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Abstract

Recently introduced stationary dedicated cardiac SPECT scanners provide new opportunities to 

quantify myocardial blood flow (MBF) using dynamic SPECT. However, comparing to PET, the 

low sensitivity of SPECT scanners affects MBF quantification due to the high noise level, 

especially for 201Thallium (201Tl) due to its typically low injected dose. The conventional indirect 

method for generating parametric images typically starts by reconstructing a time series of frame 

images followed by fitting the time-activity curve (TAC) for each voxel or segment with an 

appropriate kinetic model. The indirect method is simple and easy to implement; however, it 

usually suffers from substantial image noise that could also lead to bias. In this paper, we 

developed a list mode direct parametric image reconstruction algorithm to substantially reduce 

Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/
publications/rights/index.html for more information.
* luyao.shi@yale.edu. 

HHS Public Access
Author manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 January 01.

Published in final edited form as:
IEEE Trans Med Imaging. 2020 January ; 39(1): 119–128. doi:10.1109/TMI.2019.2921969.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ieee.org/publications_standards/publications/rights/index.html
http://www.ieee.org/publications_standards/publications/rights/index.html


noise in MBF quantification using dynamic SPECT and allow for patient radiation dose reduction. 

GPU-based parallel computing was used to achieve more than 2000-fold acceleration. The 

proposed method was evaluated in both simulation and in vivo canine studies. Compared with the 

indirect method, the proposed direct method achieved substantially lower image noise and 

variability, particularly at large number of iterations and at low-count levels.
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direct parametric reconstruction; cardiac SPECT; myocardial blood flow; GPU acceleration

I. INTRODUCTION

THE noninvasive quantification of absolute myocardial blood flow (MBF) with dynamic 

PET or SPECT provides an important nuclear medicine approach for evaluating and 

managing coronary artery disease, particularly for multi-vessel diseases [1, 2]. The non-

invasive quantification of MBF and the coronary flow reserve (CFR) calculated based on the 

rest and peak stress MBFs provide an objective assessment of the physiological severity and 

functional consequences of coronary stenosis. MBF is usually measured using PET with 

radiotracers such as [13N]NH3, 15O-water, or 82Rb [3–8]. However, PET MBF is not broadly 

available due to the relatively small installation base and the need for an onsite cyclotron (for 

[13N] NH3 and 15O-water) to produce tracers, and the relatively high scan cost. SPECT 

scanners, with a much larger installation base and convenient cost-effective long half-life 

tracers, have the potential to provide absolute MBF quantification to benefit a much larger 

patient population.

The current indirect data processing pipeline for MBF quantification typically using PET, or 

sometimes SPECT, is to reconstruct individual dynamic frames and fit each voxel’s or 

segment’s time activity curve (TAC) with a kinetic model [9, 10]. This conventional 

approach, however, is subject to several factors that limit the quantification accuracy and 

precision: 1) it requires selection of the duration of each frame, involving a choice between 

collecting longer frames with better counting statistics but poor temporal resolution, or 

shorter frames that are noisier [11]; 2) It requires an accurate model of the noise distribution 

in each voxel of the reconstructed image, which is a significant challenge as the noise in 

reconstructed images is space-variant, object dependent, and complicated by inter-voxel 

correlations [12, 13]; and 3) Within-frame subject’s respiratory and cardiac motions should 

be corrected. Alternatively, many direct approaches have been proposed [14–22] to produce 

parametric images from emission raw data without the reconstruction and analysis of 

individual frames.

Using direct reconstruction to estimate parametric images has been extensively studied for 

PET [17–20, 23–29]. Due to the slow gantry rotation of conventional SPECT scanners, 

potentially leading to inconsistent projection data, existing SPECT direct parametric 

reconstruction methods either estimate TACs based on splines [30, 31] or factor analysis [22, 

31] and later require compartmental model fitting as a second-step or only estimate kinetic 

parameters for specific ROIs [21, 31]. No voxel-by-voxel based reconstruction that directly 
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estimate kinetic parameters from list mode data has been explored to date. A voxel-by-voxel 

direct parametric reconstruction has the potential to perform high-resolution parametric 

imaging so that small perfusion defects might be better detected.

99mTc-sestamibi, 99mTc-tetrofosmin and 201Tl are the three most widely used perfusion 

tracers in cardiac SPECT studies. 99mTc-sestamibi and 99mTc-tetrofosmin both have 

relatively low extraction fractions (EFs) at high flow rates, while 201Tl has a more ideal 

higher EF. However, 201Tl has a long half-life (73 hours) so that clinically, this tracer is used 

with low injected dose (<2 mCi) to minimize patient radiation exposure. Comparing to 
99mTc-labeled tracers, this leads to increased image noise and reduced image quality, in 

particular for dynamic 201Tl SPECT. While the above mentioned conventional indirect 

parametric imaging method will amplify image noise, the direct parametric reconstruction 

approach is expected to reduce image noise and improve the quantification accuracy for all 

three SPECT tracers, particularly for 201Tl.

In this paper, we developed and evaluated a GPU-based list mode direct reconstruction 

method that produces parametric images directly from SPECT list mode data for a dedicated 

cardiac stationary SPECT with 19 pinhole collimators and CZT detectors (GE Healthcare 

NM 530c/570c). The initial investigation was first presented in [32]. This paper is organized 

as follows. Section II describes the algorithm development, including static list mode 

reconstruction validation, kinetic 1-tissue (1T) model and derivation of the direct list mode 

reconstruction algorithm. Algorithm evaluation methods for simulation and in vivo canine 

data are described in Section III and the results are shown in Section IV. Discussion and 

conclusions follow in Sections V and VI.

