Abstract
早产是指新生儿出生时胎龄未满37周,低体重儿是指新生儿出生时体重未满2 500 g,早产常伴发低体重儿。早产被认为是新生儿死亡的主要原因。牙周病是一种口腔常见的慢性感染性疾病,与全身多种系统性疾病具有相关性。流行病学资料表明牙周病与早产低体重儿具有一定相关性,牙周病是早产低体重儿等不良妊娠结局的危险因素之一,可能的机制包括牙周致病菌菌体的直接作用,引起机体炎症反应和过激免疫反应等,然而具体的机制尚未明确。本文就牙周病与早产低体重儿的相关性,开展牙周治疗对早产低体重儿发生率的影响,以及牙周病引发早产低体重儿的相关机制作一综述。
Keywords: 牙周病, 早产低体重儿, 妊娠
Abstract
Preterm birth (PB) is defined as the birth of a baby less than 37 weeks of gestational age. Low birth weight (LBW) is defined as a newborn baby's weight of less than 2 500 g. PB is often accompanied by LBW. Preterm low birth weight (PLBW) is the leading cause of newborn deaths. Periodontal disease (PD) is a chronic oral infectious disease, and it is closely related with general health. Epidemiological data show that PD is a risk factor for PLBW and other adverse pregnancy outcomes. The possible mechanisms include the direct effects of periodontal bacteria, inflammatory reactions, and immune response; however, the exact pathogenetic mechanism involved remains controversial. This article aims to review the research progress on the relationship between PD and PLBW and their underlying mechanisms, as well as the effects of periodontal treatment on PLBW incidence.
Keywords: periodontal disease, preterm birth and low-birth-weight infants, pregnancy
牙周病是由革兰阴性厌氧菌引起的慢性感染性疾病。牙周组织的健康状况与全身健康有着紧密的联系,可成为全身许多系统疾病潜在的重要危险因素。现在已经确定的相关疾病有心脑血管疾病[1]、糖尿病[2]、肺炎[3]、肥胖[4]、类风湿关节炎[5]、早产低体重儿[6]等。早产,指新生儿出生时胎龄小于37周[7],低体重儿是指新生儿出生时体重未满2 500 g,早产常伴发低体重儿。早产被认为是新生儿死亡的主要原因[8]。研究[9]表明,早产儿在出生第1个月死亡的风险是足月产儿的10~40倍。此外,早产儿因多系统器官发育不成熟而有更高的罹患神经系统疾病、呼吸系统疾病及先天发育异常等疾病的风险[10],许多幸存的早产儿在成年后也将面临学习障碍,听力、视力障碍,患代谢综合征的概率明显增高等问题,给家庭和社会带来了极大的负担。我国医疗技术逐年提高,但早产发生率并没有随之下降,反而呈逐年上升趋势,近年来更是接近10%[11],高于世界平均水平,对早产的防治策略已成为当今医学的研究重点。
早产的危险因素包括产妇年龄、人种、吸烟史、妊娠糖尿病等全身因素以及多胎妊娠、宫颈管过短、细菌性阴道炎等局部因素[12];但仍有25%左右的早产未发现以上的明确病因。作为影响原因之一的口腔来源的感染,特别是牙周致病菌感染途径目前受到了越来越多的重视。在过去10余年中,流行病学调查已证实牙周病与早产的发生率有关,并且是低体重儿的重要影响因素,但是其生物机制还不明确。牙周病与早产低体重儿的关系及其相关生物学机制现已成为国内外研究的热点。
1. 牙周病与早产低体重儿的关系
