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Evaluating the significance of 
contact maps in low-homology 
protein modeling using contact-
assisted threading
Sutanu Bhattacharya1 & Debswapna Bhattacharya   1,2*

The development of improved threading algorithms for remote homology modeling is a critical step 
forward in template-based protein structure prediction. We have recently demonstrated the utility 
of contact information to boost protein threading by developing a new contact-assisted threading 
method. However, the nature and extent to which the quality of a predicted contact map impacts 
the performance of contact-assisted threading remains elusive. Here, we systematically analyze and 
explore this interdependence by employing our newly-developed contact-assisted threading method 
over a large-scale benchmark dataset using predicted contact maps from four complementary methods 
including direct coupling analysis (mfDCA), sparse inverse covariance estimation (PSICOV), classical 
neural network-based meta approach (MetaPSICOV), and state-of-the-art ultra-deep learning model 
(RaptorX). Experimental results demonstrate that contact-assisted threading using high-quality 
contacts having the Matthews Correlation Coefficient (MCC) ≥ 0.5 improves threading performance 
in nearly 30% cases, while low-quality contacts with MCC <0.35 degrades the performance for 50% 
cases. This holds true even in CASP13 dataset, where threading using high-quality contacts (MCC ≥ 
0.5) significantly improves the performance of 22 instances out of 29. Collectively, our study uncovers 
the mutual association between the quality of predicted contacts and its possible utility in boosting 
threading performance for improving low-homology protein modeling.

The problem of predicting the accurate three-dimensional (3D) structure of a protein from its amino acid 
sequence, known as the protein structure prediction problem, remains open1. Template based modeling, one 
of the most accurate approaches for structure prediction, utilizes homologous structural templates deposited in 
Protein Data Bank (PDB)2 to address this problem. In the absence of close homology, remote homology detection 
technique known as threading is one of the most reliable and robust strategies for predicting the 3D structure 
of a query protein3–5. Various threading methods have been developed during the last decade3,5–18 with note-
worthy successes. Alongside, steady growth in sequence and structure2 databases in conjunction with the rapid 
development of statistical and computational methods for co-evolutionary sequence analysis coupled with deep 
learning have resulted in substantial progress in sequence based prediction of residue-residue contact informa-
tion19–34. Consequently, residue-residue contact or distance has become valuable new information to explore 
in boosting the accuracy of protein threading. State-of-the-art threading methods such as EigenTHREADER35, 
map_align36 and DeepThreader37 recently revisit the idea of recognizing remote homology by incorporating 
inter-residue contact map or distance map information into threading. Specifically, Jones and coworkers devel-
oped EigenTHREADER that integrates contact information predicted by MetaPSICOV20 with a standard thread-
ing technique. Baker and coworkers developed map_align, which integrates co-evolutionary contacts (Gremlin38) 
with a threading-based method and subsequently use double dynamic programming39. Xu and coworkers devel-
oped DeepThreader, which integrates sequential features with inter-residue distance information.

Very recently, we have developed a new contact-assisted threading method by successfully integrating accu-
rate residue-residue contact information for improved protein threading40. Specifically, we have integrated 
residue-residue contact maps predicted by RaptorX26,41–43, one of the most accurate contact prediction methods, 
with structural and sequential information such as profiles, secondary structure, solvent accessibility, torsion 
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angles (psi and phi), and hydrophobicity for contact-assisted threading. Experimental results have shown 
that the inclusion of contact information attains statistically significantly better performance compared to 
contact-free threading method when everything else remains the same, demonstrating that the inclusion of con-
tact information in protein threading is a promising avenue for improving the performance of threading method. 
Furthermore, in a head-to-head performance comparison utilizing the same RaptorX-derived contact maps to 
guarantee a fair comparison, our method has successfully outperformed state-of-the-art contact-assisted thread-
ing methods EigenTHREADER and map_align, indicating our method as one of the best contact-assisted protein 
threading protocols. However, it is not clear how the quality of a predicted contact map affects contact-assisted 
threading. Nor it is clear whether contact-assisted threading with low-quality contact maps is as advantageous 
over pure threading as contact-assisted threading with high-quality contact maps such as those predicted from 
RaptorX. Finally, in the presence of competing contact maps of comparable qualities predicted by state-of-the-art 
contact predictors, is there any advantage of using one over the other in terms of improved threading perfor-
mance? While assessing the efficacy of contact maps for low-homology protein modeling requires a head-to-head 
comparison between contact-assisted threading and contact-free pure threading, neither EigenTHREADER nor 
map_align can perform threading in a contact-free mode. Our method, on the other hand, can be seamlessly 
customized to perform contact-assisted or contact-free threading modes, enabling the evaluation of the utility of 
contact maps for remote homology modeling.

To evaluate the significance of contact maps in low-homology protein modeling, here we systematically inves-
tigate the impact of the quality of predicted contacts on the accuracy of contact-assisted threading by employing 
our newly developed contact-assisted threading method over several datasets. First, we analyze predicted contact 
maps from RaptorX and three other complementary methods having a wide range of qualities of their predicted 
contacts based on different contact map evaluation criteria to objectively evaluate how to select the most inform-
ative contact map. Then, we integrate the predicted contact maps from these contact predictors one by one into 
our contact-assisted threading method to examine the impact of each predicted contact map on the threading 
performance and compare them with a baseline threading algorithm that does not utilize contact information 
as well as RaptorX-assisted threading. Finally, we compare the performance of our contact-assisted threading by 
incorporating comparable-quality contact maps predicted by the top two officially ranked contact predictors from 
the recently concluded 13th Critical Assessment of protein Structure Prediction (CASP13) experiment to further 
study the impact of the quality of contacts in threading performance. Collectively, our study unravels the mutual 
association that exists between the quality of a contact map and the performance of contact-assisted threading.