II. ALGORITHM DEVELOPMENT

A. Static List Mode Reconstruction

We first implemented static list mode reconstruction for validation purpose. The list mode 

EM update equation [33] is:

λj
(n + 1) =

λj
(n)

Qj k

ckjAkLkwk
T j′ckj′AkLkλj′

(n) + TSk
(1)

where λj is the count rate at voxel j (counts/s/cm3), n is iteration number; k ∈ (i, t) is the 

index of each event, which includes the information about event location on detector i at 

time t; system matrix element ckj is the contribution of voxel j to event k; Ak is the 

attenuation of event k; Lk is the decay correction factor at time t, which is defined as Lt = e
−t·log2/t1/2 where t1/2 is the half-life of the tracer; wk is each event’s uniformity correction 

value; T is the duration of the scan; Sk is the scatter rate estimation for detector bin i for the 

scan duration; Qj is the voxel sensitivity, which is calculated as Qj = ∑i cijAiLt .

Scatter was first estimated in projection domain for all indirectly reconstructed dynamic 

frames using Fan’s method [34] to compensate for the low-energy tail of CZT detectors. The 

estimated scatter projections in each dynamic frame were then divided by the frame duration 

to obtain the scatter rate estimation. About 1% of the detector pixels were bad pixels, which 
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did not record any counts but the locations of the bad pixels were recorded and known. For 

projection-based reconstruction, bad pixel count values were interpolated using neighboring 

pixels. For list mode reconstruction, based on the projection-based interpolation, the 

corresponding number of events in bad pixels were appended to the list mode data randomly 

before reconstruction. We validated our list mode reconstruction implementation against 

currently used projection-based reconstruction, prior to the implementation of list mode 

direct reconstruction. As a sample 20-min static 201Tl canine scan shown in Fig 1, the static 

list mode reconstruction obtained nearly identical results as the projection-based 

reconstruction.

B. Kinetic Model for 201Tl SPECT

In this paper we used the 1T compartmental model because this model has been shown to 

provide accurate MBF estimation for 201Tl [9, 10]. The 1T compartment model was used to 

describe the time-varying signal in the myocardium CM(t) = CL(t) ⊗ K1e−k2t, where CM(t) 
(counts/s/cm3) is the myocardium signal, CL(t) (counts/s/mL) is the left ventricle (LV) input 

function, K1 is tracer influx rate (mL·min−1·cm−3), k2 is tracer efflux rate (min−1), and is the 

convolution operator. To account for blood volume and spillover from LV into the 

myocardium caused by partial volume and motion, the TAC derived from SPECT image is 

modeled as

CT(t) = (1 − V L)CM(t) + V LCL(t)
= (1 − V L)K1CL(t) ⊗ e−k2t + V LCL(t) (2)

where VL is the LV blood volume fraction term. The term (1 − VL) K1 is estimated as a 

lumped uncorrected quantity referred to as K1,uncorr. Based on these two terms, the partial 

volume, motion and blood volume corrected K1 can be computed as:

K1 = K1, uncorr/(1 − V L) (3)

C. Direct Parametric Reconstruction Algorithm

For the expectation-maximization (EM) direct reconstruction of the kinetic parameters in 

section II.B, a non-homogeneous Poisson-distributed complete data space Xijtτr was defined 

[25, 26] as the counts collected at detector bin i in time bin t emitted from voxel j from “sub- 

region” r and where the tracer input that produced that event was delivered at time τ. For the 

1T model, this random variable is :

Xijtτr ∼ Poission( Δ tcijAiLtθrjFrjtτ) (4)

where the argument in the parenthesis is the mean of the Poisson process for the complete 

data Xijtτr. Δt is the duration of time bin (1 ms in our implementation). The linear “region” 

index r can take 2 values (0, 1) to account for contributions from myocardium and LV blood 

pool to the signal, such that θrj = [K1,uncorr, j, VL, j] and Frjtτ = [CL(τ)e−k2, j(t−τ), CL(t)], 
where θ0j = K1,uncorr, j, θ1j = VL, j, F0jtτ = CL(τ)e−k2,j(t−τ) and F1jtτ = CL(t). The 

corresponding complete data log-likelihood for this Poisson random variable (omitting 

constant terms) is given by:
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logf(x θ, k2) = ijtτrxijtτrlog( Δ tcijAiLtθrjFrjtτ) − Δ tcijAiLtθrjFrjtτ (5)

where xijtτr denotes a realization of random variable Xijtτr. The E-step calculates the 

complete data expectation at iteration n, given the measured data Y, the current parameter 

estimates θ(n) and k2
(n) and the estimated scatter rate S:

E Xijtτr Y it, θr, j
(n), k2, j

(n) , Sit = yit
Δ tcijAiLtθrj

(n)Frjtτ
(n)

r′j′τ′ Δ tcij′AiLtθr′j′
(n) Fr′j′tτ′

(n) + Δ tSit

= Mijtτr
(n)

(6)

where yit is the number of counts detected from detector bin i in time bin t. Replacing xijtτr 

in (5) by the complete data expectation, we have the expectation of the complete data log-

likelihood, conditional on the current parameter estimates for each voxel:

