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Abstract

The state of etiolation is generally defined by the presence of non-green plastids (etioplasts) in plant tissues that 
would normally contain chloroplasts. In the commonly used dark-grown seedling system, etiolation is coupled with 
a type of growth called skotomorphogenesis. Upon illumination, de-etiolation occurs, marked by the transition from 
etioplast to chloroplast, and, at the seedling level, a switch to photomorphogenic growth. Etiolation and de-etiolation 
systems are therefore important for understanding both the acquisition of photosynthetic capacity during chloroplast 
biogenesis and plant responses to light—the most relevant signal in the life and growth of the organism. In this review, 
we discuss recent discoveries (within the past 2–3 years) in the field of etiolation and de-etiolation, with a particular 
focus on post-transcriptional processes and ultrastructural changes. We further discuss ambiguities in definitions 
of the term ‘etiolation’, and benefits and biases of common etiolation/de-etiolation systems. Finally, we raise several 
open questions and future research possibilities.
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Introduction: defining etiolation

Etiolation involves prolonged growth in the absence of light 
that results in the development of etioplasts in tissue that would 
have chloroplasts if subjected to light. Etioplasts do not con-
tain chlorophyll or stacked thylakoid membranes, but rather 
have a paracrystalline lipid–pigment–protein structure known 
as the prolamellar body (PLB). The PLB consists largely of 
the plastid lipids monogalactosyldiacylglycerol (MGDG) and 
digalactosyldiacylglycerol (DGDG), and an association of the 
chlorophyll precursor protochlorophyllide (Pchlide), the light-
dependent protochlorophyllide oxidoreductase (LPOR) that is 
responsible for its conversion, and the cofactor NADPH (Fig. 

1; etioplast composition and structure reviewed, for example, 
in Kowalewska et al. (2019) and Pribil et al. (2014)).

As most scientifically observed etiolation systems involve 
(aseptic) germination and growth of seedlings in complete 
darkness, the term ‘etiolated’ is commonly defined addition-
ally by the presence of a skotomorphogenic phenotype of 
elongated hypocotyls, shortened roots, and small, closed 
cotyledons (Fig. 1; reviewed in Josse and Halliday, 2008). In 
these systems, the light-driven etioplast-to-chloroplast tran-
sition is coupled to a transition from skotomorphogenic 
to photomorphogenic growth. These morphogenic traits 
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are often portrayed in quantifiable and continuous terms, 
with variables of hypocotyl length, apical hook angle, and 
cotyledon angle considered. By these definitions, aberrant 
‘photomorphogenic in darkness’ or ‘skotomorphogenic in 
light’ phenotypes have been utilized to identify multiple com-
ponents involved in light sensing, signaling, or downstream 
responses. Many of these components have since been shown 
to have broad roles in non-etiolation-related light response.

The majority of the data discussed in this Expert View 
refer to work undertaken in such seedling-based etiolation/
de-etiolation systems. The various limitation of these systems 
and possible alternative or complementary systems are also dis-
cussed (in the section ‘New systems required and new lessons 
learned’).

More broadly, the term ‘etiolated’, which has etymological 
roots in the French étiolier (i.e. straw), is still used as a de-
scriptor for a range of pale or yellowing phenotypes. These 
include nitrogen-deficient rice (Oryza sativa; Sun et al., 2018a), 

graft-incompatible pomello (Citrus grandis; He et al., 2018), and 
heavy-metal-treated wheat (Triticum aestivum; Semenova et al., 
2017). Similarly, a skotomorphogenic phenotype observed in 
infected light-grown creeping bentgrass (Agrostis stolonifera; 
Roberts et al., 2016) was recently termed ‘bacterial etiolation’. 
We consider these phenotypes to be largely outside our per-
sonal definition of etiolated tissues (i.e. having etioplasts), and 
will not discuss them within this work. Nonetheless, we note 
that in recent years, similar ‘etiolated’ phenotypes have been 
linked to pigment accumulation (Chen et al., 2018b) and light 
signaling defects (Peng et al., 2019). Furthermore, the pale barley 
(Hordeum vulgare L.) albostrians mutant (Muramoto et al., 1999), 
has been shown to contain structures in its albino sectors that 
are highly reminiscent of transforming PLBs (Li et al., 2019). 
As such, these ‘etiolated’ plants should be consdered a potential 
source of new players in the regulation of chloroplast devel-
opment, particularly in non-model species. Finally, this review 
will not discuss etiolation-like responses in non-angiosperm 

