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Introduction

Prion diseases, or transmissible spongiform encephalopathies, 
are neurodegenerative diseases that include Creutzfeldt-Jakob dis-
ease (CJD), Gerstmann-Sträussler-Scheinker Syndrome (GSS) 
and fatal familial insomnia. Human prion diseases are extremely 
heterogeneous in terms of their clinical presentations and bio-
molecular characteristics.1-3 Different prion diseases can only be 
identified upon examination of the prion protein (PrP) aggregates 
in neuronal tissues.4,5 Despite differences in neuropathology, all 
prion diseases share the same causative agent, which is the scrapie 
form of the prion protein, PrPSc. The normal cellular prion protein 
(PrPC) is innocuous, but it may undergo misfolding and convert 
into PrPSc,6,7 which is toxic and infectious. Currently, the PrPSc 
conversion mechanism is not well understood, nor is there a clear 
understanding of how different types of prion diseases occur.

PrPC is expressed in neuronal cells as a membrane bound 
protein with two glycosylation sites. The N-terminus (resi-
dues 23–127) is highly flexible, but the C-terminal globular 
domain (residues 128–228) is structured in various species.8-11 
The C-terminal globular domain consists of three helices (HA, 
HB, and HC) and two short β-strands (S1 and S2) (Fig. 1). At 
the C-terminus, there is a glycosylphosphatidylinositol (GPI)-
anchor that tethers the PrPC to the cell membrane. Transgenic 
mice expressing full-length mouse PrP without the GPI anchor 
produces mostly unglycosylated PrP.12,13 In addition, these mice 
are susceptible to prion diseases.12 This suggests that the protein-
only portion of PrP (without glycosylation and the GPI anchor) 
is sufficient for PrPSc formation in mice. Proteinase K digestion 
of PrPSc aggregates in human patients indicate that residues 
~90–230 are protected and thus these residues are considered to 
be the core of PrPSc.14 The PrP fragment with residues 90–230 
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Prion diseases are caused by misfolding and aggregation of the prion protein (PrP). Pathogenic mutations such 
as Y218N and e196K are known to cause Gerstmann-sträussler-scheinker syndrome and creutzfeldt-Jakob disease, 
respectively. here we describe molecular dynamics simulations of these mutant proteins to better characterize the 
detailed conformational effects of these sequence substitutions. Our results indicate that the mutations disrupt the 
wild-type native PrPc structure and cause misfolding. Y218N reduced hydrophobic packing around the X-loop (residues 
165–171), and e196K abolished an important wild-type salt bridge. While differences in the mutation site led PrP mutants 
to misfold along different pathways, we observed multiple traits of misfolding that were common to both mutants. 
common traits of misfolding included: (1) detachment of the short helix (ha) from the PrP core; (2) exposure of side chain 
F198; and (3) formation of a nonnative strand at the N-terminus. The effect of the e196K mutation directly abolished the 
wild-type salt bridge e196-R156, which further destabilized the F198 hydrophobic pocket and ha. The Y218N mutation 
propagated its effect by increasing the hB-hc interhelical angle, which in turn disrupted the packing around F198. 
Furthermore, a nonnative contact formed between e221 and s132 on the s1-ha loop, which offered a direct mechanism 
for disrupting the hydrophobic packing between the s1-ha loop and hc. While there were common misfolding features 
shared between Y218N and e196K, the differences in the orientation of hB and hc and the X-loop conformation might 
provide a structural basis for identifying different prion strains.
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(PrP90–230) contains critical residues in the N-terminus that 
are required for PrPSc conversion.15-18 In vivo studies have also 
demonstrated that recombinant fibrils of PrP90–230 in mouse 
are infectious.19 These findings suggest that PrP90–230 is the 
core of PrPSc that carries infectivity.

