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A molecular gradient along the longitudinal axis
of the human hippocampus informs large-scale
behavioral systems
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The functional organization of the hippocampus is distributed as a gradient along its long-
itudinal axis that explains its differential interaction with diverse brain systems. We show that
the location of human tissue samples extracted along the longitudinal axis of the adult human
hippocampus can be predicted within 2mm using the expression pattern of less than 100
genes. Futhermore, this model generalizes to an external set of tissue samples from prenatal
human hippocampi. We examine variation in this specific gene expression pattern across the
whole brain, finding a distinct anterioventral-posteriodorsal gradient. We find frontal and
anterior temporal regions involved in social and motivational behaviors, and more functionally
connected to the anterior hippocampus, to be clearly differentiated from posterior parieto-
occipital regions involved in visuospatial cognition and more functionally connected to the
posterior hippocampus. These findings place the human hippocampus at the interface of two
major brain systems defined by a single molecular gradient.
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he hippocampus is a phylogenetically conserved and well-

connected structure involved in a diverse multitude of

behaviors, providing an excellent base for studying the
evolution of cognition. Alongside its highly nuanced and well-
documented role in memory, the hippocampus has been impli-
cated in many other behaviors and functions, ranging from social
cognition to spatial orientation to regulation of endocrine pro-
cesses, such as stress responsel2. Commonly studied as a uniform
structure, the hippocampus can be divided into well-described
subfields—the cornu ammoni (CA), dentate gyrus, and subiculum
—which represent its principal axis of organization, and which
strongly inform cytoarchitectonic variation and both internal and
external circuitry!. A second orthogonal axis of organization of
the hippocampus lies along its longitudinal axis in a gradient
spanning its two poles. In the rodent, this axis is often referred to
as the ventral-dorsal axis, while a homologous gradient is thought
to exist in humans along the anterior—posterior axis3—>. To study
variations along this axis, the hippocampus is often divided into
basic macroscopic partitions; the head-body-tail division is often
used in humans, whereas a dorsal-ventral division is used in
rodents. The divisions along the longitudinal axis of the hippo-
campus are characterized by a complex but distinct pattern of
afferent and efferent connections, as well as impressive behavioral
domain specificity. In rodents, the ventral hippocampus shares
connections with the prefrontal cortex, basolateral amygdala,
hypothalamus, and other structures mediating neuroendocrine
and autonomic signaling and motivated behavior. Meanwhile, the
dorsal hippocampus is anatomically connected with retrosplenial
cortex, mamillary bodies, anterior thalamic complex, and other
networks implicated in movement, navigation, and exploration®*.
Studies directly assessing the existence of a homologous long-
itudinal organizational axis in the human hippocampus have
found compelling evidence in support®=®, and evidence has
emerged suggesting this axis defines the multifaceted role of the
hippocampus in complex cognitive systems!? and in vulernability
to neurodegenerative diseases!!>12,

Centrally involved in so many aspects of brain function and
dysfunction, a comprehensive study of the hippocampus and its
organizational principles may be paramount to understanding the
brain at large. With this concept in mind, several studies have
explored the molecular properties that vary along the longitudinal
axis of the hippocampus. A number of studies have characterized
the genomic anatomy of the ventral-dorsal axis of the rodent
hippocampus as a whole or across specific subfields!3-17, how
gene expression along the axis changes over the course of
development!819, and how it influences patterns of connectivity?.
While some consensus over implicated genes has been met, all of
these studies have been performed exclusively in rodents, and it is
unclear whether similar genes and proteins are involved in reg-
ulating and characterizing the anterior-posterior axis of the
human hippocampus. This distinction is important, as the human
hippocampus bears a different anatomy from that of rodents,
participates in ostensibly more complicated cognitive systems,
and shows selective vulnerability to diseases unique to humans.