Fig. 1.  Etiolated phenotypes in plants (exemplified in Arabidopsis). (A) Plants grown in extended darkness develop etioplasts (upper panels). These 
plastids are physically defined by the presence of a paracrystalline membrane structure called prolamellar body (PLB), as well as prothylakoids (PT, 
indicated by white arrowheads). In the light, photosynthetic tissue develops chloroplasts (lower panels), which are defined structurally by thylakoid 
membranes that contain grana stacks (G, white asterisks) and stroma lamellae called stroma thylakoids (ST, white arrowheads). Images are from 6-day-
old dark-grown Arabidopsis plant (upper panel), and a light-grown Arabidopsis plant at the rosette stage (lower panel). (B) Etiolation and de-etiolation 
studies generally involve germination and growth of seedlings in darkness, resulting in skotomorphogenic growth (left). This is defined by the presence 
of an apical hook (AH), closed and pale cotyledons, and an elongated hypocotyl. By contrast, plants grown the light (photomorphogenic conditions; 
right) have shorter hypocotyls, and open, green cotyledons. C, cotyledon; H, hypocotyls. Images taken from a 7-day-old dark-grown and a 9-day-old 
light-grown Arabidopsis seedling. (C) De-etiolation of dark-grown (etiolated) seedlings involves straightening of the apical hook, opening and greening 
of the cotyledons, as well as the transition from etioplast to chloroplasts (refer to Fig. 3). The etiolated seedlings were exposed to continuous white light 
(95 µmol photons m−2 s−1) for 6, 12, and 48 h.
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species, a still under-represented and debated research field (re-
viewed in Mathews, 2006).

Recent developments in understanding etiolation and 
the etioplast-to-chloroplast transition

The response to light was one of the earliest phenomena ob-
served in plants by naturalists, and much progress has been 
made in understanding both the perception of light by various 
photoreceptors, and the resultant signaling cascades that lead 
to transcriptional activation or repression of genes involved 
in de-etiolation. We will not discuss these processes, which 
have been recently reviewed (Casal et al., 2014; Huang et al., 
2014; Casal and Qüesta, 2018; Pham et al., 2018; Podolec and 
Ulm, 2018), but rather focus here on breakthroughs in post-
transcriptional regulation and ultrastructural changes during 
etiolation and de-etiolation (summarized in Box 1; Fig. 2).

Small RNAs fine-tune temporal and spatial expression of 
genes during de-etiolation
Small regulatory RNAs (sRNAs) are 20–24 nt-long molecules 
that regulate gene expression via RNA-dependent DNA 

methylation, translation inhibition, or mRNA cleavage (re-
viewed in Borges and Martienssen, 2015; Singh et al., 2018). 
Several important studies have highlighted the control of 
canonical light reception and response pathway factors by 
sRNAs, and the reciprocal light-based regulation not just of 
certain sRNA, but of the sRNA biogenesis process itself via 
these factors (Sorin et al., 2005; Zhang et al., 2011; Cho et al., 
2014; Tsai et al., 2014; Achkar et al., 2018; Sun et al., 2018b). We 
refer the reader to two recent reviews (Sánchez-Retuerta et al., 
2018; Manavella et al., 2019) for more details.