Nearly all (> 30) of the known single point pathogenic muta-
tions in the human PrP are within residues 90–230.20-23 More 

than 20 of these single point pathogenic mutations are spread 
throughout the HB and HC regions. The lack of convergence 
into a hot spot of mutations makes it difficult to rationalize 
the mutation-induced misfolding pathway, as different muta-
tions have different local effects on PrP dynamics. While several 
unfolding studies indicate that single point pathogenic muta-
tions destabilize the PrPC structure, some mutations increase 
or have little effect on the thermodynamic stability of PrPC.24,25 
Molecular dynamics (MD) studies of pathogenic mutations in 
the PrP hydrophobic core26 have identified misfolded structures 
in agreement with earlier MD studies of the human wild-type 
(WT) PrP using low pH to trigger misfolding.27,28

Disease-associated mutations Y218N29 and E196K30 cause 
GSS and familial CJD, respectively. These two mutants are dif-
ferent in terms of the amino acids mutated, and the mutation 
sites are separated by ~29 Å. Here, we used MD simulations to 
study the PrP dynamics of these two disease-associated mutants. 
We observed common misfolding events in agreement with 
previous MD studies of other pathogenic mutants.26 However, 
certain structural features and the pathways of misfolding were 
different for Y218N and E196K. The structural differences pro-
vide us with a structure-based hypothesis regarding the forma-
tion of different prion strains.

Results

Major conformational change in the globular domain
The Cα root-mean-square-deviation (RMSD) of the  

globular domain was used to monitor conformational changes 
in the structured region of PrP (Fig. 2). At the end of 50 ns, 
Y218N simulations 1 and 3 reached much higher Cα RMSDs 
(~3.5 Å) than that of the average from the WT simulations (1.9 
Å). The Cα RMSD of simulation 2 at the end was about 2.5 
Å, which was ~0.5 Å higher than that of the average WT simu-
lations. Previous low pH MD simulations of human PrP have 
shown that the HA helix is highly mobile and can contribute 
to the high globular Cα RMSD.31 To monitor the HA move-
ment with respect to the core of the protein, the Cα RMSD 
of HA was measured (Fig. 2) by using the stable core domain 
(residues 174–186 and 200–219) for alignment. The increasing 
Cα RMSD of HA in simulations 1 and 3 correlated with the 
increasing globular Cα RMSD. Simulation 2 had relatively low 
Cα RMSD of HA compared with that of the other simulations 
and the average WT Cα RMSD. Such Cα RMSD trend indi-
cates that simulation 2 preserved the native HA orientation with 
respect to the core unlike the other two simulations of Y218N. 
The globular domain Cα RMSD of E196K was similar to that 
of the WT. The Cα RMSD of HA in E196K simulations stayed 
close to the average WT value, in contrast to Y218N. However, 
there was an increase in Cα RMSD of HA in E196K simulation 
1 after 48 ns, which indicated a sudden HA movement with 
respect to the core.

HA detachment from core in mutant simulations
HA detached from the protein core in simulation 3 of Y218N 

(Fig. 3A). The hydrophobic contacts between S1-HA loop and 
HC (42 atom contacts) in the starting structure were the main 

Figure 1. Native structure of the human PrP. starting structure for WT 
PrP MD simulations. structure of residues 128–228 was obtained from 
PDB 1QLX. structure of the flexible N-terminus (residues 90–127), and 
c-terminus (residues 229–230) were constructed manually. helices hB 
and hc are colored in blue and ha is colored in cyan. Native strands (s1 
and s2) are colored in dark red. The remaining loop regions are in gray. 
Mutation sites are indicated in orange.

Figure 2. cα RMsD of the globular domain (residues 128–228) and ha 
(residues 144–156) for Y218N and e196K simulations (three simulations 
of each). The globular domain was aligned for calculating cα RMsD resi-
dues 128–228, and the core domain (residues 174–186 and 200–219) was 
aligned for calculating cα RMsD residues 144–156. Window averages 
(100 ps) of the cα RMsD are shown for all mutant simulations. The aver-
age cα RMsD value over the last 25 ns of the four WT simulations are 
shown as dashed lines.
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attractive force that held HA and HC together. Within the first 
nanosecond, D202 formed a hydrogen bond with Y149. At 5 ns, 
a rare hydrogen bond between S132 and E221 formed. This con-
tact was only observed in WT simulations 0.57% of the time. 
At 18 ns, HA moved away from HC, which occurred ~13 ns 
after the formation of the S132-E221 nonnative hydrogen bond. 
The HA movement was characterized by three events that hap-
pened cooperatively: 1) a change from 3

10
-helix to α-helix at the 

C-terminus of HA (Fig. 3B); 2) the loss of a hydrogen bond 
between D202 and Y149 (Fig. 3C); and 3) the loss of hydropho-
bic contacts between the S1-HA loop and HC (Fig. 3D). HA 
remained in this nonnative position for the rest of the simulation.

