of this range may be attributed to bed
roughness uncertainty. The greater proportion is most likely owing to differences in models used, which
indicates the requirement for a coherent methodology in the tidal stream energy industry to allow for
comprehensive assessments to be made. It should be noted that the present paper deals with removable
power rather than extractable power. However, assuming a linear relationship between the extractable and
removable power (i.e. the amount of power that may be extracted is a constant fraction of the power
removed from the channel), the proportional effect of bed roughness uncertainty would simply transfer to
removable power. More complicated, nonlinear relationships would require further analysis.

While this study is an improvement to previous work by exploring uncertainty for a more realistic
channel model, limitations remain. The model used represents turbines as a locally enhanced bed
roughness coefficient smeared out over a number of grid cells, and so reproduces the aggregate effect
of the turbines as they span the channel or subchannels. Hence, any energy losses in the mixing of the
by-pass flow are not considered and only removable power is explored. Future work would take into
account the effect of uncertainty on extractable power (i.e. power available to the turbines) rather than
removable power (total power lost owing to the presence of the turbines) by incorporating the
turbines in more realistic ways, such as actuator disc theory or constrained blade element momentum
[28]. Furthermore, in the model used, only a single value of bed roughness coefficient is applied
throughout the numerical domain. It would be of interest to explore the effect of spatially (and
temporally) varying coefficient values, and the uncertainty of these, and how the value of bed
roughness coefficient may be inferred from sparse measurement data.

In this paper, we have considered solely parameter uncertainty and how this varies for a given model
configuration (i.e. model scale, mesh refinement, dimensionality, etc.). A further source of uncertainty is
that of model discrepancy, which is the uncertainty introduced by the fact that no model is a perfect
representation of a real process. Changes to the model will affect the value of calibrated bed
roughness coefficient and magnitude of the associated parameter uncertainty (e.g. a finer mesh can
resolve physical features which are treated by the roughness coefficient in a coarser mesh).
Comparison of the two types of uncertainty requires methods which can account for both parameter
and model uncertainty, such as the Kennedy-O’Hagan framework [29], some of which are already
used in other fields, for instance, building energy simulation (e.g. [30]).
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5061/dryad.k3c16gt [31].
Authors’ contributions. M.J.K. and T.S.v.d.B. developed the numerical method for probability transfer. The numerical
model was built and verified by S.D. and T.A.A.A., with computations performed by M.J.K. Results were
interpreted by M.J.K., T.S.v.d.B. and A.G.L.B. M.J.K. and T.S.v.d.B. wrote the paper. All authors gave final
approval for publication.
Competing interests. We declare we have no competing interests.

https://dx.doi.org/10.5061/dryad.k3c16gt
https://dx.doi.org/10.5061/dryad.k3c16gt
https://dx.doi.org/10.5061/dryad.k3c16gt


royalso
11
Funding. M.J.K. was supported by Engineering and Physical Sciences Research Council (EPSRC) grant no. R44708.

T.S.v.d.B. was supported by a Royal Academy of Engineering Research Fellowship.
Acknowledgements. All contributors have been included as authors. The authors thank Paolo Perona at the University of
Edinburgh for pointing out the use of the derived distribution approach in other fields.
cietypublishing.org/jou
Appendix A. Power surfaces
Power surfaces and contours calculated from the numerical model of the Pentland Firth are shown in
figure 7 as functions of bed roughness coefficient Cd and deployed turbine drag coefficient Ct. Each
row shows the results for a given fence configuration.
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