As yet, such explorations have been severely limited due to the
complications of measuring regionally detailed gene expression in
the human brain. However, the Allen Human Brain Atlas?® has
provided unprecedented access to human brain gene expression
data. In the current study we leverage gene expression data to
define the genomic anatomy of the longitudinal axis of the human
hippocampus. Specifically, we sought to understand whether, as
with the rodent hippocampus, notable gene expression variations
also exists along the human hippocampus, and which genes are
most prominently involved in this molecular organization. We
further aimed to understand whether information about
gene expression can help explain interactions between the

hippocampus and the diverse brain systems it participates in, as
well as differential vulnerability to neurodegenerative disease. To
accomplish this, we drew from several public and private human
datasets to bridge molecular properties with brain structure and
function, behavior, and finally, dissociated vulnerability to neu-
rodegenerative disease. We show that a graduated pattern of gene
expression along the hippocampal longitudinal axis predicts the
location of a brain tissue sample along this axis, and that distinct
interactions between the anterior and posterior hippocampus
with specific brain systems can be predicted by the genomic
similarity shared between those brain systems and the different
poles of the hippocampus.

Results

Sparse gene sets predict sample location along the hippo-
campus. Normalized gene expression information from 58,692
probes were obtained from each of 170 brain samples extracted
from the hippocampi of six deceased human donors from the
Allen Human Brain Atlas. The longitudinal axis of the hippo-
campus, from the anterior to the posterior pole, was defined as a
curve passing through the center of mass of the hippocampal
volume of an average brain template in MNI standard space. The
position of each of the 170 hippocampus samples was projected
onto this longitudinal axis (Fig. la, Supplementary Fig. 1b). A
LASSO-PCR algorithm was used to create a model predicting the
position of each sample based on its gene expression profile
(Supplementary Fig. 1).

Using repeat ten-fold cross-validation, the LASSO-PCR model
explained 68-73% of the variance in sample position along the
longitudinal axis (average MAE =2.17mm) using only gene
expression information (Fig. 1b, ).

Hippocampus samples were extracted from six different
subfields as labeled by the Allen Brain anatomist: CA 1-4, the
dentate gyrus, and the subiculum. By training our model on five
subfields and then using this model to predict the position of the
sixth left-out subfield (i.e. leave-one-subfield-out), we revealed
that the genomic signature underlying the anterior-posterior
gradient of the hippocampus is consistent across hippocampal
subfields (Fig. 1d), though the variance predicted was poorer for
CA2 (r2=0.47) and the subiculum (72 = 0.58) compared to CAl,
CA3, CA4, and the dentate gyrus (%s > 0.73). Leave-one-donor-
out prediction additionally suggested consistency of the genomic
signature across individuals (Fig. 1e): while two donors accounted
for over 60% of the samples, when samples from these two donors
were included in the model, prediction of the location of samples
for the other four donors was highly accurate (r%s > 0.80).

Weights from the LASSO-PCR model were back-transformed
onto the individual probes in order to highlight the variation of
individual genes along the hippocampal longitudinal axis.
Weights from L1-regularized regression (LASSO) are difficult to
reliably interpret?!, making identification of individual candidate
genes challenging. To circumvent this issue, we iteratively
removed the probes with 50 highest (anterior-associated) and
50 lowest (posterior associated) weights, respectively, refit the
model, and measured cross-validation accuracy of the new model,
until all 58,692 probes were removed (Fig. 1f). Removing the first
set of 100 probes (Set 1) resulted in a sharp drop in cross-
validation accuracy that was never recovered, suggesting that this
gene set is particularly important to the model. Accuracy dropped
once again after removing the next 500 probes (Set 2; rank
101-600), and after the next 1100 probes were removed (Set 3;
rank 601-2700), cross-validation accuracy began to drop
precipitously, finally bottoming out after another 2100 probes
(Set 4; rank 2700-4800) were removed (Fig. 1f, g). In contrast,
iteratively removing sets of 100 random probes resulted in a very
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Fig. 1 Gene expression predicts the location of tissue samples along the long axis of the hippocampus. a (top) A curved skeleton of voxels was fitted
along the center of mass of the hippocampal volume. (middle) Tissue samples (orange) were matched to the closest skeleton voxels (blue). (bottom) A
sample's position along the longitudinal axis was represented as the y-axis coordinate of the sample's matched skeleton-voxel. b Average predicted sample
position (using gene expression) across ten separate 10-fold cross-validated LASSO-PCR models, compared to the actual position. ¢ Render of the
hippocampal surface where each vertex shows the predicted location of the closest (surface projected) sample to that vertex. The smooth appearance of
the right hippocampus is related to the fact that less samples were available for this structure. d Predicted vs. observed sample locations for leave-one-
subfield-out models. For example, subpanel CA1 shows the predicted vs. observed position of samples extracted from CA1 (test set) when the model was
trained without CA1 samples (training set). In each plot, N represents the number of samples in the training and test sets. e Predicted vs. observed sample
locations for leave-one-donor-out models. f The 100 most important probes in the LASSO-PCR model were iteratively removed and, after each removal,
10-fold cross-validation accuracy predicting sample position along the longitudinal axis was recorded (blue dots). As a control, the same process was
repeated but removing 100 random probes (orange). g The first 50 rounds of 100-probe removal from Panel F. Inflection points were identified after
removing 100, 600, and 2700 genes. h Accuracy in predicting sample position was recorded for models using different gene sets identified by the
inflection points in panel G (blue), samples of 100 random within-set probes (green), and samples of random probes (orange) as input. Each model was
run ten times with different bootstrap samples to calculate confidence intervals (represented by error bars).
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Table 1 The top anterior- and posterior-associated genes,