The starting structure of E196K had only minute differ-
ences from Y218N (Cα RMSD = 0.140), except that the mutant 
E196K had a new salt bridge between K196 and D202. The WT 
salt bridge between E196-R156 was abolished due to the E196K 
mutation. The hydrogen bond between D202 and Y149 formed 

within the first nanosecond of the simulation. After 48 ns in 
simulation 3, HA detached from HC (Fig. 4A) and was charac-
terized by the three aforementioned events (Fig. 4B, C, and D). 
The nonnative salt bridge K196-D202 was particularly promi-
nent in E196K simulation 3 and lasted throughout the course 
of the simulation (Fig. 4C). Since the D202 side chain was 
occupied with K196, and the side chain of residue 196 became 
positively charged, R156 lost both of its WT salt bridge partners 
(residue 202 and 196). The salt bridge between D202 and R156 
was occupied on average 1.84% of the time from 25–50 ns of 
the E196K simulations, unlike WT and Y218N (36% and 59% 
respectively). The remaining neighbors available for interacting 
with R156 were on HA. In particular, the side chain of N153 
was available to interact with R156 (Fig. 4C).

Hydrophobic core packing and F198 solvent exposure
Both mutants had a more exposed hydrophobic core than that 

of WT, except for one simulation of E196K (Fig. 5). Exposure of 

Figure 3. ha detachment from the PrP core in Y218N simulation 3. (A) structures taken at 0.1, 5, 20, and 40.9 ns of the simulation. Residues s132, Y149, 
D202 and e221 are shown as sticks. Residues shown in gray sticks with a transparent surface are P137, I139, F141 on the s1-ha loop and M205, V209, M213 
on hc. (B) DssP analysis on the protein secondary structure. (C) contacts between pairs of listed residues over 50 ns in simulation. (D) Window average 
(100 ps) of the number of contacts between residues P137, I139, F141 on the s1-ha loop and M205, V209, M213 on hc.
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the hydrophobic core was mainly attributed to HA movement, 
X-loop hydrophobic packing and also the solvent exposure of 
F198. The average solvent accessible surface area (SASA) of 
F198 in WT was only 34 Å2, while some of the mutant simu-
lations achieved > 150 Å2 at some time points. F198 can be 
roughly classified into three conformational states by its sol-
vent exposure: native state (SASA ~20 Å2) with F198 side chain 
buried between HB and HC; semi-exposed state (SASA ~80 
Å2) with one side of the phenyl group exposed to solvent; and, 
fully exposed state (SASA ~140 Å2) with the side chain fully 

exposed to solvent. These conformations of F198 are illustrated 
in Figure 6 for WT, Y218N and E196K.

In WT simulations, F198 was mostly in its native state 
and occasionally visited the semi-exposed state. The back-
bone conformation of F198 was stabilized by its neighbor 
T199, which formed a capping box interaction32 with D202 at 
the N-terminus of HC (Fig. 6A). The WT native salt bridge 
between E196 and R156 also stabilized the backbone conforma-
tion of the HB-HC loop. This WT native salt bridge was pre-
served in Y218N (Fig. 6B). However, for E196K, the mutation 

Figure 4. ha detachment from the PrP core in e196K simulation 1. (A) structures taken at 0.1, 47, and 48 ns. Residues D202, Y149, R156 and K196 are shown 
as sticks. Residues shown in gray sticks with a transparent Van der Waals radius are P137, I139, F141 on the s1-ha loop and M205, V209, M213 on hc.  
(B) DssP analysis on the protein secondary structure. (C) contacts between pairs of listed residues over 50 ns in simulation. (D) Window average (100 ps) 
of the number of contacts between residues P137, I139, F141 on the s1-ha loop and M205, V209, M213 on hc.
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at residue 196 abolished the WT native salt bridge and directly 
triggered a mechanism that destabilized the conformation of 
F198 (Fig. 6C). K196 and D202 formed a salt bridge in the 
starting structure. This new salt bridge caused the side chain of 
K196 to clash with F198. At 1.6 ns, the F198 side chain reached 
the semi-exposed state due to steric repulsion with K196. As 
R156 formed another salt bridge with D202 at 17.2ns, K196 
was pushed out of the protein core and the side chain of F198 
became fully exposed. The backbone conformation of the 
HB-HC loop was vulnerable at the very beginning, because 
K196 formed a salt bridge with D202, thereby preventing the 
formation of the capping box interaction between T199 and 
D202.