Recently, sRNAs were implicated in defining seedling tissue- 
or position- dependent greening responses: differential accu-
mulation of certain sRNAs, and certain groups of sRNAs, was 
observed in different tissue types (Li et al., 2014). Most recently, 
two large-scale studies were undertaken: Lin et al. (2017) pro-
filed sRNAs during Arabidopsis de-etiolation, while Xu and 
colleagues (2017) undertook comparative miRNA profiling 
in rice and maize (Zea mays) to understand the establishment 
of photosynthesis in C3 versus C4 species. These studies, which 
defined several specific sRNA roles, such as the repression of 
photomorphogenic growth by miR396 via members of the 
Growth Regulating Factors family (Lin et  al., 2017), provide 

Box 1.  Key developments in understanding de-etiolation

•	 �Small regulatory RNAs are highly dynamic during greening

Recent large-scale studies of small regulatory RNA (sRNA) changes during greening in Arabidopsis (Lin 
et al., 2017), rice, and maize (Xu et al., 2017) provide pioneer datasets, suggest new roles for several 
sRNAs, and demonstrate the power of de-etiolation systems in investigating pairwise relationships.

•	TOR connects light and nutrient signaling

The indirect activator of translation, target of rapamycin (TOR), acts downstream of the COP1–
auxin cascade during de-etiolation (Chen et al., 2018a), but is also involved in light-independent 
developmental regulation in response to sugars (Mohammed et al., 2018). The complex demand/
supply of resources associated with establishing photosynthesis has implications for the regulation and 
kinetics of chloroplast development, and for currently used etiolation systems.

•	Availability, not just abundance, counts for transcripts and proteins

Thousands of mRNA species are present yet translationally repressed by sequestration to processing 
bodies (P-bodies) in the dark (Jang et al., 2019). For plastid-encoded thylakoid membrane proteins, 
association of respective mRNA to ribosomes localizes them to membranes, but the membrane to 
soluble mRNA fraction changes little during greening (Legen and Schmitz-Linneweber, 2017). Soluble 
versus membrane localization of glutamyl-tRNA reductase (GluTR) does change with lighting, and the 
soluble (active) fraction shows early correlation with chlorophyll content (Schmied et al., 2018).

•	Singlet oxygen causes PSII damage and acts as a retrograde signal during de-etiolation

The early assembly of the PSII oxygen evolving complex results in the (damaging) formation of singlet 
oxygen (1O2; Shevela et al., 2019). 1O2 retrograde signaling mediates de-etiolation via the EXECUTER1 
pathway (Chen et al., 2015; Carmody et al., 2016). A de-etiolation system was recently used to assign 
function to the elusive integrator of retrograde signalling, GUN1 (Wu et al., 2018).

•	Finally looking at membrane lipids (and how they get there)

Three recent studies investigated the effect of decreased MGDG (Fujii et al., 2017) and DGDG (Fujii et al., 
2018) content on etioplast formation and greening (Fujii et al., 2019). They emphasize the role of DGDG in the 
dynamics of tubular-lamellar transformation occurring during PLB–thylakoid membrane transition as well as 
the crucial role of both neutral galactolipids in the membrane-associated steps of Chl biosynthesis. Future 
studies, using diverse systems and 3D imaging techniques, are suggested to further this developing field.
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important pioneer work that defines global sRNA responses to 
greening (Fig. 2B). Furthermore, they demonstrate the use of 
de-etiolating systems—in which large scale yet highly temporally 
controlled changes occur—as a powerful tool for investigating 
pairwise relationships, for example, between regulators and their 
targets (Xu et al., 2016; Page et al., 2017; Xu et al., 2017).

TOR connects light and nutrient signaling to activate 
translation
Target of rapamycin (TOR) is an evolutionarily conserved 
protein kinase that acts as a central hub to control cellular- 
and organism-level development (reviewed in Caldana et  al., 
2019; Xiong and Sheen, 2014). Disruption of TOR results 

in plants with reduced chloroplast size and number, poorly 
developed thylakoid membranes, and decreased expression 
of key photosynthesis-related proteins (Xiong et  al., 2017). 
Furthermore, TOR (i) is required for proper regulation of 
photomorphogenic growth via regulation of translation and 
brassinosteroid signaling (Xiong et  al., 2017), (ii) acts as an 
indirect positive regulator of chlorophyll biosynthesis and 
photosynthesis-related genes (Li et  al., 2015), and (iii) is in-
volved in the accumulation of the MGDG and DGDG syn-
thases (Sun et al., 2016). Thus, TOR positively contributes to 
plastid development. Nonetheless, seedlings with repressed 
TOR activity were recently reported to undergo more rapid 
accumulation of chlorophyll, PS-related transcripts, and plastid 