respectively, identified by the LASSO-PCR model.

Anterior gene Prev. Posterior gene Prev.
reported reported

AQP3 BDKRBT

c1QL1 BNC2

Clorf187 Clorf133

C200rf103 CASR

CD36 COL5A2

GABRQ CTXN3

GDA 16,18,19 DDC

GPR26 DGKI 18

GPR39 18 FAM43B

GPR83 FSTL4 18

GPR88 GAL

KCNG1 3 GEFT

KIAA1772 (GREB1I) GREM?2

KLK7 GRHL2

LGALS2 HHIP

LMO1 HPSE2

LXN KDELR3

LYPD1 18 NPNT

MYB NTN1

NR2F2 13.16,18,19 ONECUT?2

NRG1 OSBPL3

OPRK1 PDLIM5

PIRT PVALB

PYDC1 RGMA

RSPHO 18 SERTAD4 1318

RSPO2 13 TNNT2

SEMA3D TPBG 14

SERPINF1 TTR 16

SSTRI1 14,1819 WNTI0A

SYTL1

SYTL2

TMEM215

VGLL3

The top 100 probes and their respective beta coefficients can be found in Supplementary Data 1.

gradual and sporadic decrease in accuracy that only bottomed out
when nearly all probes were removed (Fig. 1f). Refitting the
LASSO-PCR model with only probes from Set 1 (100 probes), Set
2 (500 probes) or Set 3 (2100 probes) resulted in cross-validation
accuracy above 80% (MAE: Set 1=1.84 mm; Set 2 =2.39 mm;
Set 3=1.85mm), a substantial improvement over the original
model and a considerable improvement over models with equal-
sized sets of random genes. Genes from Set 4 (2100 probes) alone
achieved accuracy similar to a model using all (58,692) probes,
and a model using all 53,892 probes not included in Sets 1-4
achieved cross-validation accuracy near 0% (Fig. 1h). These
results indicate that 100 specific probes are sufficient to accurately
predict the location of a sample along the longitudinal axis of the
hippocampus, and that probes outside of a specific set of 4800
provide little to no information about the axis. Fitting the model
using gene Sets 2 and 3 alone resulted in cross-validation
accuracy similar to Set 1, suggesting the possibility that important
genes may also be present within these feature sets. However, the
accuracy may also be assisted by the larger number of features
included in these two sets. Indeed, random sets of 100 features
taken from within Sets 2 and 3 showed reduced cross-validation
accuracy compared to Set 1 and full Sets 2 and 3 (Fig. 1h).