Y218N simulations also had a disrupted F198 hydropho-
bic pocket, but via an indirect mechanism, which involved an 
increase in the interhelical angle between HB and HC (Fig. 7A). 
In general, Y218N had a larger interhelical angle than that of 
WT and E196K (Fig. 7B). The 25–50 ns average WT, E196K 
and Y218N HB-HC interhelical angles were 131°, 133°, and 
140°, respectively. In simulation 1 of Y218N, the interhelical 
angle increased at the beginning. The C-terminus of HB and 
N-terminus of HC approached each other. F198 was pushed to 

Figure 5. solvent accessible surface area of the hydrophobic core and 
F198 in the Y218N and e196K simulations. The hydrophobic core was 
defined as residues 134, 137, 139, 141, 158, 161, 175, 176, 179, 180, 184, 198, 
203, 205, 206, 209, 210, and 213–215. Window averages (100 ps) of the 
sasa are shown for all mutant simulations. The average sasa values over 
the last 25 ns of the WT simulations are shown in dashed lines.

Figure 6. salt bridge network around the F198 side chain. (A, B and C) structures at specific time points of the WT simulation 2, Y218N simulation 1, and 
e196K simulation 2, respectively. secondary structure color schemes are cyan for ha, blue for hB and hc, where the transparent helix is hc. Residues  
e/K196, F198, T199, D202, and R156 are shown in sticks and hydrogen bonds are indicated with dotted blue lines. Far Right, relevant contacts are plotted 
over time.
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the semi-exposed state by HB and HC at 0.2 ns. The increase 
in the interhelical angle also accommodated backbone confor-
mational changes within the HB-HC loop, which allowed F198 
to become fully exposed at 18 ns. Interestingly, the native WT 
salt bridge between E196 and R156 was preserved in Y218N. 
Despite this, the capping box interaction between T199 and 
D202 was lost. The difference in the salt bridge network and 
interhelical angles between E196K and Y218N demonstrated 
the different pathways for disrupting of the hydrophobic pack-
ing around F198 in these two mutants.

Loss of X-loop hydrophobic packing in Y218N
While E196K and WT displayed comparable compactness 

at the X-loop, Y218N lost significant X-loop packing inter-
actions as a result of the mutation (Fig. 8A). To measure the 
hydrophobic packing at the X-loop, the number of atom con-
tacts, consisting of a list of bulky residues around the X-loop 
(including residue Y/N218 and M166), were quantified for all 
simulations (Fig. 8B). Both WT and E196K had about 80 atom 
contacts and M166 was always buried between HB and HC. 
Y218N tended to have less atomic contacts compared with WT 
and E196K. Simulation 2 of Y218N had an exceptionally low 
number of atom contacts (~28 contacts). This was caused by the 
change in the X-loop conformation at 1.1 ns such that M166 
became exposed to solvent.

Nonnative strand at the flexible N-terminus
A nonnative strand (denoted as E1) at the f lexible N-terminus 

formed (Fig. 9A) within the first 3 ns of both Y218N and 
E196K simulations. Once formed, E1 was stable throughout 
the rest of the simulation (Fig. 9B). E1 formed independently 

of other conversion events (e.g., the large HA movement and 
the disrupted hydrophobic core). E1 used the native strand, S1, 
as a nucleation site and formed ≥ 4 backbone hydrogen bonds 
with S1. There were stable β-bulges in E1, which formed short, 
α-strand-like backbone conformations that are believed to be 
early steps of amyloidosis.33,34 The residues that participated in 
E1 formation were in the range of 117–124, which overlap with 
critical amyloidogenic sequences in the N-terminus, such as the 
112-AGAAAAGA-119 palindrome15 and the neurotoxic peptide 
106–126.16,35

Discussion

Using MD simulations, we studied the effects of two patho-
genic mutants Y218N and E196K on the structure and dynamics 
of the human PrP. The mutation sites caused local differences 
between the mutants. The E196K mutation eliminated the WT 
salt bridge E196-R156. The Y218N mutation resulted in a loss 
of hydrophobic packing around the X-loop region. Despite local 
differences around the mutation sites, the two mutants shared 
common traits of misfolding: 1) HA detached from PrP core; 
2) F198 left its native position and became solvent exposed; and 
3) the f lexible N-terminus formed a new strand. Here we have 
shown that each mutant has a unique pathway for triggering 
common misfolding events.