自20世纪90年代中期以来,牙周病与早产低体重儿的相关性研究已被讨论了20余年。有的研究发现牙周病与早产低体重儿具有一定相关性,而有的研究则未发现两者之间存在明确关联。
1996年,Offenbacher等[13]对124名孕妇进行病例对照研究,结果显示,牙周病是早产低体重儿的危险因素之一,患有牙周病的孕妇发生早产低体重儿的概率是牙周健康孕妇的7.5倍,18.2%的早产低体重儿与孕妇牙周病密切相关。后续的研究报道进一步肯定了牙周病与早产等不良妊娠结局具有相关性。Jeffcoat等[14]对1 314例孕妇的前瞻性研究支持牙周病是早产的一个独立危险因素,在对孕妇的年龄、种族、吸烟、经产状况等因素进行校准后发现,随着牙周病的加重,发生早产的危险性增加,并呈剂量-反应关系。Rajapakse等[15]对227例没有吸烟、饮酒、没有使用药物的第1胎孕妇的前瞻性随访研究结果也表明,牙周病与早产低体重儿密切相关。近年来的研究[16]–[17]也支持了这一说法。Meta分析[18]结果同样证实,牙周病增加了早产的风险。然而,也有研究未发现两种疾病存在相关性。Davenport等[19]选取236例早产低体重儿孕妇和507例正常孕妇进行病例对照研究,结果发现,随着牙周袋深度的增加,早产低体重儿的发生率反而下降。Moore等[20]对3 738例受试对象进行前瞻性研究,也没有发现牙周病与早产低体重儿的相关性。这些研究得出不同结论的原因可能是研究中研究对象的样本量、种族、社会经济地位不同,牙周病的定义不同与不良妊娠结局的定义不同等所造成的。有研究[21]发现,牙周病与低体重儿具有相关性,但不支持牙周病与早产的相关性。评价牙周状况的临床指标包括牙周探诊深度、临床附着丧失、探诊出血阳性位点百分比等,牙周病定义的不同,使用的临床指标不同,可导致研究对象的牙周炎症状况不同,而早产的发生率随着牙周病的严重程度加重而增加[22]。
2. 牙周治疗对早产低体重儿的影响
能否通过孕期牙周治疗改善不良妊娠结局已成为口腔医生和产科医生共同关心的问题。López等[23]总共纳入870例牙龈炎孕妇,对其中580例孕妇在孕期28周之前进行牙周洁治及0.12%氯己定含漱,并进行规律的牙周维护,另外290例孕妇则延期到分娩后进行牙周治疗,结果发现,治疗组的早产发生率为2.14%,低于对照组的6.71%。在校准一些已知的早产危险因素后发现,未治疗的牙龈炎孕妇较接受牙周治疗的孕妇有更高的早产风险(OR=2.76,95%CI为1.29~5.88,P=0.008)。
Michalowicz等[24]的研究结果并不支持牙周治疗对预防早产的作用。在这项研究中,823例患有牙周炎的孕妇被随机分组,治疗组在孕期13~21周接受洁刮治和根面平整术,对照组则在产后接受牙周治疗。结果发现,孕期牙周治疗可以改善牙周状况,但对早产、早产低体重儿等的发生则无明显影响。有研究[25]发现,孕期牙周治疗可以降低龈沟液中白细胞介素(interleukin,IL)-1β、IL-10、IL-6等炎症因子水平,改善牙周状况,但对妊娠结局没有影响。系统评价[26]结果也显示,孕期牙周治疗并不能降低早产的发生率。只有当孕妇为高风险早产的牙周炎患者时,孕期牙周治疗才可以降低早产的风险[27]。
虽然对孕期牙周治疗能否降低早产的发生率是有争议的,但是保持妊娠期间牙周组织健康是必要的。对于妊娠期间就诊的孕妇,应当给予适当的处理,以维护其牙周健康。
3. 牙周病与早产低体重儿的相关机制
正常分娩是由炎症信号控制的,外部刺激包括感染和炎症应激可以改变这个触发机制。牙周病作为一种慢性感染性疾病,可引起早产低体重儿的发生,但其机制尚不明了。目前国内外关于牙周病引发早产低体重儿的机制主要有以下4个方面的假说。
3.1. 细菌菌体传播感染远端组织
牙周病是一种革兰阴性厌氧菌引起的慢性感染性疾病,主要的牙周致病菌包括牙龈卟啉单胞菌(Porphyromonas gingivalis,P. gingivalis)、具核梭杆菌(Fusobacterium nucleatum,F. nucleatum)、伴放线聚集杆菌(Aggregatibacter actinomycetemcomitans,A. actinomycetemcomitans)、福赛斯坦纳菌(Tannerella forsythia,T. forsythia)、中间普雷沃菌(Prevotella intermedia,P. intermedia)、齿垢密螺旋体(Treponema denticola,T. denticola)、直形弯曲菌(Campylobacter rectus,C. rectus)等,患有中重度牙周炎患者的牙周袋内壁的溃疡面积[28]约为72 cm2,这样大小的溃疡面积为细菌及其代谢产物进入血液循环提供了通路,使牙周炎的致病菌可通过一过性的菌血症入血,定植于胎盘。有研究[29]表明,日常使用牙线和刷牙(20%~68%)、使用牙签(20%~40%)、漱口(7%~50%)和咀嚼食物(7%~51%)时引起的一过性菌血症比牙科治疗如拔牙、洁牙、牙周手术及牙种植等高很多。
