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Controllability analysis of molecular 
pathways points to proteins that 
control the entire interaction 
network
Prajwal Devkota1 & Stefan Wuchty   1,2,3,4*

Inputs to molecular pathways that are the backbone of cellular activity drive the cell to certain 
outcomes and phenotypes. Here, we investigated proteins that topologically controlled different 
human pathways represented as independent molecular interaction networks, suggesting that 
a minority of proteins control a high number of pathways and vice versa. Transcending different 
topological levels, proteins that controlled a large number of pathways also controlled a network of 
interactions when all pathways were combined. Furthermore, control proteins that were robust when 
interactions were rewired or inverted also increasingly controlled an increasing number of pathways. 
As for functional characteristics, such control proteins were enriched with regulatory and signaling 
genes, disease genes and drug targets. Focusing on evolutionary characteristics, proteins that 
controlled different pathways had a penchant to be evolutionarily conserved as equal counterparts 
in other organisms, indicating the fundamental role that control analysis of pathways plays for our 
understanding of regulation, disease and evolution.

Modern network research recently started to focus on the development of different methods to find nodes that 
control entire or parts of networks1–5. Nodes that allow the topological control of underlying biological networks 
were found important for different cellular processes2–4. A recent analysis of a directed protein-protein interac-
tion network indicated the presence of control proteins that were enriched with disease genes and drug targets as 
well as carried genomic alterations in diverse cancer types2. While these results were found in a single interaction 
network, the inner workings of a cell are usually organized through an elaborate network of distinct molecular 
pathways. In particular, each pathway is represented as a network of directed molecular interactions that provide 
a certain cellular function. As a consequence of the representation of pathways as directed networks, we surmised 
that pathway-specific proteins may allow the control of a given pathway. As pathway crosstalk is established 
through proteins that appear in more than one pathway, we hypothesized that sets of proteins may exist, con-
trolling many different pathways at the same time. As a consequence, proteins that control many different path-
ways may mediate functional, biomedical and evolutionary significance, indicating e.g. disease or essential genes.

To fill this knowledge gap, we determined and analyzed proteins that structurally controlled pathways, rep-
resented as separate directed networks of interactions between proteins. Notably, we found that a small minority 
of proteins controlled a high number of pathways and vice versa. Transcending different topological levels, pro-
teins that increasingly controlled pathways also appeared as control proteins in a combined pathway network 
that we obtained by pooling interactions from all underlying pathways. Furthermore, proteins that controlled a 
large number of pathways appeared to be resilient to rewiring and flipping the direction of interactions. Strongly 
indicating their biological significance, control proteins were enriched with regulatory and signaling genes, dis-
ease genes and drug targets on both topological levels. Anticipating that such topological features may carry an 
evolutionary blueprint we also observed that proteins that controlled different pathways had a penchant to be 
evolutionarily conserved as equal control counterparts in other organisms.
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Results
As the majority of pathway specific interactions were directed, indicating flow of biological information from e.g. 
a transcription factor to an expressed gene, we utilized 276 human KEGG6 pathways that had at least 5 directed 
interactions. In each pathway, we mapped directed interactions to a bipartite graph, where partitions referred to 
proteins that started and ended direct interactions. To find potential control proteins, we determined the largest 
subset of interactions in each pathway network called a maximum matching, where no two interactions shared 
a common start and end point. Unmatched nodes that correspond to any maximum matching were previously 
shown that they can be chosen as driver nodes to structurally control the whole underlying network1. To further 
assess the relevance of nodes we considered the topological consequences of their removal. In particular, we 
defined a node as a control node, if the total number of driver nodes increased in a maximum matching after its 
removal2. Such nodes are considered important for the control of the underlying network as more driver nodes 
emerged as a consequence of their removal (Fig. 1a). Furthermore, we considered nodes that keep the number 
of driver nodes constant (i.e. neutral) or decreased the number of driver nodes (i.e. dispensable2) upon their 
deletion as irrelevant for control. Determining such control proteins in each pathway specific network sepa-
rately, we counted the number of pathways that a protein controlled. Notably, we observed that the corresponding 
frequency distribution followed a power-law like decay (Fig. 1b), indicating that a small number of proteins 
controlled a high number of pathways and vice versa. To show the independence of our results from the under-
lying pathway data, we determined control proteins in 1,192 human Reactome7 pathways and corroborated our 
initial finding (Supplementary Fig. 1a). Furthermore, we hypothesized that proteins that controlled an increasing 
number of different pathways separately may also appear as control proteins in a network that was composed of 
all pathway interactions. Pooling all 276 KEGG pathways, we obtained a network of 67,038 directed interactions 
between 5,398 proteins and found 577 (10.7%) control proteins. More quantitatively, we randomly sampled such a 
set of control proteins in the combined pathway network and determined their enrichment in bins of proteins that 