Fig. 2.  Signaling cascade and recently described players in de-etiolation. This simplified model shows a basic overview of (A) the PHY/CRY-mediated 
light-responsive signaling cascade, and (B–F) recent discoveries in the field discussed in this review. The upper panel shows the etiolated state, the lower 
panel shows the changes that occur early upon de-etiolation. (A) Light is perceived by photoreceptors such as phytochromes (PHY) and cryptochromes 
(CRY), resulting in indirect activation of the expression of Elongated Hypocotyl5/HY5 Homolog (HY5/HYH)-dependent photomorphogenesis-related 
genes by repression of the COP1 complex. (B) Small RNAs (sRNA) modulate transcript accumulation of both light-signaling molecules and ownstream 
effector genes, and the sRNA pathway itself is also controlled via light signaling pathways. (C) TOR indirectly activates translation via auxin, and is 
itself stimulated by light as well as by sugars. (D) Physical sequestration can limit functionality. (D1) Increased translation in the plastid is likely linked to 
increased ribosome density, as opposed to occupancy. (D2) Cytosolic transcripts are sequestered in processing bodies (P-bodies) during etiolation, with 
release allowing their translation. (D3) GluTR is soluble and active in the light, with the soluble form correlating with chlorophyll content during greening. 
(E) Retrograde signalling mediated by 1O2 produced by the early assembly of the oxygen evolving complex of PSII might contribute to the EXECUTER1 
signaling pathway. (F) MGDG and DGDG, produced in the envelopes by monogalactosyldiacylglycerol synthase 1 (MGD1) and digalactosyldiacylglycerol 
synthase 1 (DGD1), are the primary plastid lipids, and have crucial and disparate roles in PLB formation and etioplast-to-chloroplast transition, but more 
research is required to understand the role of both lipids and proteins in membrane biogenesis.
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membrane lipids during de-etiolation—surprising results that 
the authors attributed to altered nutrient content of TOR-
repressed seeds (Zhang et  al., 2018). Indeed, recent research 
underlines the essential role of TOR in sugar-status response 
during early development. This includes (indirect) positive 
control of cell elongation in dark-grown seedlings (Zhang 
et al., 2016), and de-repression of shoot apical meristem growth 
in the dark via sugar-induced TOR activity (Li et al., 2017b; 
Mohammed et al., 2018). In light of a recently clarified position 
for TOR in the constitutively photomorphogenic 1 (COP1)–
auxin cascade (Chen et al., 2018a), these findings suggest that 
TOR balances light and sugar signaling to control plant and 
plastid development both at near-instantaneous and at more 
gradual time scales (Fig. 2C).

Recent studies have suggested that chloroplast protein pro-
duction represents ~70% of the ATP cost of total cellular 
protein synthesis (Li et al., 2017a), and two-thirds of the cel-
lular nitrogen budget (Evans and Clarke, 2019). The need for 
greening seedlings to balance the cost of photosynthesis with 
its ultimate reward may therefore define (i) the control of gene 
expression that exerts control primarily at the (costly) transla-
tional stage (Shen et al., 2009; Ning et al., 2016); and (ii) the 
recently observed multi-phase accumulation of photosynthesis-
related products and activities (Dubreuil et al., 2018; Armarego-
Marriott et  al., 2019). We note that, in addition to defining 

greening, the availability of resources like carbon (Kósa et al., 
2015) and nitrogen (Vitányi et  al., 2013) influences etioplast 
formation. Therefore, these recent works highlight the import-
ance of considering resource availability in studying all aspects 
of etiolation and de-etiolation. Given that these resources arise 
from both (exhaustible) seed storage tissues and medium sup-
plementation, it is clear that the choice of experimental system 
can largely influence observations.