目前已有动物实验发现牙周致病菌可通过一过性菌血症到达胎盘组织,引起不良妊娠反应。Collins等[30]用仓鼠模型诱导牙周病来研究感染与妊娠之间的关系。该实验采用4组仓鼠,交配前诱导建立牙周病模型,其中两组喂养普通食物,两组喂养诱导牙菌斑食物,同时对普通食物喂养和诱导牙菌斑食物喂养的仓鼠各1组灌胃含有P. gingivalis的食物,结果显示,与喂养普通食物组相比,喂养诱导牙菌斑食物+灌胃含有P. gingivalis的食物组的新生小鼠平均体重减少22.5%。该实验提示,口腔感染可能会激发母体—胎儿感染进而导致不良妊娠结局。Han等[31]为证明牙周致病菌的作用,将F. nucleatum注射到怀孕小鼠静脉中,结果显示,孕鼠发生了早产、死产,还出现幼鼠在出生后1 d内死亡的现象,并且在小鼠胎盘血管上皮细胞中检测出F. nucleatum。该实验表明,F. nucleatum可通过侵入血管内皮组织,随后定植到外周组织,最后感染羊水,导致不良妊娠结局。Yeo等[32]在怀孕小鼠皮下注射C. rectus,发现感染小鼠有更大的概率发生子宫内生长抑制及胎儿吸收,并在孕鼠胎盘上检测到C. rectus。这些动物实验都表明子宫远源性的感染可导致不良妊娠结局。
临床研究同样证实了这一假说的可能性。临床研究[33]发现,在羊水或胎盘中可检测到牙周致病菌,如F. nucleatum、P. gingivalis、C. rectus、T.forsythia。Mitchell-Lewis等[34]对145名研究参与者的龈下菌斑中的12种细菌进行分析,发现早产低体重儿产妇的牙周状况与正常产妇虽无明显差别,但T. forsythia及C. rectus的水平明显高于正常产妇,其他牙周致病菌数量也有所升高,但无统计学意义。Ercan等[33]在3名早产孕妇的羊水及龈下菌斑中同时检测出C. rectus、T. forsythia、P. gingivalis、F. nucleatum,提示母亲口腔的一些牙周致病菌可能引起不良妊娠结局。一项母亲口腔来源的F. nucleatum引起的胎儿死产的病例报告[35]也指出,口腔牙周致病菌可以通过血液循环定植于胎盘并引起胎儿并发症。研究[36]发现,当在母亲牙周袋没有检测到P. intermedia和/或A. actinomycetemcomitans时,胎儿有更高的机会拥有正常的出生体重(P. intermedia的OR值为3.47,A. actinomycetemcomitans的OR值为2.29)。
以上这些研究均表明,牙周致病菌可通过血液循环定植于胎盘,引起不良妊娠结局。
3.2. 牙周慢性炎症导致炎症介质水平的改变
正常分娩过程[37]包含以下几个方面:受孕后,母体子宫组织支持胎盘的增长,母亲和胎儿之间通过血管丰富的胎盘进行营养物质和废物的交换,胎儿与胎盘间通过脐带发生交换,胎儿在羊膜腔包绕的羊水中生长;随着怀孕进程的发展,羊水中前列腺素E2(prostaglandin,PGE2)和炎症细胞因子,如肿瘤坏死因子-α(tumor necrosis factor,TNF-α)和IL-1β稳步上升,直到达到临界值以上,诱导羊膜腔破膜,子宫收缩,宫颈扩张,然后生产。PGE2已作为一种宫缩促进剂药物在临床使用,可见牙周病患者血清中PGE2的升高对先兆早产和早产等不良分娩结局的发生有重要影响。
牙周病时机体IL-1、IL-6、PGE2、TNF-α等炎症因子水平升高。研究[38]发现,牙周病母体中升高的炎症介质,如IL-1、IL-6、IL-8和TNF-α,与早产低体重儿有关。也有学者[39]发现,怀孕早期血清C反应蛋白(C-reactive protein,CRP)浓度升高可增加早产风险。牙周病时,龈沟液量增多,其中的炎症介质水平亦升高。系统评价[40]结果显示,龈沟液中的炎症介质水平,如IL-1β、PGE2、TNF-α与不良妊娠结局/早产相关。对早产孕妇的羊水进行检测,结果显示,IL-1、IL-6、IL-8和TNF-α等明显升高[41]。
另外,革兰阴性牙周致病菌细胞壁外膜中的脂多糖(lipopolysaccharide,LPS)可持续刺激宿主细胞,引发宿主炎症反应。LPS可被Toll样受体(toll-like receptors,TLRs),主要是TLR-2和TLR-4识别。随着牙周组织炎症程度增加,LPS水平可随之升高,LPS可以激活TLRs表达。据报道[42],在胎盘表达的TLR-2、TLR-4可以介导胎盘的感染,且可能与早产有关。此外,高浓度的LPS可调节子宫平滑肌收缩,进而诱发早产[43]。