Methods
Scoring a query-template alignment.  Our newly-developed contact-assisted threading method, 
described in40, is an iterative query – template alignment approach where query-template alignments are per-
formed by a Needleman-Wunsch global alignment algorithm44. The threading scoring function consists of 
close and distant sequence profiles, secondary structure, solvent accessibility, structure profile, torsion angles, 
and hydrophobicity match based on which a normalized alignment score or Zscore is calculated for ranking the 
templates.

Residue-residue contact map, which is a binary, square, symmetric matrix, is a two-dimensional representa-
tion of protein’s 3D structure. A contact indicates that the spatial distance between a pair of residues is less than a 
given distance threshold, typically set at 8 Å, between the Cα or Cβ atoms of the residue pairs. Contact Map Overlap 
(CMO) finds the similarity between two contact maps, where the higher CMO score indicates that a higher simi-
larity between the two comparing contact maps. Al-Eigen45, one of the state-of-the-art CMO methods, computes 
an overlap between two input contact maps and gives a score between [0,1] with higher score indicating better 
agreement of contact maps. We integrate CMO score returned from Al-Eigen into our threading method for select-
ing the best-fit template by formulating the final score as discussed in40. After identifying the best-fit template, the 
query-template alignment is used to copy the coordinate of the aligned residues from the template to build the final 
3D model of the query protein. Please refer40 for further details about our method and its scoring function.

Template libraries, benchmark data, and predicted contact maps.  We use a representative 
non-redundant library of templates containing 70,670 templates, collected from: https://zhanglab.ccmb.med.
umich.edu/library/46.

Our first benchmark dataset is the PSICOV150 dataset19, which contains 150 single chain, single domain 
proteins. In order to test the impact of different types of contact maps in the performance of contact-assisted 
method, we choose predicted contact maps from four complementary methods having a wide range of qualities 
of predicted contacts including (i) mean field direct coupling analysis (mfDCA)22,23, (ii) sparse inverse covariance 
estimation method (PSICOV)19, (iii) classical neural network-based meta approach (MetaPSICOV)20, and (iv) 
state-of-the-art ultra-deep learning model (RaptorX)26,41–43. Here, we give a brief introduction of each contact 
predictor. mfDCA, an advanced formulation of direct coupling analysis (DCA), is a statistical inference frame-
work used to infer direct co-evolutionary couplings between pair of residues in multiple sequence alignments. 
Another Evolutionary Coupling Analysis (ECA) technique, PSICOV, uses sparse inverse covariance estimation 
for contact prediction. Although ECA methods are useful for predicting long-range contacts in the presence of a 
large number of sequence homologs, their accuracy is substantially poor if the number of sequence homologs is 
low47. In recent years, machine learning or deep learning-based methods boost the accuracy of contacts. One such 
contact predictor, MetaPSICOV, a meta predictor, which uses a two-stage neural network by combining outputs 
of several ECA classifiers. It was ranked as one of the best contact predictors in CASP11 and CASP 1248. Another 
contact predictor powered by deep learning, RaptorX, incorporates the entire protein ‘image’ as a context for pre-
diction by utilizing a Residual Convolutional Neural Network, or ResNet. It was ranked as one of the best contact 
predictors in CASP12 and CASP1328.
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We use the FreeContact package22 to obtain contact-maps predicted by mfDCA. Since the contact likelihood 
scores of mfDCA predicted contact maps are not normalized in the range [0,1], we normalize contact likeli-
hood scores by dividing each score by the maximum likelihood score of a given predicted contact map. PSICOV 
and MetaPSICOV contacts are obtained directly from the MetaPSICOV benchmark dataset20. RaptorX contacts 
are collected by submitting jobs to the RaptorX online server (http://raptorx.uchicago.edu/ContactMap/26,41–43). 
Residue pairs with contact likelihood scores <0.5 are excluded to reduce noise in all predicted contact maps. To 
make a fair performance comparison, we use the same template library for all competing methods by excluding 
templates with sequence identity >30% to the query protein to remove close homologs. It should be noted that, 
unlike other contact predictors, RaptorX fails to predict contacts for two targets namely: 1tqhA and 1hdoA. We, 
therefore, consider 148 targets for the current benchmarking.

Next, we benchmark on CASP13 dataset officially released in December 2018. We consider 20 full-length 
targets in a total of 32 domains for which CASP organizers released experimental structures so far. We consider 
the top two officially ranked contact predictors in CASP1349 to test the impact of using comparable-quality con-
tact maps in the performance of our contact-assisted method. In CASP13, the contact prediction category is 
heavily dominated by the latest breakthroughs in deep learning technologies. For example, G498 (ranked 1) or 
RaptorX-Contact, developed by Xu and coworkers, has attained the top performance since CASP12. It predicts 
residue-residue contacts using an ultra-deep learning model. It is worth mentioning that we also use RaptorX pre-
dicted contacts for our previous study40 as well as for benchmarking on PSICOV150 dataset for this current work. 
The second-ranked contact predictor, G032 or TripletRes, developed by Zhang and coworkers34, is implemented 
by a deep residual fully convolutional neural network with evolutionary coupling features from deep multiple 
sequence alignment.