Figure 1.  Topological characteristics of pathway controlling proteins. (a) In the schematic representation of the 
controllability framework the application of a maximum matching algorithm allows the determination of 

=N 2D  driver nodes. To find control nodes, we separately eliminated each node and determined the number of 
driver nodes ′N D in the network thus obtained. We found a control node if the elimination of a node increased 
the number of driver nodes compared to the unperturbed network, ′ >N ND D. (b) Utilizing 276 KEGG 
pathways, we found that the cumulative frequency distribution of the number of pathways that proteins 
controlled followed a power-law, suggesting that a minority of proteins controls a large number of pathways and 
vice versa. (c) After determining control nodes in a network of 67,038 directed interactions between 5,398 
proteins that we obtained by combining interactions of all pathways we randomly sampled such sets of control 
proteins. Notably, control proteins in the combined interaction network were enriched in groups of proteins 
that controlled an increasing number of pathways. (d) In the combined network we flipped and rewired given 
fractions of interactions. Notably, flipping the direction of roughly half of all interactions limited our ability to 
confirm control proteins the most. In turn, rewiring interactions continuously decreased the fraction of 
confirmed nodes. (e) When we flipped 50% of all interactions and rewired all interactions, respectively, half of 
all control proteins were confirmed. (f) More quantitatively, we randomly sampled sets of control proteins that 
were confirmed after flipping and rewiring interactions and found that such proteins were enriched in groups of 
proteins that controlled an increasing number of pathways. In turn, the set of remaining proteins was found 
strongly diluted in groups of proteins that controlled a limited number of pathways.
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controlled an increasing number of KEGG pathways. In Fig. 1c, we observed that these proteins were enriched 
in groups of proteins that controlled an increasing number of pathways while non-control proteins appeared 
diluted. To establish the independence of our results from the choice of pathway data, we pooled all 1,192 
Reactome pathway specific networks, obtaining a directed network of 180,020 edges between 8,084 proteins. 
Randomly sampling all 941 (11.6%) control proteins we observed similar results in the pooled network of inter-
actions in Reactome pathways (Supplementary Fig. 1b). Considering the combined networks of KEGG pathways, 
we determined the degree of corresponding proteins, indicating that both (non-)control proteins had fat tails 
(Supplementary Fig. 2a). Such observations translated into a propensity of control proteins to be enriched in bins 
of strongly interacting proteins while we found no enrichment/dilution signals when we considered non-control 
proteins (Supplementary Fig. 2b). Such observations were corroborated when we considered a combined network 
of Reactome pathways (Supplementary Fig. 2c,d).

In a robustness analysis, we flipped the direction of given fractions of interactions in the combined path-
way network and determined the number of control nodes in a network thus obtained (upper panel, Fig. 1d). 
Corroborating earlier results in a network of directed protein-protein interactions2, flipping half of all interac-
tions corresponded  to the lowest fraction of control nodes that were found in the original, unperturbed network. 
Furthermore, we rewired a given fraction of directed interactions keeping the underlying degree distributions 
of nodes in the unperturbed network, indicating that half of all control nodes were robust toward the complete 
rewiring of the network (lower panel, Fig. 1d). To paint a coherent picture of the robustness of control proteins, 
we determined control nodes in a network where we flipped one half of all directed interactions. Furthermore, 
we determined control nodes in a network where we rewired all interactions, keeping the degree distributions of 
the underlying nodes. Fig. 1e indicates that 50.5% of all control nodes in the underlying unperturbed network 
were robust in the presence of rewired and flipped interactions. More quantitatively, we randomly sampled sets 
of control proteins that were confirmed after flipping and rewiring interactions in Fig. 1f. Notably, such robust 
control proteins were almost entirely found enriched in bins of proteins that controlled a large number of path-
ways. To corroborate our results, we repeated this analysis using the combined network of Reactome pathways 
and observed similar results (Supplementary Fig. 3a–c).