Genes associated with the long axis of the human hippo-
campus. A list of the 100 top probes (Set 1) can be found in
Supplementary Data 1. This set of probes was associated with a
total of 61 genes, which are listed in Table 1. This gene set also

included several genes previously identified to differentiate the
dorsal and ventral aspects of the rodent hippocampus (see
Table 1). Without exception, all genes found here to be pre-
ferentially expressed in the anterior hippocampus were also found
to be expressed in the ventral hippocampus of these previous
rodent studies, and vice versa for the posterior hippocampus.
Gene ontology (GO) enrichment analysis of the top 100 probes
from the model revealed a consistent set of terms relating to
regulation of anatomical structure morphogenesis and tissue
(particularly axonal) growth and development. (Fig. 2a). Among
this gene set, a feature explainer based on cross-validated Ran-
dom Forest Regression suggested NR2F2 and RSPH9 as, on
average, the most important local predictors of position along the
longitudinal hippocampus axis (Fig. 2e). This result remained
consistent when additionally adding all probes from Sets 2 and 3
(Supplementary Fig. 2). In addition to NR2F2 and RSPH9Y, the
feature explainer also implicated local contributions to individual
samples from FAM43B, FSTL4, and NTN1 (Fig. 2e). The
expression pattern of these five genes differed, as each pattern
likely added unique information to the model (Fig. 2f). Feature
explainers run on Sets 2 and 3 alone revealed more contributing
features with less individual importance, compared to Set 1 and
pools including Set 1 (Supplementary Fig. 2).

To further explore the specific patterns of gene expression
across the longitudinal axis, all genes across Sets 1, 2, 3, and 4
were entered into a clustering algorithm. Fourteen distinct
anterior—posterior patterns emerged, including highly linear
patterns (clusters 3 and 6), some highly non-linear patterns
(Clusters 7 and 9), and a number of step-wise or step-gradient
patterns (Supplementary Fig. 3). Unsurprisingly, Set 1 was
composed of a higher proportion of linear expression patterns
(Fig. 2¢, d), and Set 1 probes within less-linear clusters tended to
have more linear expression patterns than average (Fig. 2d), and
than other sets (Supplementary Fig. 3). Sets 2-4 therefore may
contain a mix of genes expressed in a gradient along the
longitudinal axis, along with genes that are specifically hyper-
expressed in the anterior or posterior hippocampus. This suggests
individual sample predictions are likely aided by different genes
depending on their location along the longitudinal axis. Cluster
membership of each probe can be found in Supplementary
Data 2.

We also performed GO enrichment analysis on all genes
represented in Set 2, and then clustered genes sharing similar
enrichment terms (Supplementary Data 3). One cluster emerged
sharing similar terms to those enriched in Set 1, relating to
regulation of axon guidance, as well as cell motility, migration
and development. This cluster also included genes previously
described in studies exploring the rodent longitudinal axis,
including SLIT2, IGFBP5, JUN, and CADMI. Other GO
enrichment sets included amine metabolic processes, GABA
receptor activity, hormonal signaling, neuropeptide receptor
activity, ion transport, and serotonin receptor activity. These
latter gene clusters may be more likely to regulate behaviors
differentially associated with the anterior or posterior hippocam-
pus. We repeated this analysis for Set 3 (Supplementary Data 4).
Once again, a cluster of genes emerged associated with cell
motility and migration, which again included genes previously
described from the rodent literature (e.g. NTNG2, SEMA3E,
NOV, SEMA4G, CADM1, CYP26B1).

As a way of validating the candidate genes identified in our
model, we repeated our analyses using Partial Least Squares
regression (PLSR), another algorithm appropriate given the high
dimensionality of our data. Using all probes, we obtained similar
overall cross-validation results (Supplementary Fig. 4). Of the top
100 probes identified by the PLSR model (Supplementary Data 1),
50 were included in Set 1, another 42 in Set 2, and the last 8 were
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Fig. 2 Candidate genes associated with the longitudinal axis of the human hippocampus. a Enriched Gene Ontology terms (Q < 0.1) associated with
Gene Set 1. Circle size indicates enrichment, whereas color indicates Q value (lighter =lower Q value). b Matrix showing gene expression for probes in
Gene Set 1 (y-axis) across each hippocampal sample, ordered most posterior to most anterior (x-axis). Values were smoothed with a 3 mm gaussian kernel
across the x-dimension only and then clustered so that anterior-posterior patterns can be clearly visualized. ¢ Relative proportion of features belonging to
each expression pattern cluster, for each Gene Set. d Each subpanel represents an expression pattern cluster, and the subpanel heading includes the
number of probes from Set 1 assigned to that cluster. For each cluster, the posterior-anterior normalized expression pattern is shown for each Gene Set 1
feature belonging to that cluster (gray), the mean of Set 1 features belonging to that cluster (black dashed), and the mean of features across all sets
belonging to that cluster (colored). e Average absolute local feature importances (and by extension, model contribution) of probes in Gene Set 1 measured
using a Random Forest-based feature explainer across all samples. Error bars = standard error of mean. f Surface rendering of the expression patterns of
each of the five genes identified as locally important features to predicting position along the longitudinal axis.