E logf(X θ, k2) Y , θ(n), k2
(n), S = ijtτrMijtτr

(n) log( Δ tcijAiLtθrjFrjtτ) −
Δ tcijAiLtθrjFrjtτ

(7)

which is what M-step is maximizing. Taking partial derivatives with respect to θ:

∂
∂θr, j

 E logf(X θ, k2) Y , θ(n), k2
(n), S =

itτ

Mijtτr
(n)

θrj
− Δ tcijAiLtFrjtτ (8)

and setting them to zero, the update equations for θ can be obtained:

θr, j
(n + 1) = itτ Mijtτr

(n)  

Δ t itτ cijAiLtFrjtτ
(n + 1) (9)

where θ0j = K1,uncorr, j, and θ1j = VL, j. Taking partial derivatives with respect to k2 and 

setting to zero

∂
∂k2, j

E[logf(X |θ, k2) |Y , θ(n), k2
(n), S] =

itτ
(t − τ) Δ tcijAiLtK1, uncorr, jCL(τ

)e−k2, j(t − τ) − (t − τ)Mijtτ0
(n) = 0 .

(10)

Inserting the K1,uncorr, j update (9) into (10) yields

tτ (t − τ)LtCL(τ)e−k2, j(t − τ)

tτ LtCL(τ)e−k2, j(t − τ) = itτ (t − τ)Mijtτ0
(n)

itτ Mijtτ0
(n) (11)

The right-hand side of (11) is dependent on the measured data Y, the current parameter 

estimates θ(n) and k2
(n) and the estimated scatter rate S. The left-hand of the equation is 

defined as H(k2) and is a function of k2 and the input function. Since H(k2) is independent of 
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the measured data, it can be pre-computed from the known input function for a range of k2 

values. Note that H(k2) is a monotonically decreasing function [25], and k2 can be updated 

by

k2, j
(n + 1) = H−1 itτ (t − τ)Mijtτ0

(n)

itτ Mijtτ0
(n) (12)

where the inverse function was fitted by a fifth-order polynomial function [24] in our 

studies. More details on solving for k2 can be found in [24]. In this implementation, 500 k2 

values uniformly sampled ranging from 0.001 to 0.6 min−1 were used and fitted to build the 

pre-computed table. The k2 range was selected based on the indirect results of the canine 

studies. Note that other studies, e.g., with different tracers, may have different k2 ranges. In 

those cases, different k2 ranges should be selected accordingly.

Scatter estimation and bad pixel correction were applied in both direct and indirect 

parametric reconstructions. For the indirect method, the list mode data were first rebinned 

into multiple dynamic frame projections. Scatter estimation and bad pixel correction were 

applied to each dynamic frame. For the direct method, scatter rate estimation was obtained 

by dividing the scatter projection estimates by the frame duration for each dynamic frame; 

bad pixel events were also estimated and appended to the list mode data for each dynamic 

frame in the same way as for the static reconstructions described in section II.A.

D. GPU Acceleration

The system matrix in this work was pre-computed with the collimator-detector response 

functions incorporated. The size of the system matrix was 245000 × 27648 for 

reconstruction of image size 70 × 70 × 50 with 32 × 32 × 27 detector projection entries. 

However, the system matrix size is relatively large and was stored in sparse matrix format 

(25GB in dense matrix format compared to 165MB in Compressed Sparse Column (CSC) 

format). For projection-based reconstruction, forward and back projection only need to be 

performed once in each iteration, and can be performed by matrix multiplication easily in 

Matlab. However, list mode reconstruction requires frequently accessing elements from the 

system matrix, and is extremely time consuming so that the total computation time was not 

clinically feasible in Matlab. For acceleration, the reconstruction code was written in C++ 

and a linear algebra library (Armadillo) was used for general sparse/dense vector and matrix 

operations. In (8) and (10), the kinetic forward projection terms, itτ (t − τ)Mijtτr
(n)  and 

itτ Mijtτr
(n) ,, involve a large number of sparse vector summations (K, the number of events, 

typically around 10 Million in our studies), with the length of the sparse vector equal to the 

number of pixels, which is 245000 in this study. To reduce the computation time to an 

acceptable level, GPU-based parallel computing was implemented with the help of NVIDIA 

CUDA Sparse Matrix library (cuSPARSE), using a GeForce GTX 1080Ti GPU card. This 

GPU implementation combined with various sparse matrix libraries achieved an over 2000-

fold acceleration compared to the previous CPU implementation, leading to a computation 

time of ~9 min per iteration for a 10 Million count study.
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III. ALGORITHM EVALUATION

A. Evaluation with Simulated Canine Data

The proposed method was evaluated using a realistic 4D dynamic simulation based on dog 

anatomy. Six regions were included in the simulation, including myocardium (MYO), left 

ventricle blood pool (LVBP), right ventricle blood pool (RVBP), lung, liver, and body. The 

six regions were manually segmented from the contrast-enhanced CT images of a beagle 

dog (about 10kg weight) described in Section III.B, and then down-sampled to match 

SPECT voxel size (4 mm3), as shown in Fig. 2(a). The tracer dynamics for all the regions 

except for MYO were measured and fitted based on a 20 min 201Tl SPECT study of the 

same dog, which are partially shown (the first 300 s) in Fig. 2(b). The 1-Tissue (1T) model 

was used to describe the kinetics in the myocardium, with K1, k2 and VL set to 0.4 mL·min
−1, 0.1 min−1 and 0.2, respectively. The time activity curve of LVBP was used as the plasma 

input function.