For CASP13 benchmarking, the template library is curated before CASP13 started on May 1, 2018, which 
contains 69,041 template structures. For a fair comparison, we use the same template library for all competing 
methods. We have downloaded the predicted contact maps from the official website of CASP and subsequently 
exclude residue pairs with contact probability <0.5 from all predicted contact maps to reduce noise. It is also 
worth mentioning all residue pairs of a predicted contact map with contact likelihood of at least 0.5 with mini-
mum sequence separation of 6 residues are considered for all experiments40.

Evaluation criteria of contact maps, and the resulting contact-assisted 3D structures.  We use the 
following evaluation measures to evaluate predicted contact maps: precision, coverage, mean false positive error, 
spread, and Matthews correlation coefficient (MCC)28,50,51. Precision is the percentage of correctly predicted con-
tacts, Precision TP

TP FP
=

+
, where TP represents true positives or correctly predicted contacts, and FP represents false 

positives or incorrectly predicted contacts. Coverage is the percentage of correctly predicted contacts with respect to 
the number of true contacts in the native contact map (Nc), =Coverage TP

Nc
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true contacts, Ti is a true contact, and dist T Pmin{ ( )}i −  is the minimum Euclidean distance between true pair of 
contacts and predicted contact pairs. Matthews correlation coefficient (MCC) is calculated by: 
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, where TP, TN, FP, and FN represent true positive, true negative, false 

positive, and false negative respectively.
TM-score52 is used to evaluate the quality of the predicted 3D structure of query proteins with respect to the 

native (experimentally determined) structures. The value of TM-score lies in the range (0,1], where a higher score 
indicates better similarity. A TM-score >0.5 suggests a highly similar structure to the native fold53.

Results and Discussions
Robust assessment of qualities of predicted contact maps.  To objectively evaluate the most inform-
ative contact map, we compare the performance of each predicted contact map from different perspectives using 
various contact evaluation measures51 over PSICOV150 dataset after excluding two targets (1tqhA and 1hdoA) 
for which RaptorX fails to predict contact maps. As shown in Table 1, mfDCA attains the highest precision of 
75.22% compared to 72.83% of PSICOV, 72.08% of RaptorX, and 71.61% of MetaPSICOV. From the standpoint 
of precision, mfDCA seems to be the best contact predictors. However, all the other contact evaluation measures 
indicate that RaptorX attains the best performance. For example, RaptorX attains an MCC of 0.68 compared 
to 0.47 of MetaPSICOV, 0.24 of PSICOV, and 0.14 of mfDCA. RaptorX is also shown to reach the best score 

Contact 
Source Precision Coverage

Mean FP 
Error Spread MCC

RaptorX 72.08 66.88 0.67 1.78 0.68

MetaPSICOV 71.61 34.20 0.73 5.63 0.47

PSICOV 72.83 8.78 1.08 8.32 0.24

mfDCA 75.22 3.20 1.03 20.05 0.14

Table 1.  Evaluation of predicted contact mapsa on PSICOV150 datasetb, sorted by non-increasing order of the 
value of MCC (best performance and best performer are listed in bold). aExcluding residue pairs with contact 
probability <0.5. bExcluding two targets (1tqhA and 1hdoA) for which RaptorX could not predict contact maps.
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according to coverage (66.88%), mean floating point error (0.67), and spread (1.78), whereas, MetaPSICOV, 
PSICOV, and mfDCA achieve coverage of 34.2%, 8.78% and 3.2%, mean FP error of 0.73, 1.08 and 1.03, and 
spread of 5.63, 8.32 and 20.05 respectively. The results reveal that relying purely on one contact evaluation meas-
ure such as precision may not always be sufficient since evaluation measures focus on various aspects of the 
quality of predicted contacts that can sometimes be mutually contradictory. Furthermore, the fact that we only 
consider residue pairs with contact probability of at least 0.5 to remove noise, may have resulted in a very few 
numbers of contact pairs for mfDCA thereby artificially raising the precision. In contrast, MCC considers true 
and false positives and negatives, and therefore is a more balanced evaluation measure for predicted contacts.