On a functional level, we presented the 20 most KEGG pathway-controlling proteins in the table of Fig. 2a 
and observed that they were frequently essential for the survival of the cell. While these proteins were hardly 
transcription factors and membrane bound receptors, they also frequently carried kinase and signaling functions 
when we excluded membrane bound proteins (Fig. 2a). On a more quantitative level, we randomly sampled 
2,708 essential human genes8,9 that we found enriched among proteins that controlled an increasing number of 
pathways (Fig. 2b). Focusing on control proteins in the combined pathway network, we found that essential genes 
were significantly enriched as well, while they appeared diluted in the set of remaining proteins (Supplementary 
Fig. 4a). Considering 4,408 proteins that were involved in signaling functions (excluding membrane bound pro-
teins), we found that such proteins appeared enriched, while 5,701 receptor proteins were found to be diluted 
among proteins that controlled an increasing number of pathways (Fig. 2c), results that we corroborated in the 
combined network (Supplementary Fig. 4b). As a corollary of our observation that control proteins are enriched 
with signaling functions, we hypothesized that these proteins may be significantly involved in regulatory pro-
cesses. Considering a set of 1,471 manually curated sequence-specific DNA-binding transcription factors10,11 
and 501 kinases12, we found that proteins that control an increasing number of different pathways were more 
frequently enriched with kinases than transcription factors (Fig. 2d), results that we confirmed in the combined 
pathway network as well (Supplementary Fig. 4c). In turn, proteins that received post-translational modifications 
as a consequence of regulatory activity may be important for pathway control. Randomizing sets of methyl-
ated, acetylated and phosphorylated proteins we observed that methylated and acetylated proteins increasingly 
appeared in sets of proteins that controlled an elevated number of pathways while phosphorylated target appeared 
significantly less enriched (Fig. 2e). Still, all targets of posttranslational modifications appeared significantly 
enriched in the set of proteins that controlled the combined pathway network (Supplementary Fig. 4d). To con-
firm that our results were independent of KEGG pathway data, we used Reactome pathway data, indicating sim-
ilar results when we considered proteins that controlled single pathways (Supplementary Fig. 5) as well as a 
network of all pathway interactions combined (Supplementary Fig. 6).

As a corollary of our previous results, we hypothesized that control proteins may play a role for the transition 
between healthy and disease conditions. Considering a set of 568 genes causally implicated in oncogenesis as 
annotated by the Sanger Center13, we found that enrichment of cancer genes increased as proteins controlled 
more pathways (Fig. 3a), a result that was confirmed in the combined KEGG pathway network (Supplementary 
Fig. 7a). Furthermore, we considered a set of 1,259 onco- and tumor-suppressor genes that were predicted to be 
cancer-related14 and obtained similar results, further substantiating our observations (Fig. 3a, Supplementary 
Fig. 7a). As for viral infections, we analyzed a set of 544 human proteins that physically interacted with proteins 
of the HIV virus15 as well as 788 human genes that were down-regulated and 1,118 genes that were up-regulated 
upon HIV infection15. Notably, such infection relevant genes appeared enriched in groups of proteins that con-
trolled an increasing number of pathways (Fig. 3b), a result that was corroborated with proteins that controlled 
the combined pathway network (Supplementary Fig. 7b). As for genetic causes of diseases, we further considered 
a set of 2,661 genes that carried disease-causing mutations16,17. We found that such disease genes were enriched 
among control proteins in an increasing number of pathways (Fig. 3c). Considering a set of 11,002 disease genes 
as identified by GWAS studies18, we were able to corroborate this result. Furthermore, we obtained similar results 
when we analyzed the enrichment of such genes in the set of control proteins in the combined pathway network 
(Supplementary Fig. 7c). Notably, enrichment levels of GWAS related genes were generally lower than genes that 
harbored disease-causing mutations. Investigating the transformation of a disease to a healthy state, we utilized a 
set of 2,289 Food and Drug Administration (FDA) approved drug targets19. Notably, drug targets predominantly 
appeared in groups of proteins that controlled an increasing number of pathways (Fig. 3d). We also considered 
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a set of druggable proteins as they carried protein folds favoring interactions with chemical compounds for our 
enrichment analysis. Generally, we found that drug targets were enriched in proteins that controlled many path-
ways. However, genes that were druggable but not approved drug targets appeared to be diluted. While the enrich-
ment of drug targets in the set of proteins that controlled the combined pathway network was confirmed we found 
the opposite for both sets of druggable genes that mostly appeared among non-control proteins (Fig. 3e). To cor-
roborate the independence of these observations, we obtained similar results with Reactome pathway data when 
we considered the enrichment of disease genes and drug targets among proteins that controlled a large number 
of pathways (Supplementary Fig. 8) as well as the combined pathway interaction network (Supplementary Fig. 9).