The simulation was based on the geometry of a dedicated cardiac stationary SPECT (GE 

Healthcare NM 530c/570c) with a pre-computed system matrix. A 20-min list mode dataset 

was created by forward projecting the 4D phantom to acquire the mean of projection counts 

for each detector bin (DB) at each time point (sampled every 6 s), then the corresponding 

number of events for that DB and time bin (TB) were generated and appended to the list 

mode data in a randomized order. In this quasi-noise-free simulation, the mean count in each 

DB was rounded to the closest integer prior to the conversion of list mode data. For each 

sampling time point, the time tags of all the events for a DB were simulated as uniformly 

distributed within that 6-s time bin. In addition to the quasi-noise-free simulation, full-count 

and 25% low-count noisy data were also simulated. To generate noisy list mode data, 

Poisson random variables were generated based on the mean projections of each DB before 

appending the corresponding events to the list mode data. The 25% low-count list mode data 

were generated by uniformly down-sampling the full-count noisy list mode data by a factor 

of 1/4 in the order of event arrival time. Ten noisy replicates were generated for both full-

count and 25% low-count noisy simulations. The total number of counts was about 14 

million for the full-count simulation. The effects of scatter and motion were not included in 

the simulations in order to isolate the evaluation of the reconstruction algorithm.

The proposed direct method was compared with the indirect approach following 3D MLEM 

image reconstruction of each dynamic frame (6×10 s, 2×120 s, 3×300 s). For the indirect 

method, the basis function approach [35] was used to compute the parametric maps with 

weighted least squares (WLS) fitting, where 800 basis functions corresponding to k2 values 

ranging from .001 to 0.6 min−1 were used. Thus, the indirect method is not susceptible to 

local minimum within that range of k2 values since an exhaustive search was performed for 

the only nonlinear parameter of this model. For the noise-free simulation, uniform weights 

were used. For the noisy simulations, weights were calculated as [36]: 

wf = Lf
2 ∕ (Nf × DCF2), where Lf is the fth frame duration, Nf is the count number for the fth 

frame and DCF is the decay correction factor. For the direct method, uniform initialization 

was used and the initial values of K1,uncorr, k2 and VL were set to 0.3 mL·min−1·cm−3, 0.1 
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min−1 and 0.2, respectively. For the indirect method, we initialized the MLEM-based frame 

reconstructions with a uniform map (1 counts/s/voxel), as in our routine use.

For quantitative analysis, percent bias and coefficient of variation (CoV) were evaluated for 

both direct and indirect methods. The percent bias per voxel was calculated as 

Biasθj = (θ‒j − θj
true) ∕ θj

true × 100 %, where θj
true is the ground truth parameter (θ can be K1, 

K1,uncorr, k2 or VL) value in voxel j and θ‒j = (Σrepθj, rep) ∕ Nrep is the mean parameter 

estimate across replicates, where rep is the replicate index and Nrep is the number of 

replicates. Voxel-wise CoV per parameter was calculated across replicates as: 

CoVθj = σj ∕ θj
true × 100 %, where σj = r (θrep, j − θj)2

Nrep − 1  is the standard deviation (STD) across 

replicates at voxel j. Two volumes of interest (VOI) were considered for simulated data: the 

whole LV myocardium (of 706 voxels) and the LV myocardium excluding the septum 

(LVES) wall (of 385 voxels), since septum wall can be more prone to the model mismatch 

error propagated from RVBP. The voxel-wise percent bias and CoV were averaged over the 

voxels within each VOI to obtain mean bias and mean CoV for each parameter: 

Biasθ = ( j ∈ VOIBiasθj)/NVOI and CoV θ = ( j ∈ VOICoVθj)/NVOI,, where NVOI is the 

number of voxels in the VOI.

B. Evaluation with in vivo Canine Data

Four dynamic SPECT studies were performed on 2 beagles, each scanned twice with at least 

1 month between the two scans, using ~2mCi injection of 201Tl and a GE Discovery NM/CT 

570c hybrid SPECT/CT system. Three studies were rest scans and the other one was a rest 

scan obtained 30 min after adenosine administration. The scan duration was 20 min, and 

11.2±1.7 million events within the energy window 71± 5% keV were recorded. The direct 

method was compared with the indirect method at full-count level and 25% low-count level. 

Low-count data were generated by uniformly down-sampling the original high-count data. 

Four low-count replicates were generated for each study. For the indirect method, 11 frames 

(6×10 s, 2×120 s, 3×300 s) were reconstructed and WLS was used to estimate each voxel’s 

parameters with data weighted as described above. Both methods applied CT-based 

attenuation correction, scatter correction, bad pixel and decay corrections. The direct and 

indirect results from iteration 80 were compared in the in vivo studies, since 80th iteration is 

typically used for perfusion studies in clinical settings, and our simulation studies (Fig. 4) 

showed that both direct and indirect methods resulted in similar K1 parameter convergence 

trends. For both direct and indirect methods, the same initialization schemes as in the 

simulation studies were used, which were described in section III. A.