3.3. 母体对口腔致病菌所产生的获得性免疫反应
牙周致病菌及其副产物可以到达胎盘。一旦母亲暴露于细菌病原体,宿主的先天性免疫反应启动,以遏制和消灭感染。如果不成功,适应性免疫反应将启动并产生细菌特异性抗体。首先形成IgM抗体,然后通过转换,IgM抗体转换为IgG抗体。由于牙周病是一种慢性感染性疾病,母体IgG抗体可以通过胎盘传递给胎儿。在子宫内,由于胎儿不具有免疫活性,当受到刺激时只能形成IgM抗体。
升高的牙周致病菌IgG抗体可能是不良妊娠结局的保护因素。Madianos等[44]发现,母体血清中特异牙周致病菌的IgG抗体的升高与早产的发生呈负相关,足月产妇血清中抗橙色和红色复合体细菌IgG抗体水平高于早产者。此外,母体缺乏保护性IgG抗体可导致胎儿被细菌侵袭,与早产发生率的上升有相关性。患有牙周病的孕妇血清中低滴度抗P. gingivalis IgG抗体者的早产风险是高滴度者的7倍[45]。也有研究提出相反的结论,指出牙周致病菌IgG抗体可能是不良妊娠结局的危险因素。例如Dasanayake等[46]发现,孕中期母体血清中高水平抗P. gingivalis IgG抗体者更易分娩低体重儿。
胎儿脐带血中升高的IgM抗体可能是不良妊娠结局的危险因素。有学者[38]发现早产胎儿脐带血中针对一种或多种牙周致病菌的IgM抗体阳性率为19.9%,约为正常胎儿的2.9倍。Boggess等[47]的研究发现,脐带血中IgM抗体的存在与早产风险增加有关。
3.4. 牙周致病菌与抗磷脂抗体综合征(anti-phospholipid syndrome lipid syndrome,APS)相关抗体的分子拟态学说
近年来,APS作为早产的危险因素引起了广泛关注。APS是一种以微血栓形成和引起自发性流产为特点的自身免疫性疾病,能够导致流产、早产等不良妊娠结局[48]–[49]。在APS患者中,能够抑制血液凝固的靶蛋白β2 glycoprotein-Ⅰ(β2GPⅠ)对应的β2GPI依赖型抗双磷脂酰甘油抗体水平普遍升高[50]。这种β2GPI复合体对应的自身抗体可以引发动静脉的血栓症,在胎盘中引起胎盘梗塞,导致习惯性流产[51]。研究[52]发现,牙周病患者血清中的β2GPI依赖性抗双磷脂酰甘油抗体水平明显高于牙周健康者。动物实验[53]发现,接种与β2GPI的标志肽链TLRVYK具有相似肽链结构的细菌后,小鼠体内所产生的抗体会与β2GPI发生交叉反应,形成β2GPI复合体,导致血栓和流产。
有研究[54]通过查找Swiss-prot数据库发现牙周致病菌中的P. gingivalis、A. actinomycetemcomitans和T. denticola具有与β2GPI的标志肽链TLRVYK高度相似的肽链,有发生分子拟态的可能性。分子拟态是用于描述给定形式肽链与其结构相似的另一种肽链“错误联接”在一起并导致“异常”的可能性[55]。基于此提出了牙周病原菌的感染以及牙周病由来的自身抗体引发机体发生APS的症状,从而导致早产低体重儿的假设:宿主一旦感染P. gingivalis等牙周致病菌,因细菌具有与β2GPI高度同源的肽链,致病菌的血清IgG抗体通过分子拟态与TLRVYK发生免疫反应,抗体结合到β2GPI上,抑制β2GPI的抗凝功能,导致APS,引发早产。目前已经证实[54],A. actinomycetemcomitans上的SIRVYK肽链对应的anti-SIRVKY 抗体可以与TLRVYK发生交叉反应;在早产孕妇的血清中发现了升高的anti-SIRVKY抗体,且口腔中定植的P. gingivalis检出率也较健康组增高。
目前,对APS与牙周病的研究报告很少,针对孕妇的牙周病与APS相关性的调查研究更是如此,需要投入更多研究来证实分子拟态这一新的假说。
尽管牙周病与不良妊娠结局的关系仍不明确,但众多研究表明两者间存在一定的相关性,对早产低体重儿的预防已成为围产期医学的研究热点,如果能够通过牙周治疗降低早产风险,提高我国优生率,具有重要的现实意义。但目前为止,孕期牙周治疗能否降低早产的风险具有争议,笔者建议,对准备怀孕的妇女,在妊娠前应进行牙周检查,控制牙周炎症,并做好平时的口腔卫生维护,最大程度减少牙周疾病的发生及牙周疾病对妊娠结局的影响。
Funding Statement