found in Set 3. Interestingly, of all probes in the model, NR2F2
and RSPH9 had the highest absolute beta estimates (weights),
once again implicating these two genes as potentially important
in characterizing the longitudinal axis of the human hippocam-
pus. In addition, to gauge the value of these algorithms over a
more simple approach, we ranked all features by their correlation
with position along the longitudinal axis, and identified the top 50
positive and top 50 negative correlated features. Twenty-one of

these features overlapped with Set 1 from our previous analysis
(see Supplementary Fig. 4d, Data 1 for genes overlapping with Set
1 and the top 100 PLSR features). However, when building a
LASSO-based model (as with Fig. 1h) or a simple linear
regression model out of these sets, cross-validation accuracy
was substantially higher for Set 1 than the PLSR or top-ranked
correlation sets (Fig. 4e, f), suggesting the LASSO-PCR model we
use does provide some benefit over more simpler approaches.
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Cell-type variation along the long axis of the hippocampus.
Many of the genes identified as top features varying along the
longitudinal axis of the hippocampus have also been highlighted
as markers for specific genes (e.g. refs. 22-24). We therefore sought
to understand whether the variation in gene expression we
observed might reflect variation in cell type along the longitudinal
axis. We used two different pipelines designed to infer cell type
fraction?> or expression’® based on bulk microarray gene
expression, each using a different reference dataset for cell types.

Using CiberSortX?>, a reference dataset of cells provided by the
Allen Brain Atlas, and cell types identified by Hodge et al.?2, we
found 15 cell types with consistent expression within our
hippocampus samples (Fig. 5a). All fifteen cell types showed
differential expression across subfields (Supplementary Data 5).
Three cell types were associated (FDR <0.1) with longitudinal
axis position: mature astrocytes, Tyrobp-positive microglia and a
subtype of excitatory neurons (Supplementary Fig. 5b, ¢,
Supplementary Data 5). All three cell types were estimated to
be more prevalent in anterior hippocampal areas.

Using a completely different pipeline?® and a different reference
dataset of 35 cell types provided by Lake et al.24, we found six cell
types associated (FDR <0.1) with axis position (Table S5): four
excitatory neuronal subtypes and astrocytes expressed more
prevalent in the anterior hippocampus, and one excitatory
neuronal type expressed more in the posterior hippocampus
(Supplementary Fig. 5b, d). Based on comparisons between the
Lake et al.>4 and Hodge et al. cell types?2, the excitatory cell type
identified to vary over the longitudinal axis in the CiberSortX
analysis was not reproduced in this second validation analysis.
Therefore, the only cell type to be reproduced across both
approaches was the astrocyte type (Supplementary Fig. 5b).

Genetic signature predicts sample location in prenatal hippo-
campi. We next assessed whether the gene sets identified in our
sample of adult human hippocampi could predict the location of
samples extracted from the hippocampi of a separate dataset of
deceased prenatal humans, aged 15-21 post-conception weeks?”.
Stereotaxic coordinates for these neonatal tissue samples were not
available, but precise anatomical labels indicated whether samples
were extracted from the caudal or rostral portion of the hippo-
campus. We applied the models described in the previous sec-
tions to predict the location of samples from the neonatal
hippocampi. Samples extracted from the rostral hippocampus
were predicted to be significantly more anterior than samples
extracted from the caudal hippocampus, and this finding was
consistent whether the full model was used or models trained on
the smaller gene sets were used (Fig. 3). Overall, a slight anterior
bias was observed in the predictions. Logistic regression was used
to determine whether the pattern of model expression trained in
the adult hippocampus could be used to predict whether a sample
was extracted from the rostral or caudal portion of the prenatal
hippocampus. The model using all genes predicted the location of
samples with a 77% accuracy (AUC = 0.86), while prediction
accuracy of models using the smaller gene sets ranged from 66%
(Set 1) to 83% (Set 2). ROC curves are visualized in Fig. 3.