As a representative example, we present two case studies on targets 1aapA (56 residues) and 1dsxA (87 resi-
dues) to illustrate mutual comparisons between precision and MCC, and to substantiate how MCC is more bal-
anced evaluation measure for predicted contacts. In Fig. 1, the upper triangles represent native contact map and 
the lower triangles represent predicted contact map by different contact predictors after applying contact likeli-
hood score cutoff of at least 0.5. Fig. 1(A,B,C,D) represent native contacts of the target 1aapA versus contacts pre-
dicted by mfDCA, PSICOV, MetaPSICOV, and RaptorX respectively. Based on precision, mfDCA and PSIOCOV 
appear to be the best contact predictor for the target 1aapA with a precision of 100%, as opposed to 84.62% of 
MetaPSICOV and 83.78% of RaptorX. However, mfDCA and PSICOV achieve high precision by predicting only 
a very few contact pairs correctly, but with very low coverage. Precision of MetPSICOV and RaptorX, on the other 
hand, are comparatively lower due to the presence of few false positive contacts, but with substantially higher 
coverage compared to mfDCA or PSICOV. MCC successfully addresses this issue with RaptorX achieving the 
best performance having an MCC of 0.65 compared to 0.55 of MetaPSICOV, 0.22 of PSICOV, and 0.09 of mfDCA. 
These results illustrate the fact that MCC is more balanced evaluation measure and therefore better suited for 
predicted contact maps that are often noisy. Fig. 1(E,F,G,H) present a similar case study for target 1dsxA (87 res-
idues). Once again, RaptorX predicted contact map achieves the best performance in terms of MCC with a value 
of 0.64 compared to 0.39 of MetaPSICOV, 0.13 of mfDCA, and 0.09 of PSICOV; whereas MetaPSICOV contacts 
achieves the best performance in terms of precision (86.21%) compared to 78.12% of RaptorX, 46.15% of mfDCA, 
and 42.86% of PSICOV. Although this time precision offers better balance, still it overly emphasizes prediction 
of true positive contacts. Overall, these examples demonstrate that MCC is more robust and consistent for noisy 
contact maps compared to other contact evaluation measures. We, therefore, choose MCC as the main evaluation 
measure of the quality of predicted contact maps in this study.

Figure 1.  Representative examples of contact maps predicted by four complementary methods for targets 
1aapA and 1dsxA. The upper triangles represent true (native) contacts of the target and the lower triangles 
represent predicted contacts with contact probability of at least 0.5. Numbers inside parenthesis indicate 
precision (%), and MCC respectively. For target 1aapA, (A) native contacts versus mfDCA contacts with a 
precision of 100% and an MCC of 0.09, (B) native contacts versus PSICOV contacts with a precision of 100% 
and an MCC of 0.22, (C) native contacts versus MetaPSICOV contacts with a precision of 84.62% and an MCC 
of 0.55, (D) native contacts versus RaptorX contacts with a precision of 83.78% and an MCC of 0.65. For target 
1dsxA, (E) native contacts versus mfDCA contacts with a precision of 46.15% and an MCC of 0.13, (F) native 
contacts versus PSICOV contacts with a precision of 42.86% and an MCC of 0.09, (G) native contacts versus 
MetaPSICOV contacts with a precision of 86.21% and an MCC of 0.39, (H) native contacts versus RaptorX 
contacts with a precision of 78.12% and an MCC of 0.64.
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Performance evaluation of contact-assisted threading with contact maps of diverse qualities.  
To investigate the impact of the quality of contact maps on the performance of contact-assisted threading, we 
benchmark our method using contact maps of diverse qualities over PSICOV150 dataset. As shown in Table 2, 
our contact-assisted threading method powered by the high-quality contacts from RaptorX (referred to as 
rrRaptorX-assisted threading) and moderate-quality contacts from MetaPSICOV (referred to as rrMetaPSICOV-assisted 
threading) outperform contact-free pure threading method (referred to as pure threading) serving as a con-
trol in terms of the accuracy of the top ranked predicted models. Considering TM-score of top ranked models, 
RaptorX-assisted threading method delivers the best performance by achieving a mean TM-score of 0.66, which 
is 0.03 TM-score points more than that of baseline threading method, whereas the mean TM-score improvement 
reaches to 0.01 for MetaPSICOV-assisted threading method compared to baseline threading method. Moreover, 
80.4% and 77.7% of the time RaptorX-assisted threading method and MetaPSICOV-assisted threading method 
predict the correct fold (TM-score >0.5), respectively, as opposed to 75.7% of baseline threading method. We 
also perform T-Test to examine whether the performance boost attained by contact-assisted threading work using 
high-quality RaptorX contacts and moderate-quality MetaPSICOV contacts over baseline threading method are 
statistically significantly better. Compared to baseline threading method, RaptorX-assisted threading method is 
statistically significantly better at 95% confidence level with a p-value of 0.0001. However, MetaPSICOV-assisted 
threading method improves the threading performance compared to baseline threading method, but the 
improvement is not statistically significant at 95% confidence level with a p-value of 0.07 (Supplementary 
Table S5). Overall, the results demonstrate that the threading method using high-quality contact maps leads to 
better threading performance in terms of TM-score of top ranked models and percentage of time finding the 
correct overall folds.

Table 2 also shows that low-quality contacts such as mfDCA and PSICOV degrade the contact-assisted 
threading (referred to as rrmfDCA-assisted threading and rrPSICOV-assisted threading respectively) performance 
with respect to pure threading method by 0.04 and 0.05 TM-score, respectively, in terms of the accuracy of 
top ranked predicted models. In finding correct overall folds, the performance of mfDCA-assisted thread-
ing method and PSICOV-assisted threading method drop by around 4% and 6%, respectively, compared to 
baseline threading method. The deterioration of performance of contact-assisted threading method using 
low-quality contact maps mfDCA and PSICOV are also statistically significant with p-values of 5.8e-08 and 
2.9e-05, respectively with respect to baseline threading method (Supplementary Table S5). Moreover, Table 2 
also shows that RaptorX-assisted threading attains statistically significantly better performance compared to 
the other three contact-assisted threading method, mfDCA-assisted threading, PSICOV-assisted threading, and 
MetaPSICOV-assisted threading, with p-values of 1.5e-11, 1.3e-09, and 0.0007 respectively. Results presented in 
Table 2, therefore, demonstrate that low-quality contacts degrade the threading performance compared to base-
line threading method as opposed to high-quality contacts, which boost the threading performance.