Based on the obtained results so far, we further assumed that the topological and biological role of control 
proteins may be reflected by their propensity to be evolutionarily conserved. In particular, we labeled all pro-
teins in different organisms that had a human ortholog based on KEGG orthology groups. In the heatmap in 
Supplementary Fig. 10 we however found that proteins that controlled the combined KEGG human pathway 
network appeared randomly scattered among orthologous proteins in closely related organisms. Constructing 
directed interaction networks by combining all KEGG pathways of a given organism, we determined control 
proteins in these combined organism specific networks. In the heatmap in Fig. 4a we labeled all human proteins 
with conserved control proteins in closely related organisms. Notably, human control proteins in the combined 
pathway network significantly aligned with their conserved counterparts in different organisms, an observation 
that we quantitatively confirmed by a Fisher’s exact test (P < 10−5). Extending such considerations, we observed 
that proteins that controlled an increasing number of human pathways were preferably conserved as proteins 
that controlled combined pathway networks in different organisms (Fig. 4b). Notably, enrichment levels differed 
between S. scrofa and C. familiaris and more distantly related organisms such as G. gallus and X. laevis. As a 

Figure 2.  Functional characteristics of pathway controlling proteins. (a) We collected 20 proteins that 
controlled the highest number of pathways. We observed that such proteins were mostly essential and had 
kinase but rarely transcription factor functions. While sporadically membrane-bound receptors, the majority 
of such proteins were involved in signaling activities. More quantitatively, we randomly sampled sets of control 
proteins and found that proteins that controlled an increasing number of pathways were enriched with (b) 
essential genes and (c) signaling functions, while they rarely were membrane-bound receptors. (d) Such 
proteins were more frequently enriched with kinases than transcription factors. (e) As for post-translational 
modifications, proteins that controlled an increasing number of pathways were strongly enriched with 
acetylated and methylated proteins while we only found a modest enrichment of phosphorylated proteins.
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corollary, we hypothesized that human proteins that control an increasing number of pathways have conserved 
counterparts that control a similar number of pathways in other organisms. Determining control proteins in 
pathways of different organism separately, we indeed found that the number of pathways that proteins controlled 
in different organisms correlated well with their human counterparts, indicating different levels of evolutionary 
kinship (Fig. 4c).

Discussion
In this work, we determined proteins that control pathways represented as separate, unweighted, directed net-
works of directed molecular interactions. In such networks, structural controllability of linear dynamics is 
secured by a set of driver nodes1. However, we deviated from the original concept of structural controllability as 
we used a heuristic to assess the influence of each node on the cardinality of the set of driver nodes when a node in 
question is deleted. As driver nodes need to be tweaked to push the network to any given dynamic state, the dele-
tion of a node that increased the number of driver nodes in the perturbed network exacerbates the control of the 
unperturbed network and vice versa. In particular, we considered a node in the underlying networks as relevant 
for the control of the underlying network if the number of driver nodes increased as a consequence of the deletion 
of a given node2. If the number of driver nodes decreased (i.e. a redundant node in2) or remained unchanged 
upon deletion of a node (i.e. a neutral node in2), we considered the deleted node as irrelevant for control. As a 
consequence, a node that initially was found to be a driver node does not necessarily translate into a control node, 
as its deletion may lower the number of driver nodes or be compensated by a newly emerging driver node in the 
perturbed network. In turn, a node that initially did not participate in the set of driver nodes, may increase the 
number of driver nodes upon its deletion, suggesting that it is relevant for controlling the underlying network. 
While sets of driver nodes are usually diluted with highly connected nodes, we found that control nodes that 
increased the number of driver nodes upon their deletion were enriched with strongly connected nodes. In turn, 
we observed that nodes, that kept the number of driver nodes at least unchanged upon their deletion, did not 
show any propensity to be enriched/diluted in bins of increasingly connected nodes. While corroborating previ-
ous results in directed networks2 such observations are also consistent with previous investigations in undirected, 
unweighted protein interaction networks, where proteins that were relevant for the control of the underlying net-
works were preferentially well connected20,21. In comparison to approaches that determine minimum dominating 