The hippocampal long axis signature is echoed across the
brain. The Allen Human Brain Atlas data comprises 3702 samples
across the brains of six donors. By leveraging the weights of our
LASSO-PCR model, we created the Hippocampal Axis Genomic
Gradient Index of Similarity (HAGGIS), a value representing the
degree to which the genomic signature of the hippocampal
longitudinal axis is represented in the gene expression profile of a
given non-hippocampus sample (Supplementary Fig. 1). Larger
positive values represent greater genomic similarity to the anterior
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Fig. 3 Model trained on adult hippocampus predicts location of samples
from prenatal hippocampus. The pattern of gene expression used to
predict the location of adult hippocampus samples along the longitudinal
axis were applied to samples extracted from the prenatal human
hippocampus. Boxplots compare this normalized pattern of expression
between samples extracted from the rostral and caudal hippocampus.
Statistics are calculated using t-tests. ROC curves were generated using
logistic regression. The top figures correspond to models fit using all
features, whereas the bottom figures correspond to models fit using the
smaller gene sets. ACC Accuracy. AUC Area Under the Curve. For
boxplots, the center line, boxes and whiskers represent the median, inner
quartiles, and rest of the data distribution (except outliers), respectively.

hippocampus, while smaller negative values represent greater
genomic similarity to the posterior hippocampus. When plotting
these values for all brain samples, we observed a general pattern
across the brain such that the brainstem and more antero-ventral
sites of the cerebral cortex demonstrated greater genomic simi-
larity to the anterior hippocampus, whereas the cerebellum and
posterio—dorsal cortical regions demonstrated greater similarity to
the posterior hippocampus (Figs. 4 and 5a).

Genomic interactions with dissociated hippocampo-cortical
systems. The anterior and posterior hippocampus each exhibit a
distinct profile of anatomical connections in humans®, which can
also be represented using resting-state functional connectivity®.
Using logistic regression and the HAGGIS, we identified coor-
dinates to isolate the genomic posterior and anterior hippo-
campus (Supplementary Fig. 7a). We then used an open database
of resting-state functional connectivity information based on
rsfMRI scans from 1000 subjects to create an average voxelwise
map representing the degree to which brain regions are func-
tionally connected to the anterior vs. posterior hippocampus.
Brain samples bearing a gene expression profile more similar to
the anterior hippocampus were also more functionally connected
to this substructure, while the opposite pattern was observed for
samples with gene expression profiles more similar to the pos-
terior hippocampus (r2 = 0.170, Fig. 5a). Disagreement between
these two cortical patterns was mostly a function of magnitude,
but some major directionality differences were observable in
salience network and posterior default mode network regions
(Supplementary Fig. 6). A separate model was constructed in
order to ascertain the maximum (cross-validated) variance in
differential connectivity explainable given the (genomic) data.
This analysis revealed that, while HAGGIS explained only 17% of
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the total model variance, it explained about 51% of the variance
explainable with the present genomic data (Fig. 5¢).

The strength of this relationship differed depending on where
along the anterior-posterior axis the divisions were drawn, which
parts of the brain were included, and the size of the cube used to
extract data around the sample coordinate (Supplementary
Fig. 7c). The r2 ranged from 0.111 (central split, cortical only
mask, 1 mm cube diameter) to 0.304 (split at anterior/poster
extremes, mask excluding only brainstem and cerebellum, 11 mm
cube diameter), though in all cases the relationship was observed
to be significantly greater than chance (95% CI of chance 7% <
0.004 for all conditions). The relationship between HAGGIS and
functional connectivity also varied slightly depending on the gene
Set used (Fig. 5b). Remarkably, prediction of functional
connectivity by HAGGIS performed just as well when the
HAGGIS was created using the smaller Sets, with the highest
values achieved when only the top 100 probes were used.