To estimate the input functions for both methods, the average values in the LV blood pool 

VOI (of 69 ± 16 voxels for the four canine images) applied to the 11 frame-based 

reconstructions were used. The measured data points after the peak were fitted with a two-

exponential function for smoothing purpose, and the data points before the peak were 

linearly interpolated (see Fig. 2(b) for an example of the processed curve). The fitted input 

function curves were then resampled every 6 s to obtain the discrete input functions for both 

direct and indirect methods.
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The reconstructed parametric images were evaluated with the whole LV myocardium VOI 

(of 342±103 voxels for the four canine studies), and the results are given in Section IV. For 

100%-count studies, the mean parameters within the VOIs were calculated as 

θ = ( j ∈ VOIθj)/NV OI. For each dog’s low-count studieŝ the VOI average of the 4 

replicates’ mean parameter θ = ( j ∈ V OI θj)/NV OI and CoV parameter 

CoV θ = ( j ∈ VOICoVθj)/NV OI, were calculated to evaluate bias and noise, where 

θ‒j = (Σrepθj, rep) ∕ Nrep, CoVθj = σj ∕ θ‒j × 100 %, and σj =
Σrep(θrep, j − θ‒j)2

Nrep − 1 . We also 

evaluated the impact of low-dose input functions on both direct and indirect results. For 

25%-count studies, input functions estimated from both 100%-count study and their own 

25%-count studies were used and compared.

IV. RESULTS

A. Results for Simulated Canine Data

Fig. 3 shows the K1 parametric images generated by direct and indirect methods for the 

three groups: noise free, 100% full-count and 25% low-count noisy group. The k2 

parametric images can be found in Fig. S1 in the supplementary materials (available in the 

supplementary files /multimedia tab). For the two noisy groups, one noisy replicate sample 

image, the mean image and the STD images of the 10 replicates are given. The images were 

compared at iteration 80 and iteration 200. It can be observed that at lower count levels and 

higher iterations, the indirect results are severely corrupted by noise, and the shape of 

myocardium can no longer be well identified. In contrast, the direct results provided much 

lower image noise. Note that the direct results at iteration 200 even have lower noise 

compared to the indirect results at iteration 80.

Fig. 4 shows the K1, K1,uncorr, k2 and VL values as a function of iteration for both direct and 

indirect methods in the noise-free simulation. The values were measured as the average 

within the VOI on the parametric images. It can be seen from Fig. 4 (a) that in the whole LV 

myocardium, even though the VL term for the direct method was higher compared with that 

of the indirect method, the K1 values of both methods were close to the ground truth of 0.4 

mL·min−1·cm−3. For the LVES myocardium VOI, the VL term for both direct and indirect 

methods were closer to the ground truth of 0.2, and direct method’s K1 results were closer to 

the ground truth compared to the indirect method. The parameter percent biases at 400 

iterations are given in Table I, where bias was calculated as (θiter400 − θtrue)/θtrue × 100%.

Fig. 5 shows the measured K1 results for the full-count and 25%-count noisy simulations, 

where the mean bias (y-axis) vs. mean CoV (x-axis) plots were given. It can be observed 

that for both simulations and both VOIs, the direct method obtained smaller bias and smaller 

CoV as compared to the indirect method.

B. Results for in vivo Canine Data

Fig. 6 shows the K1 parametric images (the k2 parametric images can be found in Fig. S2 in 

the supplementary materials that are available in the supplementary files /multimedia tab) of 
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one canine study (Canine Study 4 in Table II) generated by direct and indirect methods for 

100% and 25%-count levels. For 25%-count studies, the four replicates’ mean and STD 

images, and one replicate’s sample images are shown. The images were compared at 

iteration 80. At both 100% and 25%-count levels using input functions obtained from LV 

VOI quantification using corresponding dynamic frames, the direct method yielded less 

noisy results compared to the indirect method.

Fig. 7 shows the VOI-based parameters measurements at various iterations for a sample 

canine study (Canine Study 4 in Table II) for both direct and indirect methods. The first row 

in Fig. 7 shows the 25%-count results using an input function estimated from the 100% 

study. It can be seen that for both direct and indirect methods, the mean of the low-count 

replicates was close to that of the 100%-count result, with minor variations as shown by the 

shaded area. The second row shows the results using input functions estimated from the 

25%-count studies themselves. The broader spread of shaded area indicates that the cross-

replicates variability became larger due to the variability of input functions derived from 

noisy 25%-count data. In this study, bias was observed for the indirect method in the second 

row, as the mean plots of the replicates deviated from that of the 100%-count study. In 

contrast, for the direct method the mean plots of low-count replicates aligned well with the 

100%-count results.

A summary of all the four canine studies is shown in Table II. Only K1 values are given 

since these values are the most important parameter for the assessment of flow with this 

tracer. The values were averaged over the whole LV myocardium VOI. The definition of all 

the values were given in Section III. B. For the 100%-count studies, the direct results from 3 

out of the 4 canine studies showed slightly higher averaged K1 over VOI compared with the 

indirect results, which is consistent with the simulation results in Section IV.A. From the 

Co‒V θ values, it can be seen that the direct results had lower noise as compared to that of the 

indirect results. In the 25% low count studies with both direct and indirect methods, using 

input functions obtained from 100%-count studies resulted in lower parameter estimation 

variability, as indicated by the reduction in Co‒V θ. We observed in one direct result (Canine 

Study 3) and one indirect result (Canine Study 4) that using input functions obtained from 

100%-count studies resulted in parameter mean values θ substantially closer to the mean 

values θ‒ from the 100%-count results, when compared with using input functions obtained 

from the 25%-count studies. This can be seen in reviewing the percent difference values 

(θ − θ‒) ∕ θ‒ × 100 %. For the rest of the studies, the parameter mean values θ were very close 

to the mean values θ‒ derived from the 100%-count results. Note that the K1 value from 

Canine Study 3 is much higher than the other three canine studies, probably due to persistent 

vasodilation following administration of adenosine. This suggests that our implementation 

with precomputed k2 range is applicable to both rest and stress studies of the 201Tl tracer.