Figure 3.  Pathway controlling proteins were enriched with disease genes and drug targets. (a) Using a 
compilation of census cancer genes and a set of onco- and tumor-suppressor genes, we found that such cancer 
related genes strongly appeared in groups of proteins that controlled an increasing number of pathways. (b) 
Such control protein groups were enriched with targets that the HIV virus binds as well as genes that were dys-
regulated after viral infection. (c) More generally, disease genes from genetic (HPO) and genomic (GWAS) 
sources were enriched in groups of proteins that frequently controlled pathways. (d) FDA approved drug targets 
and druggable genes were enriched in such groups of control proteins as well. However, a subset of druggable 
genes that excluded known drug targets appeared diluted. (e) In turn, approved drug targets were enriched 
in the set of proteins that controlled the network of the combined pathway network while druggable genes in 
general however appeared diluted.
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sets22, we stress that the current approach more realistically assumes that links of driver nodes are controlled at 
the same time1. While such results emphasize the role of highly connected nodes (i.e. hubs), we stress that a large 
degree alone is not necessarily a criterion that qualifies a protein to be a control node as the degree distributions 
of both control and non-control proteins have fat tails, indicating a small minority of highly connected nodes. 
Furthermore, the definition of hubs depends on arbitrarily set degree thresholds, capturing the local vicinity of a 
node. In turn, the way to determine control proteins accounts for the whole network, providing an optimal set of 
strategically placed proteins without the need of arbitrary parameters.

Notably, the frequency distribution of the number of pathways that were controlled by given proteins decayed 
as a power-law, suggesting a minority of proteins that controlled many pathways and vice versa. Such a character-
istic is rooted in the propensity of pathways to substantially overlap, as pathways share genes, allowing pathways 
to cross-talk. Furthermore, we found that proteins that controlled many different pathways separately also had a 
heightened chance to control a network of interactions obtained by pooling all pathway interactions. In a similar 
vein, control nodes that remained robust in networks where we flipped and rewired interactions were preferably 
enriched among control nodes in an increasing number of pathways. Such observations suggest that the com-
bined pathway network still carried the blueprint of the underlying pathways, transcending different levels of 
topological organization despite omitting their boundaries.

As such results highlighted the topological placement of control proteins, the question remained if these 
characteristics translated into a governing, meaningful biological role. Emphasizing their biological importance, 
control proteins on both topological levels were enriched with essential genes. While signaling proteins were 
found enriched as well, membrane-bound receptor proteins appeared to be diluted. Such results indicated that 
pathways were rather controlled by proteins deeply embedded in signaling pathways than by their entry points. 
Furthermore, topological placement of control proteins may also support functional interactions that exert bio-
logical control. Indeed, kinases were strongly enriched in a set of proteins that controlled an increasing number 
of pathways. Moreover, we observed a lower enrichment of transcription factors, indicating their ubiquitous 
presence in terms of gene regulation. In turn, kinases may control a large number of pathways to collect and dis-
seminate biological information. Further, we expected that recipients of post-translational modifications may be 
control proteins as well. Indeed, we found that acetylated and methylated substrates were strongly enriched in the 
sets of proteins that controlled an increasing number of pathways. While still enriched, we found much weaker 
signals when we considered phosphorylated proteins. The latter observation may be a consequence of the fact that 
a considerable amount of known pathways cover signaling functions that strongly feature phosphorylation events. 
Nonetheless, the prevalence of kinases and proteins with posttranslational modifications suggested that the place-
ment of control proteins in different pathways was crucial for the dissemination of biological information.