A diverging pattern of structural covariance with the rest of the
brain has also been observed across the longitudinal axis of the
hippocampus?8, perhaps representing co-variation in cytoarchi-
tecture. We used an open dataset of 153 structural MRI images
from young healthy individuals to create a map representing
variation in structural covariance between the brain and the
anterior vs. posterior hippocampus. The more similar a brain
region’s gene expression patterns were to the anterior hippo-
campus, the greater the structural covariance was between that
structure and the anterior hippocampus, and vice versa for the
posterior hippocampus (r2 = 0.284; Fig. 5a). HAGGIS explained
62% of the variance explainable with the present genomic data
Fig. 5¢). This relationship varied but remained strong across
different brain masks and gene sets (Fig. 5b). Some disagreement
in directionality between these two cortical patterns was observed
in the anterior and posterior cingulate, anterior insula, and
medial occipital cortex (Supplementary Fig. 6).

To validate these findings without relying on an
anterior—posterior split, we utilized a previously validated data-
driven approach®2%30 to extract the principal gradients of
hippocampal functional connectivity and structural covariance
with the rest of the brain, respectively. We then tested the
relationship between each gradient and the predicted location of
each sample based on the HAGGIS (Supplementary Data 6). For
structural covariance, the 1st gradient, explaining 24% of the total
variance in brain-hippocampus covariance, showed a strong
correlation with HAGGIS (r?> = 0.41; Supplementary Fig. 7d). For
functional connectivity, the 3rd gradient, explaining 13.5% of the

total variance of hippocampus-brain connectivity, also showed a
strong relationships with HAGGIS (r2=0.40; Supplementary
Fig. 7e). These findings were not contingent on the gene set used
to calculate the HAGGIS (Supplementary Fig. 7f).

Genomic associations with regional neurodegenerative vul-
nerability. The anterior and posterior hippocampus are also
differentially involved in disparate neurodegenerative diseases!,
particularly Alzheimer’s disease (AD) and frontotemporal
dementia (FTD)!9-12, We acquired fluorodeoxyglucose (FDG)
PET scans measuring glucose metabolism, a measure of neuronal
health and degeneration, from patients diagnosed in a tertiary
memory clinic as having AD or FTD. We used these scans to
create a statistical map representing the relative patterns of
neurodegeneration in AD vs. FTD. We found that samples with
greater genomic similarity to the anterior hippocampus also
showed greater hypometabolism in FTD compared to AD,
whereas samples more similar to the posterior hippocampus
showed greater hypometabolism in AD compared to FTD (r? =
0.118; Fig. 5a). Disagreement between these cortical patterns was
mostly relegated to magnitude differences in the temporoparietal
cortex, though some directionality differences were observed in
the motor cortex (Supplementary Fig. 6). HAGGIS explained
about 21% of the variance explainable given the present genomic
information (Fig. 5¢). This relationship also varied depending on
the regions included and cube size, with r? ranging from 0.095
(whole-brain, 1 mm cube diameter) to 0.153 (cortex-only mask,
11 mm cube diameter, Supplementary Fig. 9), but remained
greater than chance in all cases. Notably, and unlike previous
analyses, the relationship between HAGGIS and regional disease
vulnerability was not observed when restricting the HAGGIS to
the top 100 probes (Set 1) (Fig. 5b). A post hoc analysis of Set 2
and Set 3 gene ontology clusters determined in the section (Genes
associated with the long axis of the human hippocampus (in
Results)) revealed that genes associated with cell motility and
axon guidance (enriched terms from Set 1) were not strongly
associated with disease vulnerability. The association with
HAGGIS and disease vulnerability in Sets 2 and 3 were instead
driven by genes associated with amine activity, phosphorylation,
hormonal signaling, serotonin binding and vascular growth factor
activity (Supplementary Fig. 10).