Control by location: where is as important as when
As well as massive transcriptional changes (Ma et  al., 2001), 
greening can result in a global 2-fold increase in translational 
activity, and altered translation of ~1/3 of all transcripts (Liu 
et al., 2012). Translation of cytosolic mRNAs can increase due 
to changes in the number of ribosomes on individual tran-
scripts (ribosome density) or changes in the proportion of 
transcripts occupied by ribosomes (ribosome occupancy) (Liu 
et al., 2013). In the plastid, transcripts are sequestered to mem-
brane fractions in a ribosome-dependent manner, but mem-
brane association of transcripts changes only minimally during 
maize leaf greening, suggesting that ribosome density, and not 
occupancy, drives greening-induced translation (Legen and 
Schmitz-Linneweber, 2017) (Fig. 2D1).

Within the cytosol, light-stimulated translation has been 
linked to processing bodies (P-bodies): RNA–protein 

Fig. 3.  Pea (Pisum sativum) de-etiolating under light/dark conditions. (A) Pea seedlings grown for 8 d under light dark (L/D) conditions (16 h of light 
at 40 µmol photons m−2 s−1–8 h of darkness) (left panel), darkness (D) (middle panel), 8 d of darkness followed by 3 d of L/D (right panel). Pea, which 
develops true leaves in darkness, as well as other hypogeal germinating plants, may be used as an alternative system to epigeal germinating Arabidopsis 
plants, which only develop cotyledons in the dark. As ‘maternal tissue’, cotyledons are formed by and undergo different developmental programing from 
true leaves. (B) De-etiolating pea. The upper panels show seedling shoot apices; the lower panels show transmission electron micrograph. Plants grown 
in darkness for 8 d were de-etiolated under light–dark conditions (16 h of light at 40 µmol photons m−2 s−1–8 h of darkness). Note that following the first 
24 h of growth there is partial reformation of the PLB, indicated by the white asterisk.
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complexes that are conserved in eukaryotes and regulate gene 
expression by degradation or translational arrest of mRNA 
(reviewed in Xu and Chua, 2011; Maldonado-Bonilla, 2014). 
Dark-grown seedlings of a P-body defective mutant (Xu and 
Chua, 2009) displayed prematurely opened apical hooks and 
augmented translation of thousands of transcripts, including 
those involved in the chlorophyll biosynthesis pathway (Jang 
et al., 2019). Despite previous links between sRNA-mediated 
mRNA cleavage and P-bodies (Pomeranz et  al., 2010), Jang 
et al. (2019) noted limited overlap between mRNA cleavage 
and sequestration-induced translational ‘pausing’ (Fig. 2D2). 
Recently, physical sequestration has also been implicated in 
post-translational regulation. Localization of glutamyl-tRNA 
reductase (GluTR) to the chloroplast stroma, but not to the 
membrane, was associated with its enzymatic activity, and was 
shown to correlate with accumulation of chlorophyll during 
the early hours of greening (Schmied et al., 2018). Interestingly, 
GluTR partitioning also changes following dark exposure of 
light-grown plants, suggesting that this regulation has rele-
vance beyond the etioplast-to-chloroplast transition (Schmied 
et al., 2018) (Fig. 2D3). Together, these recent studies under-
line that, in addition to cellular abundance of proteins and 
mRNAs, subcellular localization also needs to be taken into 
consideration.

Retrograde signaling: coupling the import and assembly 
of photosystems
Communication from the chloroplast to the nucleus, known 
as retrograde signaling, is a critical step during chloroplast bio-
genesis and maintenance (reviewed in Hernández-Verdeja 
and Strand, 2018; Rochaix and Ramundo, 2018; Leister, 2019; 
Pesaresi and Kim, 2019). Of six early identified Genomes un-
coupled (gun) mutants defective in plastid-to-nucleus retrograde 
signaling (Susek et  al., 1993), five (gun2–6) have defects in 
genes for enzymes involved in tetrapyrrole biosynthesis. More 
recently, a role for the enigmatic GUN1 in regulating pro-
tein import via the cytosolic heat shock protein 90 (HSP90) 
chaperone was clarified using a de-etiolation system (Wu 
et al., 2019). This followed observations that the GUN1 pro-
tein accumulates primarily during early chloroplast develop-
ment (Wu et al., 2018) and that gun1 mutants showed retarded 
de-etiolation (Mochizuki et  al., 1996). The early flowering 
phenotype observed in GUN1 overexpressing plants has led 
to the proposal that the protein may play a role in develop-
mental phase transitions beyond chloroplast biogenesis (Wu 
et al., 2018).

