Skip to main content
. 2020 Feb 19;10:2898. doi: 10.1038/s41598-020-59821-7

Table 9.

Hyperparameters table.

Model Name Hyperparameter Name Hyperparameter Options
DT criterion ‘gini’, ‘entropy’
splitter ‘best’, ‘random’
max_features ‘auto’, ‘sqrt’, ‘log2’, None
KNN n_neighbors 15 31
weights ‘uniform’, ‘distance’
algorithm ‘ball_tree’, ‘kd_tree’
NC shrink_threshold 0.01, 0.1, 0.2, 0.3
GNB var_smoothing 10−7~−12
MNB alpha 0, 0.1, 0.5, 0.8,1
CNB alpha 0, 0.1, 0.5, 0.8,1
BNB alpha 0, 0.1, 0.5, 0.8,1
MLR solver ‘newton-cg’, ‘lbfgs’, ‘saga’, ‘sag’
RRC alpha 1e-3, 1e-2, 1e-1, 1
solver ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, ‘sag’, ‘saga’
LCSGD loss ‘hinge’, ‘log’, ‘modified_huber’, ‘squared_hinge’, ‘perceptron’
alpha 1e-3, 1e-2, 1e-1, 1
learning_rate ‘constant’, ‘optimal’, ‘invscaling’, ‘adaptive’
eta0 0.01, 0.001, 0.0001
PAC C 0.001, 0.01, 0.1,1
loss ‘hinge’, ‘squared_hinge’
SVC loss ‘hinge’, ‘squared_hinge’
C 0.001, 0.01, 0.1, 1
RF n_estimators 300, 500, 800
criterion ‘gini’, ‘entropy’
bootstrap True, False
max_features ‘auto’, ‘sqrt’, ‘log2’, None
ERT n_estimators 300, 500, 800
criterion ‘gini’, ‘entropy’
bootstrap True, False
max_features ‘auto’, ‘sqrt’, ‘log2’, None
GBT loss deviance, exponential
learning_rate 0.1, 0.01, 0.001, 0.1
subsample 0.1, 0.5, 0.9
n_estimators 300, 500, 800
max_features ‘auto’, ‘sqrt’, ‘log2’, None
EGBT tree_method ‘auto’, ‘exact’, ‘approx’, ‘hist’
grow_policy ‘depthwise’, ‘lossguide’
n_estimators 300, 500, 800
learning_rate 0.001, 0.01
max_depth 10, 15, 20, 50, 100