V. DISCUSSION

In this work, we developed a direct parametric image reconstruction method for a stationary 

cardiac SPECT scanner based on the 1T compartment model. unique aspects of this work 

include the development of the first event-by-event voxel-by-voxel based direct parametric 
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reconstruction for SPECT, the creation and assessment of realistic simulations, and the in 
vivo canine imaging studies with 201Tl, a myocardial perfusion tracer. Motion correction 

was not included in this paper, but event-by-event motion correction can be incorporated in 

the future, based on the current framework.

A. Initialization for direct method

In the simulation study for the direct method, we used the initialization values close to the 

true values. Actually, for both simulation and in vivo studies in this paper, we chose the 

initialization values for the direct method such that they represent the typical population-

averaged values based on the indirect canine study results. Since we used uniform 

initialization, the parametric images will re-distribute at the 1st iteration no matter what 

initial values we use, and then start to converge. To further investigate the impact of initial 

values on the convergence of our direct reconstruction, we used halved and doubled 

initialization values for K1,uncorr, k2 and VL in the simulation study. As can be seen in Fig. 8, 

even with different initialization values, the parameters converged to almost the same values 

within 20 iterations (smaller than 2.2% VOI mean value difference for all the parameters). 

At 80 iteration (not shown in the plots), the VOI mean value differences of all parameters 

using different initialization values are smaller than 0.7%. Therefore, we believe it is fair to 

use this set of initialization values since we only look at the parameters after 80 iterations.

B. Relative performance of direct and indirect methods

In the canine simulations we found that at 100% and 25%-count levels, the direct method 

achieved lower bias for K1 estimation as compared with the indirect method at matched 

iterations. Direct method also produced less noisy K1 images, especially at 25%-count level. 

In the 25%-count canine simulations (with ground truth input function), direct results had 

about 50% and 60% lower noise, in terms of Co‒V θ measured in the whole LV myocardium, 

compared to the indirect results at iterations 80 and 200, respectively. In the 25% count in 
vivo canine studies, direct results (with input functions obtained from 100%-count studies) 

had about 30% lower Co‒V θ compared to indirect results at the iteration 80.

Nonetheless, we found higher VL for the direct results in the whole myocardium region 

compared to those in the LVES myocardium region, as shown in Fig. 4 and Table I. This 

could be caused by the model mismatch error propagated from RVBP to the myocardium 

septum region, since the current model does not include the RV blood volume term. The RV 

term will be included in our model [26] in the next-step development.

We also found that direct results showed reduced contrast particularly in some high-contrast 

regions (e.g. the boundaries between myocardium and LV/RV cavities. We think this is due 

to the slower convergence of direct method compared to the indirect method, since the direct 

method solves a global optimization problem and the voxels are correlated, while in the 

indirect method each voxel is fitted independently. Some example plots of the log-likelihood 

functions for the direct method can be found in Fig. S4 in the supplementary materials 

(available in the supplementary files /multimedia tab). The slower convergence of direct 

method was also observed in the PET applications [26], where it was reported that the 

convergence was slower for the direct method than the conventional indirect algorithm, 
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particularly when initializing the direct algorithm with uniform parametric images. 

Alternatively, using early-iteration indirect results as the initialization for the direct method 

achieved the true contrast from early iterations, and was relatively stable over iterations. For 

our SPECT studies, accelerating the convergence and increasing the image contrast of the 

direct method using the alternate initialization scheme will be explored in the future studies.

In the simulation studies, a large k2 bias was observed for the direct method compared to the 

indirect method, even in the LVES VOI (Table I). This could be due to the residual model 

mismatch error propagated from organs other than the heart, including the nearby lung, liver 

and body regions. In addition, this scanner has a small focused field-of-view (FOV) of 

approximately 19 cm in diameter [37], which means that the out-of-FOV artifacts could also 

propagate into the myocardium region and affect the direct method. Interestingly, the direct 

method produced more accurate K1 estimation but less accurate k2 estimation in this case. In 

a simulation study (Fig. S3 and Table S1 in the supplementary materials, which are available 

in the supplementary files /multimedia tab) with a uniform cylinder phantom (with diameter 

12 cm and height 12 cm) which can fit into the focused FOV and was created based on 1T 

model, both direct and indirect methods produced very small K1 biases (2.4% for the direct 

method, 2.2% for the indirect method) and k2 biases (1.3% for direct method, 0.9% for 

indirect method), indicating that in an ideal scenario without the effect of kinetic model 

mismatch, error propagation and partial volume, the direct method can provide accurate 

parameter estimation. In this paper we focus on K1 bias and noise evaluation, since K1 is 

clinically more relevant for this myocardial flow tracer. A more detailed evaluation of k2 

parametric images is included in the supplemental materials (available in the supplementary 

files /multimedia tab).