[基金项目] 国家自然科学基金青年基金(81600875);成都市科技局科技惠民技术研发项目(2015-HM01-00088-SF);四川大学青年教师科研启动基金(2016SCU11047)
Supported by: Youth Fund of National Natural Science Foundation of China (81600875); Science and Technology Huimin Technology Research Project of Chengdu Science and Technology Bureau (2015-HM01-00088-SF); Sichuan University Junior Faculty Research Fund (2016SCU11047).
References
- 1.Dietrich T, Sharma P, Walter C, et al. The epidemiological evidence behind the association between periodontitis and incident atherosclerotic cardiovascular disease[J] J Periodontol. 2013;84(4 Suppl):S70–S84. doi: 10.1902/jop.2013.134008. [DOI] [PubMed] [Google Scholar]
- 2.Gurav AN. Management of diabolical diabetes mellitus and periodontitis nexus: are we doing enough[J] World J Diabetes. 2016;7(4):50–66. doi: 10.4239/wjd.v7.i4.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Zeng XT, Tu ML, Liu DY, et al. Periodontal disease and risk of chronic obstructive pulmonary disease: a meta-analysis of observational studies[J] PLoS ONE. 2012;7(10):e46508. doi: 10.1371/journal.pone.0046508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Suvan J, D'Aiuto F, Moles DR, et al. Association between overweight/obesity and periodontitis in adults. A systematic review[J] Obes Rev. 2011;12(5):e381–e404. doi: 10.1111/j.1467-789X.2010.00808.x. [DOI] [PubMed] [Google Scholar]
- 5.Kaur S, White S, Bartold PM. Periodontal disease and rheumatoid arthritis: a systematic review[J] J Dent Res. 2013;92(5):399–408. doi: 10.1177/0022034513483142. [DOI] [PubMed] [Google Scholar]
- 6.Shanthi V, Vanka A, Bhambal A, et al. Association of pregnant women periodontal status to preterm and low-birth weight babies: a systematic and evidence-based review[J] Dent Res J. 2012;9(4):368–380. [PMC free article] [PubMed] [Google Scholar]
- 7.World Health Organization. International statistical classificiation of diseases and related health problems. Tenth revision[EB/OL] [2017-01-28]. http://www.who.int/classifications/icd/ICD-10_2nd_ed_volume2.pdf.