Fig. 2 shows a head-to-head comparison of different contact-assisted threading methods with baseline 
contact-free threading method in terms of accuracy (TM-score) of top ranked models built from the first-ranked 
template. Each point in each scatter plot represents joint TM-score of top ranked model predicted by pure thread-
ing and contact-assisted threading method. In Fig. 2(A,B), majority of points are below diagonal lines, which 
clearly indicates that low-quality contacts (mfDCA and PSICOV) substantially degrade the threading perfor-
mance compared to baseline threading method. In contrast, we observe a slight performance improvement using 
moderate-quality MetaPSICOV contacts (Fig. 2(C)), where MetaPSICOV-assisted threading method improves 
threading performance for 22 targets (out of 148) compared to pure threading method. Moreover, Fig. 2(D) shows 
a noticeable boost in threading performance using the high-quality RaptorX contacts, where 35.8% points (or 53 
targets) are above the diagonal, indicating RaptorX-assisted threading method improves the TM-score of the top 
ranked model for 53 targets (out of 148) compared to baseline threading method. Furthermore, we examine the 
TM-score distribution of the top ranked model predicted by contact-assisted threading methods and baseline 
threading method in Fig. 2(E,F,G,H). Specifically, in Fig. 2(E,F), the highest peak of baseline threading method is 
larger as well as skewed towards the higher accuracy (right) side compared to mfDCA-assisted threading method 
and PSICOV-assisted threading method, respectively. These figures indicate that the threading method using each 
low-quality contact map predicts more models with low TM-score than baseline threading method, resulting 

Methods
Average TM-
score (p-value*)

%time TM-
score >0.5b

rrmfDCA-assisted threadingc 0.58 (1.5e-11) 69.6

rrPSICOV-assisted threadingd 0.59 (1.3e-09) 71.6

pure threadinge 0.63 (0.0001) 75.7

rrMetaPSICOV-assisted threadingf 0.64 (0.0007) 77.7

rrRaptorX-assisted threadingg 0.66 80.4

Table 2.  Performance comparison on PSICOV150 targetsa based on top ranked models, sorted by non-
decreasing order of performance (best performance and best performer are listed in bold) with shaded row 
representing the performance of pure threading method. aExcluding two targets (1tqhA and 1hdoA) for which 
RaptorX could not predict contact maps. bPercentage of time the respective method predicts the correct fold 
(TM-score > 0.5). cContact-assisted threading method using mfDCA contacts. dContact-assisted threading 
method using PSICOV contacts. ePure threading method (without contacts). fContact-assisted threading 
method using MetaPSICOV contacts. gContact-assisted threading method using RaptorX contacts. *One 
sample T-Test’s p-value of the TM-score difference compared to rrRaptorX-assisted threading.
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Figure 2.  A head-to-head comparison of different contact-assisted threading methods and baseline contact-
free pure threading method on PSICOV150 dataset. (A) mfDCA-assisted threading method (referred to as 
rrmfDCA) versus baseline threading method (referred to as Pure threading), (B) PSICOV-assisted threading 
method (referred to as rrPSICOV) versus baseline threading method, (C) MetaPSICOV-assisted threading method 
(referred to as rrMetaPSICOV) versus baseline threading method, (D) RaptorX-assisted threading method (referred 
to as rrRaptorX) versus baseline threading method. Each point in each scatter plot represents joint TM-score of top 
ranked model predicted by baseline pure threading method and contact-assisted threading method. (E) TM-
score distribution of top ranked models predicted by pure threading method versus mfDCA-assisted threading 
method (referred to as rrmfDCA-assisted threading), (F) TM-score distribution of top ranked models predicted by 
pure threading method versus PSICOV-assisted threading method (referred to as rrPSICOV-assisted threading), 
(G) TM-score distribution of top ranked models predicted by pure threading method versus MetaPSICOV-
assisted threading method (referred to as rrMetaPSICOV-assisted threading), (H) TM-score distribution of top 
ranked models predicted by pure threading based method versus RaptorX-assisted threading method (referred 
to as rrRaptorX-assisted threading). Templates with sequence similarity >30% to the query sequence are excluded.
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bimodality due to the second highest peak of the density of predicted models in the TM-score range [0,0.4], 
which deteriorates the overall threading performance. In contrast, in Fig. 2(G,H), we see an opposite trend when 
we plot TM-score distribution of our threading approaches – one using contacts (MetaPSICOV, and RaptorX 
respectively) of higher qualities while the other does not use contact information. Fig. 2(G) shows a slight per-
formance improvement by MetaPSICOV-assisted threading method compared to baseline threading method in 
that in TM-score range [0,0.3], MetaPSICOV-assisted threading method predicts fewer models as opposed to 
higher TM-score range, indicating using moderate contacts such as MetaPSICOV helps to improve the TM-score 
of a few targets compared to purely threading based method. In Fig. 2(H), we see a significant performance boost 
by incorporating the high-quality RaptorX contacts in threading method. The highest peak of RaptorX-assisted 
threading method is larger as well as skewed towards the higher TM-score (right) side compared to baseline 
threading method. In TM-score range [0.5,1.0], RaptorX-assisted threading method predicts more models as 
opposed to low TM-score range [0,0.5), indicating incorporating the high-quality RaptorX contacts helps to find 
the overall correct folds (TM-score >0.5) for a number of targets where purely threading based method fails. In 
summary, these results demonstrate that incorporating high-quality contacts in threading significantly boosts the 
threading performance in contrast with low-quality contacts, which degrades the performance.