Singlet oxygen (1O2) is produced early during greening as 
a by-product of tetrapyrrole biosynthesis (Zhang et al., 2015; 
Wang and Apel, 2019) and via early photosystem II (PSII) 
oxygen evolving complex activity (Zavafer et al., 2015). In add-
ition to potentially causing significant harm to the developing 
chloroplast, including damage to emerging PSII complexes 
prior to their protective incorporation into grana stacks 
(Shevela et  al., 2019), singlet oxygen may act in retrograde 
signaling via the Filamentation temperature sensitive H (FtsH; 
a membrane metalloprotease)-activated EXECUTER1 (EX1) 
pathway (Dogra et  al., 2017). Previous research suggests that 
the 1O2-mediated EXECUTER pathway primes etioplasts to 

develop into chloroplasts (Kim et  al., 2009), and also medi-
ates high-light responses in the chloroplast, by regulation of 
multiple nucleus-encoded stress related transcripts (Carmody 
et  al., 2016). Localization of EXECUTER proteins to grana 
margins (Wang et al., 2016b) further supports a potential role 
during PSII repair. Recently, Dogra et al. (2019) showed that 
the oxidation of a specific tryptophan residue (Trp643) in 
the singlet oxygen sensor domain contained in EX1 is es-
sential for membrane localization and protein stability, and is 
also required for FtsH2-mediated EX1 degradation and fur-
ther, as yet undefined, signaling to the nucleus (Dogra et  al., 
2019). Interestingly, EX1 is also involved in carbon/nitrogen 
partitioning during light acclimation (Uberegui et  al., 2015), 
supporting a strong link between nutrient regulation and con-
trolled chloroplast development (Fig. 2E).

Structural and functional membrane dynamics: 
recent focus on lipids in the regulation of membrane 
rearrangements
Although thylakoid membranes and etioplast internal mem-
branes are both primarily composed of the galactolipids MGDG 
and DGDG, the lipid to lipid ratios (MGDG:DGDG) and lipid 
to protein ratios change with greening (Selstam and Sandelius, 
1984). The role of lipid composition and content in plastid 
membrane structure has been studied extensively for several 
decades, but has recently returned to the spotlight with the pub-
lication of several studies involving disruption of galactolipid 
synthesis enzymes. Studies with mutants having slight decreases 
in galactolipid content and showing disrupted membranes in 
fully developed chloroplasts (Mazur et al., 2019) display limited 
or no structural disruptions in etioplasts (Jarvis et al., 2000), an 
effect attributable to the lower absolute requirement for lipids 
in etioplasts (Fujii et al., 2014, 2017). In recent work, etiolated 
plants with severe MGDG and DGDG deficits were shown 
to accumulate less photoactive Pchlide, LPOR, and caroten-
oids compared with respective wild types (Fujii et  al., 2017, 
2018). The decrease in photoactive Pchlide levels in a MGDG-
deficient mutant observed under sugar-supplemented growth 
conditions (Fujii et al., 2017) contrasts with previous Pchlide 
increases seen in soil-grown mutants (Aronsson et  al., 2008), 
again underlining the role of resource availability on plastid 
development. The decrease in DGDG content also resulted in 
significant structural PLB lattice perturbations, strong reduc-
tion of prothylakoid number, and retarded PLB disassembly in 
the light (Fujii et al., 2019). Furthermore, while MGDG- and 
DGDG-deficient plants showed impairment in accumulation 
of Chl and the light-harvesting complex II protein LHCB1 
during greening, changes in photosynthesis-related gene tran-
script accumulation were, relatively, delayed (Fujii et al., 2019), 
suggesting that lipid status is sensed indirectly (e.g. via dis-
rupted protein insertion or function).