- 8.McCormick MC. The contribution of low birth weight to infant mortality and childhood morbidity[J] N Engl J Med. 1985;312(2):82–90. doi: 10.1056/NEJM198501103120204. [DOI] [PubMed] [Google Scholar]
- 9.Katz J, Lee AC, Kozuki N, et al. Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: a pooled country analysis[J] Lancet. 2013;382(9890):417–425. doi: 10.1016/S0140-6736(13)60993-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Reedy NJ. Born too soon: the continuing challenge of pre-term labor and birth in the United States[J] J Midwifery Womens Health. 2007;52(3):281–290. doi: 10.1016/j.jmwh.2007.02.022. [DOI] [PubMed] [Google Scholar]
- 11.Blencowe H, Cousens S, Oestergaard MZ, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications[J] Lancet. 2012;379(9832):2162–2172. doi: 10.1016/S0140-6736(12)60820-4. [DOI] [PubMed] [Google Scholar]
- 12.Koullali B, Oudijk MA, Nijman TA, et al. Risk assessment and management to prevent preterm birth[J] Semin Fetal Neonatal Med. 2016;21(2):80–88. doi: 10.1016/j.siny.2016.01.005. [DOI] [PubMed] [Google Scholar]
- 13.Offenbacher S, Katz V, Fertik G, et al. Periodontal infection as a possible risk factor for preterm low birth weight[J] J Periodontol. 1996;67(10 Suppl):1103–1113. doi: 10.1902/jop.1996.67.10s.1103. [DOI] [PubMed] [Google Scholar]
- 14.Jeffcoat MK, Geurs NC, Reddy MS, et al. Periodontal infection and preterm birth: results of a prospective study[J] J Am Dent Assoc. 2001;132(7):875–880. doi: 10.14219/jada.archive.2001.0299. [DOI] [PubMed] [Google Scholar]
- 15.Rajapakse PS, Nagarathne M, Chandrasekra KB, et al. Periodontal disease and prematurity among non-smoking Sri Lankan women[J] J Dent Res. 2005;84(3):274–277. doi: 10.1177/154405910508400313. [DOI] [PubMed] [Google Scholar]
- 16.Piscoya MD, Ximenes RA, Silva GM, et al. Maternal periodontitis as a risk factor for prematurity[J] Pediatr Int. 2012;54(1):68–75. doi: 10.1111/j.1442-200X.2011.03502.x. [DOI] [PubMed] [Google Scholar]
- 17.Jacob PS, Nath S. Periodontitis among poor rural Indian mothers increases the risk of low birth weight babies: a hospital-based case control study[J] J Periodontal Implant Sci. 2014;44(2):85–93. doi: 10.5051/jpis.2014.44.2.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Chambrone L, Guglielmetti MR, Pannuti CM, et al. Evidence grade associating periodontitis to preterm birth and/or low birth weight:Ⅰ. A systematic review of prospective cohort studies[J] J Clin Periodontol. 2011;38(9):795–808. doi: 10.1111/j.1600-051X.2011.01755.x. [DOI] [PubMed] [Google Scholar]
- 19.Davenport ES, Williams CE, Sterne JA, et al. Maternal periodontal disease and preterm low birthweight: case-control study[J] J Dent Res. 2002;81(5):313–318. doi: 10.1177/154405910208100505. [DOI] [PubMed] [Google Scholar]
- 20.Moore S, Ide M, Coward PY, et al. A prospective study to investigate the relationship between periodontal disease and adverse pregnancy outcome[J] Br Dent J. 2004;197(5):251–258, 247. doi: 10.1038/sj.bdj.4811620. [DOI] [PubMed] [Google Scholar]
- 21.Wang YL, Liou JD, Pan WL. Association between maternal periodontal disease and preterm delivery and low birth weight[J] Taiwan J Obstet Gynecol. 2013;52(1):71–76. doi: 10.1016/j.tjog.2013.01.011. [DOI] [PubMed] [Google Scholar]
- 22.Manau C, Echeverria A, Agueda A, et al. Periodontal disease definition may determine the association between periodontitis and pregnancy outcomes[J] J Clin Periodontol. 2008;35(5):385–397. doi: 10.1111/j.1600-051X.2008.01222.x. [DOI] [PubMed] [Google Scholar]
- 23.López NJ, Da Silva I, Ipinza J, et al. Periodontal therapy reduces the rate of preterm low birth weight in women with pregnancy-associated gingivitis[J] J Periodontol. 2005;76(11 Suppl):2144–2153. doi: 10.1902/jop.2005.76.11-S.2144. [DOI] [PubMed] [Google Scholar]