Since RaptorX-assisted threading method delivers the best threading performance we compare the perfor-
mance of other three contact-assisted threading methods one by one against RaptorX-assisted threading act-
ing as control. In Fig. 3, each point in each scatter plot represents TM-score of top ranked model predicted by 
RaptorX-assisted threading vs. one of the other three contact-assisted threading methods. Fig. 3(A) shows a 
head-to-head comparison of mfDCA-assisted threading (referred to as rrmfDCA) and RaptorX-assisted threading 
(referred to as rrRaptorX-assisted threading method) in terms of TM-score of top ranked model, where majority of 
the points (>70%) are below the diagonal line, RaptorX-assisted threading clearly outperforms mfDCA-assisted 
threading by a large margin. We see almost a similar trend in Fig. 3(B) when we compare PSICOV-assisted 
threading (referred to as rrPSICOV) with RaptorX-assisted threading method. Around 67% points are below the 
diagonal line, which demonstrates the superior performance of RaptorX-assisted threading over PSICOV-assisted 
threading. In Fig. 3(C), we compare our contact-assisted threading approaches – one using moderate-quality 
MetaPSICOV contacts (referred to as rrMetaPSICOV) while other using the high-quality RaptorX contacts. Around 
28% more points are below the diagonal line, which illustrates the positive influence of higher-quality con-
tact maps (RaptorX) for improved threading performance. In Fig. 3(D,E), compared to both mfDCA- and 
PSICOV-assisted threading methods (referred to as rrmfDCA-assisted threading and rrPSICOV-assisted threading 
respectively), the highest peak of RaptorX-assisted threading (referred to as rrRaptorX-assisted threading) is larger 
as well as skewed towards the higher TM-score side, indicating RaptorX-assisted threading finds more correct 
folds compared to others. Similarly, Fig. 3(F) illustrates the TM-score distribution of MetaPSICOV-assisted 
threading (referred to as rrMetaPSICOV-assisted threading) and RaptorX-assisted threading, where the highest peak 
of RaptorX-assisted threading is still larger than MetaPSICOV-assisted threading as well as skewed towards the 
higher accuracy (right) side, illustrating the performance boost attained by contact-assisted threading method 
using the high-quality contacts (RaptorX) over moderate-quality contacts (MetaPSICOV). Overall, high-quality 
contacts predicted from RaptorX leads to statistically significantly better threading performance compared to that 
attained from inferior-quality contacts predicted from other methods.

Fig. 4 shows how the quality of contact maps (measured by MCC for residue pairs having contact probability 
of at least 0.5) affects contact-assisted threading performance as quantified by the changes in TM-score of top 
ranked models of contact-assisted threading methods compared to pure threading method considering all four 
contact-assisted threading methods over 148 targets resulting in a total of 592 instances. Each point in the scatter 
plot represents MCC of a predicted contact map and change in TM-score of a top ranked model predicted by the 
respective contact-assisted threading method compared to pure threading method respectively. The data points 
have been separated based on the quality (MCC) of contacts: (i) 211 pairs with high quality contacts (MCC ≥ 
0.5), (ii) 301 pairs with low-quality (MCC < 0.35) contacts, and (iii) the twilight zone comprises of 80 pairs 
with moderate-quality contacts (0.35 ≤ MCC < 0.5). The bar plot on the upper right corner of Fig. 4 shows that 
contact-assisted threading performance is significantly improved for around 29% of the cases (out of 211), which 
is more than three times of the number of cases the performance is degraded, demonstrating that high-quality 
contacts (MCC ≥ 0.5) boost threading performance. In contrast, the bar plot on the upper left corner of Fig. 4 
shows that low-quality contacts degrade contact-assisted threading performance for almost half of the points 
(out of 301) as opposed to only around 14% of the cases where the performance is improved, illustrating the 
adverse effect of low-quality contacts (MCC < 0.35) on contact-assisted threading performance. The bar plot 
on the upper middle section of Fig. 4 represents a twilight zone with moderate-quality contacts where there is 
no significant difference in the number of cases contact-assisted threading performance is improved (around 
18%) or degraded (25%) out of 80 pairs. Furthermore, in Supplementary Fig. S1, targets are grouped into three 
bins based on their sequence length to investigate how the quality of contacts affects the changes in TM-score of 
contact-assisted threading compared to the baseline pure threading for different length bins. In Supplementary 
Fig. S1, there are 34 targets of length <100 residues resulting in a total of 136 instances (Fig. S1(A)), 47 targets 
of length [100,150] residues resulting in a total of 188 instances (Fig. S1(B)), and 67 targets of length >150 resi-
dues resulting in a total of 268 instances (Fig. S1(C)). For every length bin, we see a similar trend, contacts with 
MCC ≥ 0.5 lead to improved threading performance as opposed to contacts with MCC < 0.35, which degrade 
the threading performance. Specifically, in the presence of high-quality contacts (MCC ≥ 0.5), Fig. S1(A) shows 
the highest threading performance boost of ~37% for the small proteins followed by ~29% for proteins of length 
[100, 150] residues (Fig. S1(B)) and ~24% for proteins of length > 150 residues (Fig. S1(C)) compared to ~8% 
performance degradation in each distance bin. On the other hand, low-quality contacts (MCC < 0.35) degrade 
threading performance for ~50% of the cases, irrespective of protein length. Overall, the results show that contact 
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maps with an MCC score of at least 0.5 lead to significantly better threading performance, whereas a score below 
0.35 corresponds to a significant deterioration in threading performance.