While these studies suggest differences in the roles of MGDG 
and DGDG during etiolation and de-etiolation, it is difficult to 
make concrete conclusions, due to the different reduction of 
galactolipid contents in each mutant and the inter-relationship 
between the lipids (DGDG is a downstream product of 
MGDG). These issues argue for alternative systems, such as 
the in vitro system recently used to show the requirement for 
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MGDG and charged lipids in regulating LPOR complex for-
mation and activity (Gabruk et al., 2017), and support a need 
for further biophysical studies that investigate the detailed dis-
tribution of lipid phases inside membranes (Garab et al., 2017; 
Ughy et  al., 2019). In vivo time-resolved 3D techniques (e.g. 
Kowalewska et al. 2016), may be used to answer several open 
questions in the field, including how the PLB is formed and 
how and from where membrane components are recruited 
during the formation of grana stacks. On the latter topic, inner 
membrane-localized MGDG synthase has been suggested to 
be both a point of contact between thylakoids and the inner 
envelope membrane, and a supplier of lipids during thylakoid 
biogenesis (Rocha et  al., 2018). We note that the nature of 
contact point(s), as being either direct or involving vesicles or 
tubules, remains debated (reviewed in Lindquist et  al., 2016; 
Lindquist and Aronsson, 2018; Mechela et al., 2019). Notably, 
a recent 3D analysis of the proplastid-to-chloroplast transition 
(Liang et al., 2018) visualized direct connection points, which 
were proposed to both act as lipid transfer points and align 
growing thylakoids. Given that factors associated with these 
connections have been implicated in both thylakoid biogen-
esis and maintenance (e.g. Gao et al., 2006; Patil et al., 2018), 
understanding such connections is likely to bear importance 
throughout the lifetime of the plastids (Fig. 2F).

Etiolation studies and the future

New systems required and new lessons learned
To date, etiolation and de-etiolation work focused on the 
study of molecular processes has commonly been undertaken 
with dark-grown seedlings. The benefits of this system in-
clude that it (i) requires limited growth time and space yet 
provides sufficient material compared with other experi-
mental systems such as the shoot apical meristem, and (ii) is 
highly customizable by use of different timing and lighting re-
gimes and introduction of different substances to the growth 
medium (López-Juez et  al., 2008; Mohammed et  al., 2018; 
Dóczi et al., 2019). Nonetheless, there are limitations to this 
system, which should not be overlooked. These include the 
difficulties in separating plastid development (i.e. etioplast-
to-chloroplast transition) from general seedling development 
programs, as well as issues associated with observing chloro-
plast development only in cotyledons, which are programmed 
differently from true leaves (reviewed in Pogson et al., 2015). 
Some limitations of the present system may be overcome 
by using other species and systems, although we stress that 
both etioplast formation and light-induced de-etiolation may 
largely differ depending on the species, timing, and condi-
tions used (Skupień et al., 2017), making cross-system com-
parisons difficult. For example, both runner bean (Phaseolus 
coccineus) and pea (Pisum sativum) (Kowalewska et  al., 2016) 
show similar skotomorphogenic growth to Arabidopsis, yet 
develop true leaves in darkness (Fig. 3). PLBs have also been 
observed in non-seedling systems, both in young leaves of 
tobacco following extended dark treatment (Armarego-
Marriott et  al., 2019) and in the innermost leaf primordia 
of the closed and opening leaf buds of trees (Solymosi and 
Böddi, 2006; Solymosi et  al., 2006, 2012). The problem of 

uneven lighting that arises from gradual cotyledon opening 
or seed-coat shading (e.g. Solymosi et al., 2007) was recently 
overcome by using duckweed (Landoltia punctate), a flat-leafed 
aquatic monocot (Monselise et  al., 2015). More artificially, 
cell cultures (Dubreuil et al., 2018), and even a callus-based 
system (Schaub et  al., 2018), have been used to investigate 
various aspects of plastid development, and may putatively 
be adapted for de-etiolation. Nonetheless, these experi-
mental systems come with their own caveats, in particular 
multiple impacts of carbon supplementation on plastid de-
velopment (Eckstein et al., 2012; Häusler et al., 2014). Such 
systems may help to address issues related to spatial diversity 
of plastid types, seen previously within the shoot apical meri-
stem (Charuvi et  al., 2012), in chloroplasts in different leaf 
regions (Gügel and Soll, 2017), and in etioplasts within dif-
ferent tissues (Kósa et al., 2015) or even single cells (Solymosi 
et al., 2012).