Repositioning of the HA helix
In mutant Y218N simulations, the mutation caused HC to 

bend toward the S1-HA loop; E221 then formed a stable con-
tact with S132 on the S1-HA loop (Fig. 3). The S132-E221 
contact was only scarcely (< 1% simulation time) populated 
in WT simulations. This nonnative contact offered a pathway 

Figure  7. change in interhelical angle between hB and hc in Y218N. 
(A) structures in simulation 1 of Y218N. Only the hB-hc loop (gray), hB 
and hc (blue) are shown. The red helices represent the starting struc-
ture of residues 179–194 and 200–214, where the interhelical angle is 
defined between those two fragments of hB and hc. Interhelical angles 
between hB and hc for each snapshot are indicated. (B) Inter helical 
angle between hB and hc at 100 ps granularity. The average interhelical 
angle of the last 25 ns of the WT simulations is shown in dashed lines.

Figure 8. Loss of hydrophobic packing around in the X-loop in Y218N 
simulations. (A) Relevant residues involved in X-loop packing interac-
tions are shown in sticks for simulation 2 of WT, Y218N, and e196K (B) 
Number of atom contacts between residues Y163, M166, Y169, F175,  
Y/N218, and Y225. Window averages (100 ps) of number of atom con-
tacts are shown for all mutant simulations. The average number of atom 
contacts of the last 25 ns of the WT simulations is shown in dashed lines.
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for the mutation to affect the S1-HA loop conformation. The 
change in the S1-HA loop conformation disrupts the hydropho-
bic packing between the S1-HA loop and HC, which therefore 
destabilizes HA. The importance of the hydrophobic packing 
between HC and the S1-HA loop has been verified by muta-
tional studies on PrP: polar residue mutations of M206 and 
M213 reduce thermal stability and enhance amyloidogenicity 
of PrPC.36

The native WT salt bridge E196-R156 tethers HA to the 
protein core. This salt bridge, which is present in NMR struc-
tures of human PrP,11,37 is also highly populated in several MD 
studies.38-41 Low pH MD simulations of human PrP resulted 
in loss of the E196-R156 salt bridge and HA detachment from 
HC.31 The E196K mutation abolished the native WT salt 
bridge due to the charge repulsion between K196 and R156. 
However, the effect of the mutation was not observed immedi-
ately. Hydrophobic packing between the S1-HA loop and HC, 

and also the hydrogen bond between D202 and Y149, held HA 
intact until later in simulation when HA detached from HC 
(Fig. 4).

The stability of HA can be influenced by low pH,42 chemical 
denaturants,43 temperature and pressure.44 Our previous MD 
studies first suggest that HA significantly changes its position 
at low pH.27,28,31,38,45 Furthermore, two other groups have also 
used computational methods and found HA to be significantly 
repositioned.46,47 HA repositioning has also been observed in 
MD simulations of pathogenic PrP mutants.26 These studies 
suggest that the repositioned HA conformation is permissible 
and that it can be induced under destabilizing conditions. An 
engineered disulfide bond (by double-cysteine mutants) that 
tethers HA to HC prevents formation of PrP oligomers48 and 
fibrils in in vitro experiments.49 In vivo cell studies indicate that 
these double-cysteine mutants do not propagate PrPSc forma-
tion.49 These experimental findings suggest that separation of 

Figure 9. Formation of nonnative strand (e1) in both Y218N and e196K simulations. (A) Representative e1 structure for each mutant. Backbone of e1 is 
shown in sticks with carbon atoms colored in orange. carbon atoms of the extended native sheets are colored in red. hydrogen bonds between strands 
are indicated with the cyan dashed lines. The N- and c-terminal residues for e1 and the extended s1 strand (in red) are labeled. (B) secondary structure 
analysis of simulation 2 of Y218N and simulation 3 of e196K.
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HA and HC is necessary for oligomerization and propagation of 
PrPSc, and thereby support our computational observation that  
repositioning of HA is an important hallmark for PrPSc 
conversion.