Figure 4.  Evolutionary conservation of pathway controlling proteins. (a) We mapped human genes to 
conserved proteins in different organisms that controlled networks of interactions when we combined all 
pathway interactions in the underlying organism. Notably, we observed that human control proteins were 
significantly enriched with corresponding control proteins in other organisms (P < 10−5, Fisher’s exact test). 
(b) Human proteins that controlled an increasing number of pathways appeared enriched with evolutionarily 
conserved proteins that controlled networks of combined pathways in other organisms. (c) As a corollary, we 
found that the numbers of pathways human proteins controlled correlated well with their organism specific 
counterparts.

https://doi.org/10.1038/s41598-020-59717-6


7Scientific Reports |         (2020) 10:2943  | https://doi.org/10.1038/s41598-020-59717-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

In terms of network medicine, disease causing mutations exert their influence through interactions of afflicted 
protein23. As a consequence, we expected that proteins that controlled an increasing number of pathways may 
be enriched with disease genes as the placement of control proteins allows for fast transmission. Indeed, disease 
genes that carried mutations were strongly enriched in sets of control proteins. Surprisingly, we observed that 
disease genes that were identified from genome-wide association studies were less strongly enriched. Such an 
observation may be rooted in the fact that GWAS studies rather identify non-coding genomic regions but not 
specific disease causing genes2. As a corollary, we corroborated the role of control proteins as central to the dis-
semination of biological information to transform a cell from a disease to a healthy state, when we investigated the 
enrichment of drug targets. While we found that drug targets and druggable genes were enriched with proteins 
that controlled a large number of pathways, we observed the opposite when we considered druggable genes that 
were not approved by FDA as drug targets. Considering control proteins in the pooled pathway network, we 
surprisingly found that only approved drug targets were enriched, suggesting that protein domain-folds that can 
interact with drugs alone are putatively no good indicators of a potential drug target.

As a final consideration, we expected that the topological and biological relevance of proteins that controlled 
pathways was an evolutionarily conserved feature. Initially, we surprisingly found that control proteins in the 
human combined pathway network did not appear as particularly conserved in other organisms. Yet, we observed 
a strong conservation signal, when we considered ortholog proteins that controlled the combined pathway net-
work in different organisms. Transcending different topological levels, human proteins that controlled an increas-
ing number of pathways had conserved counterparts in organism-specific combined pathway networks that well 
reflected evolutionary distance by corresponding enrichment levels. In particular, increasing evolutionary dis-
tance to human was reflected by a decreasing pool of orthologs that may translate into lower enrichment of 
human control proteins. Furthermore, we observed strong correlations between the number of controlled path-
ways, when we compared human control proteins to their conserved counterparts in other organisms. Although 
pathways in other organisms are mostly inferred through the aid of orthologous proteins, our results still sug-
gested that the evolution of pathways retained topological control features as well.

Materials and Methods
Pathway information.  We collected interaction information of pathways in different organisms from the 
KEGG6 and Reactome7 databases as parsed with the graphite R tool24. The vast majority of annotated interac-
tions in these pathways were directed, indicating flow of biological information from e.g. a kinase to a substrate. 
Furthermore, physical interactions between proteins (such as protein-protein interactions) were annotated as 
undirected. We only accounted for directed interactions and considered pathways with at least 5 directed inter-
actions, resulting in 276 KEGG and 1,192 Reactome pathway specific networks. Based on these data sources, all 
interactions of pathways were pooled to obtain a directed network of 67,038 interactions between 5,398 proteins 
using KEGG pathways and 8,084 proteins in 180,020 edges using Reactome pathways.