Curiously, while the etiolated state is largely defined by 
both the presence of a paracrystalline PLB and the absence 
of (stacked) thylakoid membranes, early studies in cucumber 
(Cucumis sativus; Ikeda, 1970) and avocado (Persea americana; 
Cran and Possingham, 1973), and more recent findings in 
bean (Phaseolus vulgaris) (Schoefs and Franck, 2008), various 
tree species (Solymosi et  al., 2006), and tobacco (Nicotiana 
tabacum) (Armarego-Marriott et  al., 2019), demonstrate that 
both structures can co-exist in a single plastid. Indeed, sev-
eral studies indicate that PLB reformation may occur in young 
chloroplasts during extended darkness, or even during normal 
night periods during de-etiolation (see Fig. 3; Rudowska et al., 
2012; Skupień et al., 2017; reviewed in Solymosi and Aronsson, 
2013). These findings underscore the important influence of 
light regime, as well as light intensity, quality, and circadian-
related effects (reviewed in Seluzicki et al., 2017) on greening, 
factors that must be considered when observing plastid devel-
opment. We suggest PLB reformation as an interesting field for 
future study, and underline that the use of diverse systems may 
both further clarify current understandings of PLB formation 
and dissolution, and suggest new directions for future works.

Using etiolated systems and knowledge to go ‘beyond 
the darkness’
The benefits of the standard seedling etiolation and/or 
de-etiolation systems means that they have been used often 
in recent years to study diverse topics including gravitropism 
(Yamamoto et al., 2017), phototropism (Sullivan et al., 2019), 
resource limitation (Avin-Wittenberg et al., 2015; Kósa et al., 
2015), and metabolite or hormone signaling (Gupta et  al., 
2015). Furthermore, etiolated growth can promote develop-
ment of (i) certain tissue and organ types (e.g. adventitious 
roots; Sorin et al., 2005; da Costa et al., 2018; Trinh et al., 2018), 
(ii) certain growth types (e.g. growth by cellular expansion 
in hypocotyls; Sinclair et al., 2017; Ilias et al., 2019), and (iii) 
specific responses (e.g. ethylene ‘triple response’; Guzmán and 
Ecker, 1990; Ma et al., 2018) that cannot be easily observed in 
light-grown plants. Growth in darkness can also induce arrest 
of the shoot apical meristem, and thus de-etiolation can be 
used to observe shoot apical meristem development (López-
Juez et al., 2008; Mohammed et al., 2018; Dóczi et al., 2019).
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Beyond the practicality of the system itself, the greatest value 
of etiolation/de-etiolation studies lies in the central role of light 
signaling in plant life. Indeed, the overlap between factors in-
volved in light responses with those involved in other response 
and growth processes has allowed basic knowledge from eti-
olation studies to be used to understand diverse plant processes 
(reviewed in Liu et al., 2017; Hsieh and Okamoto, 2014; Casal 
and Qüesta, 2018). In the applied sector, associations have been 
made between light receptors or responses and desirable crop 
attributes such as dwarfism (Hou et al., 2017), fruit or flower 
chromoplast development (Pankratov et  al., 2016), and abi-
otic stress response (Zhou et  al., 2018). Shade avoidance re-
sponses bear similarity to etiolation (Wang et al., 2016a), while 
‘photobiotechnology’, in which modulated expression results in 
improved crop yield and resistance, has recently been proposed 
for improved food security (Ganesan et al., 2017). Clearly, fu-
ture attempts to improve photosynthesis will require a detailed 
understanding of the chloroplast membrane structures and their 
biogenesis, as well as a thorough understanding of the processes 
involved in regulating the expression of photosynthesis-related 
genes (Ort et al., 2015). Taken together, while there is still much 
more to be learnt about de-etiolation itself, it is also clear that 
etiolation and de-etiolation systems provide the ideal environ-
ments to gain insight into the establishment of one of the most 
important processes for plant growth.
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