A representative example sheds some light on the impact of diverse quality of contacts on threading perfor-
mance, as shown in Fig. 5 for target 2mhrA from the PSICOV150 dataset that is a Hemerythrin HHE cation bind-
ing domain19 of 118 residues. Fig. 5(A) shows RaptorX-assisted threading predicts the correct fold (top ranked 
model predicted with a TM-score >0.5) with a TM-score of 0.59 (and root-mean-square deviation or RMSD of 
4.8 Å) by using RaptorX predicted contacts with an MCC of 0.55 (Fig. 5(E)). In contrast, Fig. 5(B,C,D) reveal the 
inability of the other three contact-assisted threading methods in finding the correct fold due to inferior-quality 
contacts. In particular, threading using moderate-quality MetaPSICOV contacts (MCC of 0.44, Fig. 5(F)) pre-
dicts the 3D structure of the target with a TM-score of 0.44 (and RMSD of 12.15 Å, Fig. 5(B)) while as shown in 
Fig. 5(C,D), TM-score (and RMSD) are 0.26 (and 11.85 Å) and 0.19 (and 13.48 Å) for method using PSICOV 
contacts (MCC of 0.25, Fig. 5(G)) and mfDCA contacts (MCC of 0.12, Fig. 5(H)) respectively.

Figure 3.  A head-to-head comparison of different contact-assisted threading methods and baseline RaptorX-
assisted threading method on PSICOV150 dataset. (A) mfDCA-assisted threading method (referred to as 
rrmfDCA) versus baseline RaptorX-assisted threading method (referred to as rrRAPTORX-assisted threading),  
(B) PSICOV-assisted threading method (referred to as rrPSICOV) versus baseline RaptorX-assisted threading 
method, (C) MetaPSICOV-assisted threading method (referred to as rrMetaPSICOV) versus baseline RaptorX-
assisted threading method. Each point in each scatter plot represents joint TM-score of top ranked model 
predicted by baseline RaptorX-assisted threading and one of the other three contact-assisted threading 
methods respectively. (D) TM-score distribution of top ranked models predicted by RaptorX-assisted threading 
method versus mfDCA-assisted threading method (referred to as rrmfDCA-assisted threading), (F) TM-score 
distribution of top ranked models predicted by RaptorX-assisted threading method versus PSICOV-assisted 
threading method (referred to as rrPSICOV-assisted threading), (G) TM-score distribution of top ranked models 
predicted by RaptorX-assisted threading method versus MetaPSICOV-assisted threading method (referred to as 
rrMetaPSICOV-assisted threading). Templates with sequence similarity >30% to the query sequence are excluded.
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Performance evaluation of contact-assisted threading with contact maps from top CASP13 
groups.  To further study the effect of the quality of contacts in threading performance over challenging 
CASP13 targets, we employ contact-assisted threading using the top two officially ranked contact maps on 
CASP13 dataset, consisting of 20 full-length targets (and 32 domains) officially released so far with native struc-
tures, the same template library and the same nr sequence database, curated before CASP13 started on May 1, 
2018, are used by all competing methods. For each target, we make the prediction for the full sequence without 
utilizing any domain information. After the prediction phase, threading performance at the domain level is eval-
uated using the domain definitions provided by the official CASP13 assessors.

Table 3 shows incorporating high-quality contacts statistically significantly outperforms the baseline pure 
threading method both for full-length targets and domain level targets. Over 20 full-length targets (and 32 
domains), the mean TM-score of threading methods using TripletRes contacts (referred to as TripletRes-assisted 
threading) and RaptorX-Contact (referred to as RaptorX-Contact-assisted threading) are 0.457 (and 0.392) and 
0.449 (and 0.387), respectively, as opposed to 0.403 (and 0.34) of the baseline pure threading method. Moreover, 
the performance improvement of TripletRes and RaptorX-Contact are also statistically significant with p-value of 
0.001 (and 0.0002) and 0.006 (and 0.0008), respectively, for full-length (and domain level) targets. Additionally, 
Supplementary Fig. S2 shows how threading performance is affected by the quality of contacts over 20 full-length 
targets. The set contains 40 instances, out of which, there are 29 instances with high-quality contacts (MCC ≥ 0.5) 
as opposed to only one instance (TripletRes contact map for T1008) for which MCC < 0.35. The figure demon-
strates how high-quality contacts with MCC ≥ 0.5 lead to significant threading performance boost (22 out of 29), 
illustrating contact maps with an MCC score of at least 0.5 lead to significantly better threading performance. 
A case study shown in Supplementary Fig. S3 for CASP13 target T0954 of length 350 residues demonstrates the 
impact of high-quality contacts on threading performance. The baseline pure threading method attains TM-score 
of 0.301 for the target, whereas contact-assisted threading using high-quality contact maps (MCC ≥ 0.5) from 
RaptorX-contact and TripletRes successfully predict the correct fold with TM-score ≥ 0.56, illustrating how 
high-quality contacts with MCC ≥0.5 boost threading performance.