- 24.Michalowicz BS, Hodges JS, DiAngelis AJ, et al. Treatment of periodontal disease and the risk of preterm birth[J] N Engl J Med. 2006;355(18):1885–1894. doi: 10.1056/NEJMoa062249. [DOI] [PubMed] [Google Scholar]
- 25.Penova-Veselinovic B, Keelan JA, Wang CA, et al. Changes in inflammatory mediators in gingival crevicular fluid following periodontal disease treatment in pregnancy: relationship to adverse pregnancy outcome[J] J Reprod Immunol. 2015;112:1–10. doi: 10.1016/j.jri.2015.05.002. [DOI] [PubMed] [Google Scholar]
- 26.Boutin A, Demers S, Roberge S, et al. Treatment of periodontal disease and prevention of preterm birth: systematic review and meta-analysis[J] Am J Perinatol. 2013;30(7):537–544. doi: 10.1055/s-0032-1329687. [DOI] [PubMed] [Google Scholar]
- 27.Kim AJ, Lo AJ, Pullin DA, et al. Scaling and root planing treatment for periodontitis to reduce preterm birth and low birth weight: a systematic review and meta-analysis of randomized controlled trials[J] J Periodontol. 2012;83(12):1508–1519. doi: 10.1902/jop.2012.110636. [DOI] [PubMed] [Google Scholar]
- 28.Page RC. The pathobiology of periodontal diseases may affect systemic diseases: inversion of a paradigm[J] Ann Periodontol. 1998;3(1):108–120. doi: 10.1902/annals.1998.3.1.108. [DOI] [PubMed] [Google Scholar]
- 29.Farbod F, Kanaan H, Farbod J. Infective endocarditis and antibiotic prophylaxis prior to dental/oral procedures: latest revision to the guidelines by the American Heart Association published April 2007[J] Int J Oral Maxillofac Surg. 2009;38(6):626–631. doi: 10.1016/j.ijom.2009.03.717. [DOI] [PubMed] [Google Scholar]
- 30.Collins JG, Kirtland BC, Arnold RR, et al. Experimental periodontitis retards fetal hamster growth[J] J Dent Res. 1995;74(Spec):158. [Google Scholar]
- 31.Han YW, Redline RW, Li M, et al. Fusobacterium nucleatum induces premature and term stillbirths in pregnant mice: implication of oral bacteria in preterm birth[J] Infect Immun. 2004;72(4):2272–2279. doi: 10.1128/IAI.72.4.2272-2279.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Yeo A, Smith MA, Lin D, et al. Campylobacter rectus mediates growth restriction in pregnant mice[J] J Periodontol. 2005;76(4):551–557. doi: 10.1902/jop.2005.76.4.551. [DOI] [PubMed] [Google Scholar]
- 33.Ercan E, Eratalay K, Deren O, et al. Evaluation of periodontal pathogens in amniotic fluid and the role of periodontal disease in pre-term birth and low birth weight[J] Acta Odontol Scand. 2013;71(3/4):553–559. doi: 10.3109/00016357.2012.697576. [DOI] [PubMed] [Google Scholar]
- 34.Mitchell-Lewis D, Engebretson SP, Chen J, et al. Periodontal infections and pre-term birth: early findings from a cohort of young minority women in New York[J] Eur J Oral Sci. 2001;109(1):34–39. doi: 10.1034/j.1600-0722.2001.00966.x. [DOI] [PubMed] [Google Scholar]
- 35.Han YW, Fardini Y, Chen C, et al. Term stillbirth caused by oral Fusobacterium nucleatum[J] Obstet Gynecol. 2010;115(2 Pt 2):442–445. doi: 10.1097/AOG.0b013e3181cb9955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Usin MM, Menso J, Rodríguez VI, et al. Association between maternal periodontitis and preterm and/or low birth weight infants in normal pregnancies[J] J Matern Fetal Neonatal Med. 2016;29(1):115–119. doi: 10.3109/14767058.2014.987751. [DOI] [PubMed] [Google Scholar]
- 37.Haram K, Mortensen JH, Wollen AL. Preterm delivery: an overview[J] Acta Obstet Gynecol Scand. 2003;82(8):687–704. doi: 10.1034/j.1600-0412.2003.00218.x. [DOI] [PubMed] [Google Scholar]
- 38.Sugita N, Kobayashi T, Kikuchi A, et al. Immunoregulatory gene polymorphisms in Japanese women with preterm births and periodontitis[J] J Reprod Immunol. 2012;93(2):94–101. doi: 10.1016/j.jri.2012.01.005. [DOI] [PubMed] [Google Scholar]