C. K1 vs. K1,uncorr

As shown in equation (3), to correct for partial volume effects, K1,uncorr was divided by (1 − 

VL) to obtain K1. K1,uncorr values are less noisy (shown in Fig. 7, the shaded area of the 

K1,uncorr plots were narrower than the K1 plots) and are considered more useful for perfusion 

defect identification, and K1 estimates are more accurate for absolute myocardial flow 

quantification [26]. In PET imaging, it has been reported [26] that K1 images are more prone 

to outliers than K1,uncorr because of the possibility of dividing by a small quantity if VL is 

close to 1. Only voxels where 1 − VL > 0.01 were considered in their implementation to 

limit the influence of very large outliers. In SPECT imaging, however, such small threshold 

did not apply well. Due to stronger partial volume effect in SPECT imaging, in the regions 

close to the blood pool-myocardium interface, VL will be under-estimated and K1,uncorr will 

be over-estimated. Note that it is in the LV blood pool where VL is mostly close to 1. In 

SPECT imaging due to partial volume effect, it is common to find VL much smaller than 

0.99, such that the threshold of 0.01 does not work. Dividing an overestimated K1,uncorr over 

a small VL in the blood pool will strongly boost the K1 in the blood pool regions that are 

close to the myocardium. In our implementation, the threshold of 0.4 was empirically set 

and was found to be working well. Since VL rarely exceeds 0.6 in the myocardium, 

quantification of K1 in myocardium can be considered safe with the threshold of 0.4.
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D. Input Function

In this work, the image-derived input functions can be inaccurate especially in low-count 

data, since blood pool activities were measured from dynamic frames, making input 

functions sensitive to noise induced bias in short-frame reconstructions. In the in vivo canine 

studies, we have shown that input functions estimated from full-count studies produced 

results with smaller bias and better reproducibility for both direct and indirect methods, as 

compared with using the input functions estimated from low-count studies. Further 

improving input function estimation quality will be investigated in the future, including 

simultaneously estimating the input function during direct reconstruction [27].

E. Computation Time

In our current implementation, it takes about 9 min per iteration for a study with 10 million 

counts. For a typical in vivo study, 80 iterations would cost 12 hours, which is still too slow 

for clinical application. The main obstacle to accelerating our implementation is the system 

matrix. As mentioned in Section II.D, the system matrix is too large to store in dense matrix 

format (25GB for reconstruction image size of 70 × 70 × 50). While we were developing the 

proposed method, we only had 20 GB RAM memory on our computer and the system 

matrix could not be loaded into our RAM memory, therefore we had to use the system 

matrix in sparse matrix format. Matrix and vector operations are much slower with sparse 

matrix format compared to using dense matrix format, since pre-decoding is required before 

accessing elements from a sparse matrix. Even with GPU acceleration, the current 

implementation is still not fast enough. We are considering using a larger RAM memory 

(e.g. 64 GB) in our next-step development, so that the system matrix can be pre-loaded into 

the memory as dense matrix format, and the computation speed is expected to be 

significantly boosted to meet clinical need.

It has been reported [37] that for clinical studies with high extracardiac activity using this 

SPECT/CT scanner, a larger system matrix of 600×600 × 600mm3(150 × 150 × 150 voxels) 

that incorporates a CT derived body contour in the reconstruction could improve quantitative 

accuracy within the FOV. The size of this larger system matrix is 348 GB in dense matrix 

format, and 443 MB in sparse matrix format. When reconstructing a larger FOV, loading the 

larger system matrix into the RAM is not a viable option since most computers are not 

equipped with more than 348 GB RAM. In such a case, we would still need to rely on the 

sparse system matrix framework presented in this work.

F. Motion Correction

One of the advantages of using list-mode reconstruction is its potential to perform optimal 

motion correction in an event-by-event manner, which has been well demonstrated in PET, 

for both static and dynamic [25, 26, 38] reconstructions. Motion impact on the dynamic 

imaging, including both direct and indirect parametric imaging, is more complicated and 

less predictable than the static imaging, depending on the combination of motion magnitude 

and timing. Both under- and over-estimation of kinetic parameters can occur due to 

respiratory pattern change [39] and body motion [38]. Therefore, motion correction is 

critical in dynamic imaging. Specifically, for SPECT cardiac imaging, respiratory and 

voluntary body motion are of interest to be corrected [40], and both motions for the heart 

Shi et al. Page 13

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can be estimated as rigid motion locally. Respiratory motion can be estimated using INTEX 

(internal-external correlation) technique [41–43] while the body motion can be estimated 

using multi-frame-acquisition technique [38, 44]. To correct for the motions, prior to 

reconstruction, we can transform the coordinate of the detector to a new position according 

to the motion estimation. In other words, the original-space detector coordinate is mapped 

back to the position in the reference space, where the CT-based attenuation map was 

acquired [43]. Although motion correction has not yet been implemented in this paper, the 

list-mode event-by-event reconstruction framework established here can readily incorporate 

the event-by-event motion correction in the future work.