Exposure of F198 and disruption of the hydrophobic 
pocket between HB and HC

The E196K mutation had a direct impact on the hydropho-
bic core of the PrP (Fig. 6C). F198 became fully exposed due to 
its steric repulsion with K196. The N-capping box interaction at 
HC was lost; furthermore K196 formed a stable salt bridge with 
D202 which prevented the side chain hydrogen bond between 
D202 and T199. Loss of the capping box interaction allowed 
for more conformational freedom of the HB-HC loop (residues 
194–199), thus facilitating disruption of the F198 hydrophobic 
pocket.

Y218N also adapted a different HB-HC loop conformation 
that exposed F198 to the solvent, but by a very different mech-
anism. The Y218N mutation resulted in a significant loss of 
hydrophobic packing around the X-loop (Fig. 8). The mutation 
also caused a significant increase in the HB-HC interhelical 
angle (Fig. 7), so that HB and HC became more antiparallel to 
each other. As the interhelical angle increased, the hydropho-
bic pocket that contained F198 was disrupted and so was the 
HB-HC loop. The HB-HC loop adopted a nonnative confor-
mation and F198 became exposed to solvent.

Riek et al. previously predicted that a pathogenic muta-
tion, F198S, introduces a destabilizing void volume in the PrP 
core.32 Subsequent thermodynamic studies are in agreement 
with this prediction,24 and MD studies have also indicated that 
F198S destabilizes PrPC.26,50,51 In vitro results confirmed that 
F198S has a higher tendency to misfold.52,53 From these stud-
ies of F198S, we conclude that the loss of hydrophobic pack-
ing around F198 facilitates misfolding. Denaturation studies 
indicate that stable NOE contacts exist between F198-M206 
and F198-Y157 in bovine PrP,53 which confirms the stabilizing 
effect of F198 in the native state. The binding of a PrPSc-specific 
antibody to residues 187–206 suggests that the loop between 
HB and HC adapts a misfolded/altered conformation in PrPSc.54 
Thus, change in the HB-HC loop conformation and exposure 
of F198 to solvent appears to be another likely hallmark for 
PrPSc conversion.

Putative aggregation sites: the flexible N-terminus and the 
S1-HA loop

In both mutants, we observed significant movement of HA 
and the S1-HA loop. The number of hydrophobic contacts 
between the S1-HA loop and HC were significantly reduced as 
HA detached from HC. Mutation studies on the PrP have con-
firmed that the hydrophobic packing between the S1-HA loop 
and HC are crucial for the native PrPC thermal stability.36,55 
The loss of hydrophobic packing between HC and the S1-HA 
loop allowed higher conformational f lexibility for the S1-HA. 
High pressure unfolding experiments performed on the PrP 
have also identified that residues I139, H140, and F141 in the 
S1-HA loop have a higher conformational variability/heteroge-
neity,56 which might be related to the early steps of misfolding. 

According to studies on prion peptic fragments, the sequence 
of residues 136–140 is critical for aggregation.57 In particular, 
alanine mutations at hydrophobic residues P137 and I139 com-
pletely halted conversion to PrPSc. This indicates that the hydro-
phobic residues in the S1-HA loop play an important role in 
misfolding and aggregation. Abalos et al. further hypothesized 
that residues 136–140 participate in the PrPSc-PrPC binding 
interface and also the process of misfolding.57 This hypothesis 
is in agreement with our first simulations of PrPC conversion27 
and our later protofibril models.28,58 We hypothesize that, dur-
ing PrPSc oligomerization, the S1-HA loop forms a new strand 
by docking with a neighboring PrPSc unit. The new strand at 
S1-HA loop is one of the putative aggregation site denoted as 
E4.28

In vivo experiments show that the f lexible N-terminus in 
PrPC is required for extracellular β-oligomers to induce cellu-
lar toxicity.59,60 In vitro studies indicate that residues from the 
f lexible N-terminus are critical for aggregation, such as residues 
98–110,57 the 112-AGAAAAGA-119 palindrome,15 neurotoxic 
peptide 106–126,16,35 polybasic region (residues 94–110),18 
and the mini prion 106.17,61 Interestingly, there is a pathogenic 
Y145Stop mutant,62,63 which suggests that a neurotoxic confor-
mation is encoded in the PrP residues before HA. Our simula-
tions detected the formation of the E1 strand at the f lexible 
N-terminus, which has been observed in previous MD simu-
lations of other pathogenic mutants26,64 and also under acidic 
pH conditions.27,28,31 These data suggest that the N-terminus 
is critical to the conversion process and must be included in 
simulation studies of PrP. In our spiral model for PrPSc soluble 
oligomers,28 the PrPSc monomeric units have a nonnative strand 
formed at the N-terminus, which is docked to E4 (the S1-HA 
loop). We hypothesize that the nonnative strand formed at the 
N-terminus is an aggregation site for PrPSc.