Functional sets of genes.  We obtained 2,708 human essential genes from the online gene essentiality 
database (OGEE)8 and the Database of Essential genes (DEG)9. We collected a set of 1,471 manually curated 
sequence-specific DNA-binding human transcription factors from10,11 and 501 human kinases from the Kinome 
NetworkX database12 which curates kinase information from literature and other databases. As for posttransla-
tional modifications (PTM) we used 17,511 phosphorylated proteins, 6,928 acetylated proteins and 5,418 methyl-
ated proteins from the PhosphoSitePlus database25. For signaling genes, we used 4,408 genes that were annotated 
with a signaling function without receptor domain function from Gene Ontology (GO)26. Furthermore, we used 
5,701 genes that carried a trans-membrane protein domain27.

Disease genes and drug targets.  As representative sets of cancer genes, we used 568 genes that were 
annotated by the Sanger Center as causally implicated in oncogenesis13 as well as 1,259 onco- and tumorsup-
pressor genes that were predicted as cancer-related14. As for viral infections, we utilized 544 human proteins that 
interacted with proteins of the HIV virus from the Human Immunodeficiency Virus Type 1 (HIV-1) Human 
Interaction Database15. From the same source we used 788 human genes that were down-regulated and 1,118 
genes that were up-regulated upon HIV infection.

As for disease genes, we accounted for 2,661 genes that were identified as causal for a disease as of human 
phenotype ontology database (HPO)16 that is based on the Online Mendelian Inheritance in Man (OMIM) data-
base17. Furthermore, we collected 11,002 disease genes that were identified from GWAS studies18.

As for drug targets, we used a set of 2,289 drug targets that were approved by the Food and Drug 
Administration (FDA) as of the DrugBank database19. Furthermore, we accounted for 2,436 genes that were 
annotated as druggable as these proteins carried domains that were deemed suitable to interact with drugs28.

Controllability analysis.  Driver nodes were determined in pathways that were represented as directed 
un-weighted networks of interactions between genes in the underlying pathways. Such drivers are defined as 
nodes that are sufficient to ensure the structural controllability of linear dynamics1. In particular, such a struc-
tural controllability problem can be mapped to a maximum matching problem, assuming that a network of direct 
interactions is a graph-based proxy of the underlying dynamical system. The maximum matching problem can 
be solved in polynomial time by the Hopcroft-Karp algorithm29, mapping a directed to a bipartite network. 
Specifically, we mapped directed links to edges between partitions of nodes that start and end edges. In the match-
ing, a subset of edges M is a matching of maximum cardinality in a directed network if no two edges in M share 
a common starting and ending vertex. Vertices that do not appear in M are unmatched and have been shown 
to be nodes that structurally control the underlying network1. As a corollary, a maximum matching implies the 
presence of a minimum set of such driver nodes of size ND.
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To assess the impact of network nodes on the controllability of the underlying directed network we applied the 
following heuristic2 (Fig. 1a): After a node is removed from the underlying network, we determined the size ′N D
of driver nodes in the changed network. If ′ >N ND D, the node is classified as indispensable (i.e. a control node) 
if the number of driver nodes increased. In other words, the deletion of a node increased the number of nodes 
that allow the control the underlying network. If ′ ≤N ND D, the node is classified as non-controlling as the num-
ber of driver nodes remained unchanged (neutral node) or decreased (dispensable node)2.

Enrichment analysis.  In a group i of control proteins the corresponding number of proteins with a certain 
characteristic A, Ni

A (e.g. being essential or a drug target) were determined. Randomly sampling a set of proteins 
with characteristic A, we calculated the corresponding random number of control proteins with A, Ni

r,A. We 
defined the enrichment of proteins with characteristic A in a group i of control proteins that appear in a given 
number of pathways as =E lg (N /N )i

A
2 i

A
i
r,A .

Furthermore, the enrichment of proteins with a certain characteristic A was determined as a function of the 
number of pathways k, that given proteins control. In particular, ≥N k

A  is the number of proteins with A that con-
trolled ≥k pathways. Randomly sampling a set of proteins with characteristic A, we calculated the corresponding 
random number of ≥N k

r A, . The enrichment of these proteins in a group of proteins that control at least k pathways 
was then defined as =≥ ≥ ≥E lg (N /N )k

A
2 k

A
k

r,A . In both cases, >≥E 0{i, k}
A  points to an enrichment of feature A and vice 

versa. In particular, proteins with feature A were sampled 10,000 times and averaged enrichment values thus 
obtained.
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