VI. CONCLUSION

In this paper, we developed a list mode direct parametric reconstruction framework for 

dynamic SPECT based on 1T compartment model. GPU-based parallel computing was 

implemented to achieve more than 2000-fold acceleration. Left-ventricle blood volume 

fraction term was incorporated to correct for partial volume effect, motion-induced crosstalk 

from blood pool to myocardium and blood volume. Evaluation using both simulation and in 
vivo canine studies showed that comparing to the indirect method, the direct method can 

achieve lower bias and variability, as well as lower noise for MBF estimation. The developed 

list mode implementation framework is ideal for incorporating event-by-event motion 

correction directly into the reconstruction. Future work will include incorporating right-

ventricle (RV) blood volume term to improve estimation in septum regions, improving input 

function estimation and optimizing our framework to further decrease the computation time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(a) Projection-based reconstruction; (b) List mode reconstruction; (c) difference image by 

percentage, for a sample 20-min static 201Tl canine scan. Corrections for attenuation, scatter, 

bad-pixel and decay were applied for both methods.
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Fig. 2. 
(a) The six body regions’ segmentation in SPECT resolution. Red: LVBP; blue: RVBP; 

white: myocardium; orange: lung; purple: liver; green: body. (b) The 201Tl tracer dynamics 

for the five body parts used in the simulation.
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Fig. 3. 
K1 parametric images generated from simulated canine data by direct and indirect methods 

for the three groups: noise free, 100%-count and 25%-count noisy simulations. For the two 

noisy groups, one replicate sample image, the mean image and the STD images of the 10 

replicates are given. The images were compared at iteration 80 and iteration 200.
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Fig. 4. 
Plots of measured K1, K1,uncorr (K1uc), k2 and VL parameters vs. iteration in two VOIs 

(whole LV myocardium and LVES myocardium) for the simulation study. The results were 

shown every 20 iterations for 400 iterations. Direct (circled lines) and indirect (crossed 

lines) methods were compared. Ground truth values were given by dashed lines.
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Fig. 5. 
Plots of mean bias as a function of mean CoV for two VOIs. For both 100%-count and 25%-

count simulations, direct and indirect methods were compared. Circled lines are the mean 

curves of the 10 replicates. The intervals between circles represent every 20 iterations, 

starting from iteration 20 at the lower-left corner, to iteration 200 at the top-right corner.
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Fig. 6. 
K1 parametric images of one canine study generated by direct and indirect methods for 

100% and 25% count levels. For 25% count studies, the four replicates’ mean and STD 

images (2nd and 4th column), and one replicate’s sample images (3rd column) are given. The 

images were compared at iteration 80.
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Fig. 7. 
Plots of measured parameters (K1uc stands for K1,uncorr) vs. iteration for a in vivo canine 

study at two count levels. The results were shown every 4 iterations for 80 iterations. The 

parameters were measured as the average within the whole LV myocardium VOIs. The 

direct and indirect methods were compared. For the low-count studies, using 100% input 

function and 25% input functions were also compared. Crossed lines show the mean values 

of 4 low-count replicates, whereas shaded area shows the standard deviation of the 

replicates. Circled lines are the results from the 100% count study used as standard.
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Fig. 8. 
Comparison of using different initialization values (uniform initialization) for the direct 

method for the simulation study. The first 20 iteration results are shown for both 100% count 

noise free simulation and 25% count noisy simulation (one replicate). The parameters were 

measured as the average within the whole LV myocardium VOIs. The default initialization 

(Default Init.) values for K1,uncorr (K1uc), k2 and VL were set to 0.3 min−1cm−3, 0.1 min−1 

and 0.2, respectively, the same as used in the simulation and in vivo studies. For comparison, 

results with halved (Half Init.) and doubled (Double Init.) default initialization values are 

also shown.
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TABLE I

COMPARISON OF PARAMETER PERCENT BIASES AT ITERATION 400 BETWEEN DIRECT AND INDIRECT RESULTS FOR THE NOISE-

FREE CANINE SIMULATION. K1, K1,uncorr, k2 AND VL VALUES WERE MEASURED AS THE AVERAGE WITHIN TWO VOIS: WHOLE 

LV MYOCARDIUM AND LVES MYOCARDIUM.

Bias @ Iter 400 K1 K1,uncorr k2 VL

Whole LV Myo
Direct 3.3% −7.5% 15.0% 40.5%

Indirect −2.3% −7.8% 11.0% 23.5%

LVES Myo
Direct −2.3% −3.8% 19.0% 3.0%

Indirect −11.3% −10.0% 6.0% −6.0%

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shi et al. Page 27

TABLE II

RESULTS FROM ALL FOUR CANINE STUDIES. K1 RESULTS WERE MEASURED WITHIN WHOLE LV MYOCARDIUM VOI.

K1 (whole LV myocardium VOI) Canine Study 1 
(baseline)

Canine Study 2 
(baseline)

Canine Study 3 
(post-adenosine)

Canine Study 4 
(baseline)

Direct Indirect Direct Indirect Direct Indirect Direct Indirect

100% 
counts Mean θ‒(mL ⋅ min−1 ⋅ cm−3) 0.414 0.383 0.357 0.344 1.504 1.311 0.379 0.397

25% 
counts 
w. 25% 

IF

Mean θ(mL ⋅ min−1 ⋅ cm−3) 0.406 0.375 0.354 0.351 1.422 1.282 0.381 0.358

(θ − θ‒) ∕ θ‒ × 100 % −1.9% −2.1% −0.8% 2.0% −5.4% −2.2% 0.5% −9.8%

CoVθ 27.3% 34.3% 31.4% 35.5% 30.4% 35.6% 25.7% 30.2%

25% 
counts 

w. 100% 
IF

Mean θ(mL ⋅ min−1 ⋅ cm−3) 0.424 0.396 0.358 0.353 1.526 1.358 0.384 0.406

(θ − θ‒) ∕ θ‒ × 100 % −2.4% 3.4% −0.3% 2.6% 1.5% 3.6% 1.3% 2.3%

CoVθ 22.0% 30.8% 29.8% 33.9% 14.4% 29.5% 22.8% 29.1%
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