DT |
criterion |
‘gini’, ‘entropy’ |
splitter |
‘best’, ‘random’ |
max_features |
‘auto’, ‘sqrt’, ‘log2’, None |
KNN |
n_neighbors |
15 31 |
weights |
‘uniform’, ‘distance’ |
algorithm |
‘ball_tree’, ‘kd_tree’ |
NC |
shrink_threshold |
0.01, 0.1, 0.2, 0.3 |
GNB |
var_smoothing |
10−7~−12
|
MNB |
alpha |
0, 0.1, 0.5, 0.8,1 |
CNB |
alpha |
0, 0.1, 0.5, 0.8,1 |
BNB |
alpha |
0, 0.1, 0.5, 0.8,1 |
MLR |
solver |
‘newton-cg’, ‘lbfgs’, ‘saga’, ‘sag’ |
RRC |
alpha |
1e-3, 1e-2, 1e-1, 1 |
solver |
‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, ‘sag’, ‘saga’ |
LCSGD |
loss |
‘hinge’, ‘log’, ‘modified_huber’, ‘squared_hinge’, ‘perceptron’ |
alpha |
1e-3, 1e-2, 1e-1, 1 |
learning_rate |
‘constant’, ‘optimal’, ‘invscaling’, ‘adaptive’ |
eta0 |
0.01, 0.001, 0.0001 |
PAC |
C |
0.001, 0.01, 0.1,1 |
loss |
‘hinge’, ‘squared_hinge’ |
SVC |
loss |
‘hinge’, ‘squared_hinge’ |
C |
0.001, 0.01, 0.1, 1 |
RF |
n_estimators |
300, 500, 800 |
criterion |
‘gini’, ‘entropy’ |
bootstrap |
True, False |
max_features |
‘auto’, ‘sqrt’, ‘log2’, None |
ERT |
n_estimators |
300, 500, 800 |
criterion |
‘gini’, ‘entropy’ |
bootstrap |
True, False |
max_features |
‘auto’, ‘sqrt’, ‘log2’, None |
GBT |
loss |
deviance, exponential |
learning_rate |
0.1, 0.01, 0.001, 0.1 |
subsample |
0.1, 0.5, 0.9 |
n_estimators |
300, 500, 800 |
max_features |
‘auto’, ‘sqrt’, ‘log2’, None |
EGBT |
tree_method |
‘auto’, ‘exact’, ‘approx’, ‘hist’ |
grow_policy |
‘depthwise’, ‘lossguide’ |
n_estimators |
300, 500, 800 |
learning_rate |
0.001, 0.01 |
max_depth |
10, 15, 20, 50, 100 |