- 39.Lohsoonthorn V, Qiu C, Williams MA. Maternal serum C-reactive protein concentrations in early pregnancy and subsequent risk of preterm delivery[J] Clin Biochem. 2007;40(5/6):330–335. doi: 10.1016/j.clinbiochem.2006.11.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Stadelmann P, Alessandri R, Eick S, et al. The potential association between gingival crevicular fluid inflammatory mediators and adverse pregnancy outcomes: a systematic review[J] Clin Oral Investig. 2013;17(6):1453–1463. doi: 10.1007/s00784-013-0952-0. [DOI] [PubMed] [Google Scholar]
- 41.Pressman EK, Thornburg LL, Glantz JC, et al. Inflammatory cytokines and antioxidants in midtrimester amniotic fluid: correlation with pregnancy outcome[J] Am J Obstet Gynecol. 2011;204(2):155.e1–155.e7. doi: 10.1016/j.ajog.2010.08.064. [DOI] [PubMed] [Google Scholar]
- 42.Riley JK, Nelson DM. Toll-like receptors in pregnancy disorders and placental dysfunction[J] Clin Rev Allergy Immunol. 2010;39(3):185–193. doi: 10.1007/s12016-009-8178-2. [DOI] [PubMed] [Google Scholar]
- 43.Hutchinson JL, Rajagopal SP, Yuan M, et al. Lipopolysaccharide promotes contraction of uterine myocytes via activation of Rho/ROCK signaling pathways[J] FASEB J. 2014;28(1):94–105. doi: 10.1096/fj.13-237040. [DOI] [PubMed] [Google Scholar]
- 44.Madianos PN, Lieff S, Murtha AP, et al. Maternal periodontitis and prematurity. Part Ⅱ: maternal infection and fetal exposure[J] Ann Periodontol. 2001;6(1):175–182. doi: 10.1902/annals.2001.6.1.175. [DOI] [PubMed] [Google Scholar]
- 45.Lin D, Moss K, Beck JD, et al. Persistently high levels of periodontal pathogens associated with preterm pregnancy outcome[J] J Periodontol. 2007;78(5):833–841. doi: 10.1902/jop.2007.060201. [DOI] [PubMed] [Google Scholar]
- 46.Dasanayake AP, Boyd D, Madianos PN, et al. The association between Porphyromonas gingivalis-specific maternal serum IgG and low birth weight[J] J Periodontol. 2001;72(11):1491–1497. doi: 10.1902/jop.2001.72.11.1491. [DOI] [PubMed] [Google Scholar]
- 47.Boggess KA, Moss K, Madianos P, et al. Fetal immune response to oral pathogens and risk of preterm birth[J] Am J Obstet Gynecol. 2005;193(3 Pt 2):1121–1126. doi: 10.1016/j.ajog.2005.05.050. [DOI] [PubMed] [Google Scholar]
- 48.Smadja D, Gaussem P, Roncal C, et al. Arterial and venous thrombosis is associated with different angiogenic cytokine patterns in patients with antiphospholipid syndrome[J] Lupus. 2010;19(7):837–843. doi: 10.1177/0961203309360985. [DOI] [PubMed] [Google Scholar]
- 49.Abrahams VM. Mechanisms of antiphospholipid antibody-associated pregnancy complications[J] Thromb Res. 2009;124(5):521–525. doi: 10.1016/j.thromres.2009.07.011. [DOI] [PubMed] [Google Scholar]
- 50.Kandiah DA, Krilis SA. Beta 2-glycoproteinⅠ[J] Lupus. 1994;3(4):207–212. doi: 10.1177/096120339400300401. [DOI] [PubMed] [Google Scholar]
- 51.Bakimer R, Fishman P, Blank M, et al. Induction of primary antiphospholipid syndrome in mice by immunization with a human monoclonal anticardiolipin antibody (H-3)[J] J Clin Invest. 1992;89(5):1558–1563. doi: 10.1172/JCI115749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Schenkein HA, Berry CR, Burmeister JA, et al. Anti-cardiolipin antibodies in sera from patients with periodontitis[J] J Dent Res. 2003;82(11):919–922. doi: 10.1177/154405910308201114. [DOI] [PubMed] [Google Scholar]
- 53.Blank M, Krause I, Fridkin M, et al. Bacterial induction of autoantibodies to beta2-glycoprotein-Ⅰaccounts for the infectious etiology of antiphospholipid syndrome[J] J Clin Invest. 2002;109(6):797–804. doi: 10.1172/JCI12337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Ye C, Katagiri S, Miyasaka N, et al. The anti-phospholipid antibody-dependent and independent effects of periodontopathic bacteria on threatened preterm labor and preterm birth[J] Arch Gynecol Obstet. 2013;288(1):65–72. doi: 10.1007/s00404-013-2741-z. [DOI] [PubMed] [Google Scholar]
- 55.Wang D, Nagasawa T, Chen Y, et al. Molecular mimicry of Aggregatibacter actinomycetemcomitans with beta2 glycoprotein I[J] Oral Microbiol Immunol. 2008;23(5):401–405. doi: 10.1111/j.1399-302X.2008.00442.x. [DOI] [PubMed] [Google Scholar]