Structural basis for different prion strains
Although both Y218N and E196K differ only by two residues 

in their primary sequences, they share significant differences 
in the X-loop conformation and HB-HC interhelical angle. A 
single point mutation (D167S) changing the structure of the 
X-loop in mouse PrP can cause prion disease,65 but the rela-
tionship between structure, sequence and disease phenotype is 
still obscure. Previously, we have proposed that the differences 
in X-loop conformations provide a structural basis for prion 
disease resistance.66 This is likewise applicable to explain the 
differences between Y218N and E196K, as they cause two dif-
ferent prion diseases, GSS and familial CJD, respectively. The 
spiral model28 places the X-loop between PrP monomer inter-
faces; the HB-HC helical orientation also plays a significant 
role in the complementarity of the PrPSc intermolecular binding 
surface. Antibody-binding studies67,68 and X-ray diffraction69,70 
have confirmed that distinct prion strains have different con-
formations. While it is premature to conclude that the dif-
ferences in the X-loop conformation and HB-HC orientation 
would cause different pathogenesis, the significant structural 
differences between Y218N and E196K supports the hypothesis 
of a structural basis for different prion strains.
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Materials and Methods

The NMR structure of human PrP,11 PDB code 1QLX, was 
used as the starting structure for the globular domain (residues 
128–228). Since residues 90–230 the critical core of PrPSc,14 and 
the PrP fragment with residues 90–230 (PrP90–230) contains 
critical residues in the N-terminus that are required for PrPSc con-
version,15-17 the missing flexible N-terminus (residues 90–127) 
and residues 229–230, were manually built as described previ-
ously.31 Briefly, limited NOE restraints were used to model resi-
dues 90–127 such that it can move freely in any direction with 
respect to the globular domain. The protocol for generating start-
ing structures of PrP mutants was described previously.64 First, 
the side chain at the mutation site was replaced, using our rota-
mer library71 built from the Dynameomics database.72 Multiple 
structures with different rotamers at the mutation site were gen-
erated, followed by 100 steps of steepest descent minimization on 
all side chains. Finally, the lowest energy structure was selected as 
the starting structure.

Simulations were performed at neutral pH and 310 K. The 
protonation states of histidine residues were consistent with our 
previous study at neutral pH,31, i.e., only H144 was protonated 
on Nδ1; all other histidine residues were protonated on Nε2. All 
side chains of aspartate and glutamate residues were negatively 
charged. Side chains of lysine and arginine residues were posi-
tively charged. MD simulations were performed using in lucem 
Molecular Mechanics (ilmm),73 which uses the Levitt et al. force 
field74 and F3C water model.75 The NVE microcanonical ensem-
ble was employed. Previously developed protocols were used to 

prepare and perform the simulations.76 Triplicate simulations of 
50 ns each were generated for each mutant. Four simulations of 
50 ns were generated for WT. A different random number seed 
was used for each simulation to generate replicates to improve 
sampling.

Most of the analysis methods have been described previously.26 
The Cα RMSD of the globular domain was aligned to and calcu-
lated for residues 128–228. The Cα RMSD of HA was aligned 
to the stable core (residues 174–186 and 200–219) and calculated 
for residues 144–156. SASA was calculated by ilmm using the 
Lee and Richards method.77 Secondary structure analysis was 
performed by using the DSSP (Define Secondary Structure of 
Proteins) algorithm78 but with additional definitions.79 Heavy 
atoms were considered to be in contact when they are less than 
4.6 Å apart, or 5.4 Å apart if both heavy atoms were carbon atoms. 
Hydrogen bonds were defined by a 2.6 Å distance between a 
hydrogen atom and an acceptor and the donor-H-acceptor angle 
must be within 45° of linearity. In order to calculate inter-helical 
angle between HB and HC, Cα atoms of residues 179–194 (on 
HB) and 200–214 (on HC) were fit to two vectors and the angle 
between the two vectors was measured.
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