Conclusions
Protein threading represents one of the most successful approaches for modeling protein 3D structures from 
sequences, particularly when close homologous structural templates cannot be easily detected. Emerging meth-
ods in protein co-evolution coupled with deep learning have shown promise in sequence-based prediction of 
protein residue-residue contact maps, which are valuable source of information that can facilitate further progress 

Figure 4.  The relationship between changes in TM-score of contact-assisted threading methods compared to 
pure threading method, and the MCC (Matthews correlation coefficient) of predicted contact maps, tested on 
PSICOV150. The dataset includes all four contact-assisted threading methods over 148 targets resulting in a 
total of 592 instances. Each point in the scatter plot represents MCC of a predicted contact map and change in 
TM-score of a top ranked model predicted by various contact-assisted threading methods compared to pure 
threading. The dark points indicate improvement in TM-score (positive change in TM-score), whereas the 
grey points indicate performance deterioration (negative change in TM-score) compared to pure threading. 
The data points are separated based on the quality (measured by MCC by considering residue pairs with 
contact probability of at least 0.5) of contacts: (i) 211 pairs with high quality contacts (MCC ≥ 0.5), (ii) 301 
pairs with low-quality (MCC < 0.35) contacts, and (iii) the twilight zone comprises of 80 pairs with moderate-
quality contacts (0.35 ≤ MCC < 0.5). Each bar plot represents the percentage of TM-score improvement and 
deterioration compared to pure threading. Templates with sequence similarity >30% to the query protein are 
excluded.

https://doi.org/10.1038/s41598-020-59834-2


1 0Scientific Reports |         (2020) 10:2908  | https://doi.org/10.1038/s41598-020-59834-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 5.  Representative example of contact-assisted threading with contact maps of diverse qualities on target 
2mhrA. (A) Structural alignment between the top ranked model predicted by RaptorX-assisted threading 
(in thick rainbow) with a TM-score of 0.59 and the native structure of the target (in thin gray), (B) Structural 
alignment between top ranked model predicted by MetaPSICOV-assisted threading (in thick rainbow) with 
a TM-score of 0.44 and the native structure of the target (in thin gray), (C) Structural alignment between top 
ranked model predicted by PSICOV-assisted threading (in thick rainbow) with a TM-score of 0.26 and the 
native structure of the target (in thin gray), (D) Structural alignment between top ranked model predicted by 
mfDCA-assisted threading (in thick rainbow) with a TM-score of 0.19 and the native structure of the target (in 
thin gray). (E) Native contact map (upper triangle) versus predicted contact map by RaptorX (lower triangle) 
with an MCC of 0.55. (F) Native contact map (upper triangle) versus predicted contact map by MetaPSICOV 
(lower triangle) with an MCC of 0.44. (G) Native contact map (upper triangle) versus predicted contact map 
by PSICOV (lower triangle) with an MCC of 0.25. (H) Native contact map (upper triangle) versus predicted 
contact map by mfDCA (lower triangle) with an MCC of 0.12. For all predicted contact maps, pair of residues 
with contact probability <0.5 are excluded.
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in protein threading. Very recently, we have successfully incorporated contact maps to boost the accuracy of pro-
tein threading, demonstrating contact-assisted threading as a promising avenue for remote-homology protein 
modeling40. However, the nature of the interdependence between the quality of contact maps and contact-assisted 
threading performance remains elusive. Here, we present a large-scale analysis to study their mutual association 
by employing contact-assisted threading using contact maps of diverse qualities predicted from various contact 
predictors ranging from pure co-evolutionary methods (mfDCA and PSICOV) to hybrid approaches that com-
bine sequence co-evolution and machine learning such as classical neural network (MetaPSICOV) and ultra-deep 
learning model (RaptorX). Experimental results demonstrate that contact-assisted threading method using 
high-quality RaptorX contacts and moderate-quality MetaPSICOV contacts outperform the baseline contact-free 
threading, whereas, low-quality contacts predicted from mfDCA and PSICOV deteriorate the threading per-
formance compared to the baseline pure threading method. Contact-assisted threading with the best-quality 
contacts (RaptorX) delivers the best threading performance that is statistically significantly better compared to 
contact-free threading, demonstrating that accurate (MCC ≥ 0.5) residue-residue contact information is highly 
effective in boosting threading performance as opposed to low-quality (MCC < 0.35) contact information. This 
holds true even on the recently concluded CASP13 dataset, where contacts with MCC ≥ 0.5 lead to improved 
threading performance. Collectively, our study shows that contact-assisted threading is effective in the presence 
of high-quality (MCC ≥ 0.5) contact maps – indicating an evolving new direction for improved protein threading 
that is likely to mature further with future advancements in contact prediction methods.

Data availability
All data generated or analyzed during this study are included in this article and its supplementary files. Moreover, 
PSICOV150 dataset is publicly available at http://bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV/suppdata/, 
CASP13 dataset is publicly available at http://www.predictioncenter.org/casp13/index.cgi, and contact maps 
predicted by top ranked groups in CASP13 are publicly available at http://www.predictioncenter.org/download_
area/CASP13/predictions/contacts/.
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