Specific genes link long axis to connectivity and vulnerability.
In order to highlight specific genes that may be involved in both
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posterior hippocampus, differential vulnerability to AD or FTD measured with FDG-PET. Graphs on the left visualize the relationship between these spatial
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(genes associated with the long axis of the human hippocampus in Results). The r2 of each of these associations is visualized. ¢ Pie charts indicating the
proportion of genomic and total variance explained by each model. Numbers in parentheses indicate percentage of total genomic variance. d Genes
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indicated by the circles within the Venn diagrams. FCX Differential functional connectivity between anterior and posterior hippocampus; SCX Differential
structural covariance between anterior and posterior hippocampus; DIS Differential vulnerability between AD and FTD.

maintenance of the longitudinal axis and hippocampus-brain
interaction, we constructed independent models to learn the
genomic profile of the maps from Fig. 5a and compared the top
100 features from these models to the longitudinal axis model.
The proportion of overlap between the top 100 features of each
model with the top 100 features from the hippocampus long-
itudinal axis model far exceeded chance (functional: 20%;

structural: 21%; disease: 11%). Overlapping genes from each
model, stratified by involvement in anterior or posterior hippo-
campus, can be found in Fig. 5d. Interestingly, some genes were
involved in multiple systems. For example, PVALB, specifically
expressed in the posterior hippocampus, was also highly expres-
sed in brain regions functionally connected and structurally
covarying with the posterior hippocampus, as well as in regions
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Fig. 6 Variation in genomic signature predicts involvement in distributed cognitive networks. a Maps were downloaded from neurosynth representing
greater than chance meta-analytic functional activation in studies with different topic-sets mentioned in their text. Mean HAGGIS (represented by bars)
was calculated for samples inside maps encompassing >500 samples (visualized either directly above or directly below each bar). Error bars represent
standard deviation. Topics hypothesized to belong to the AT or PM system are shown in red and blue respectively. b A word cloud summarizing the regions
and topics most associated with the genomic signal of the anterior (red) and posterior (blue) hippocampus. Larger words are more associated with

networks with higher (red) or lower (blue) HAGGIS.

specifically vulnerable to Alzheimer’s disease. Additionally,
anterior hippocampus gene GABRQ was also highly expressed in
regions both structurally covarying with the anterior hippo-
campus and those vulnerable to frontotemporal dementia.

Long axis signature and involvement in cognitive networks.
The posterior and anterior hippocampus are implicated in dis-
tinct aspects of memory and cognition®-831. We explored whe-
ther regions sharing genomic similarity to the posterior or
anterior hippocampus were more likely to participate in cognitive
networks proposed to involve those substructures. We down-
loaded 100 meta-analytic functional coactivation maps from the
Neurosynth database, each composed from between 91 and 4201
task-based functional MRI activation studies, and each of which
was paired with a set of related cognitive/behavioral topic sets.
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These topic/map pairs represent greater-than-chance regional
functional coactivation patterns reported consistently in studies
sharing words from certain related topic-sets in the publication
text. These maps can therefore be thought to represent specific
region-sets involved in distributed cognitive networks. We cal-
culated the mean HAGGIS of samples falling within each cog-
nitive map, with higher positive values indicating greater genomic
covariance between the regions covered by that coactivation map
and the anterior hippocampus, and lower negative values repre-
senting greater genomic covariance of those regions with the
posterior hippocampus.

Using a conservative approach (only including maps with at
least 500 overlapping tissue samples: 29 maps; minimum map
size: 36,622 voxels), we observed a pattern largely consistent with
previous hypotheses of hippocampal involvement in different
cognitive systems!® (Fig. 6). As we hypothesized, regions that
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expressed a gene expression profile more consistent with the
anterjor hippocampus tended to be those involved in social and
emotional cognition, but also included maps associated with
reward and conditioning, among others. Also consistent with our
hypotheses, cognitive networks more genomically similar to the
posterior hippocampus were associated with spatial cognition,
imagination and mental simulation, but also included maps
associated with visualization, working memory and movement/
action. Interestingly, maps associated with episodic memory and
physical stimulation slightly favored the anterior hippocampus, or
were not strongly associated with either posterior or anterior
hippocampus. These patterns remained remarkably similar when
repeating the analysis with only probes from Set 1, representing
the top 100 probes in our model (Supplementary Fig. 8).

Discussion

The hippocampus plays a central role in many systems that regulate
behavioral processes across several species, and that are dysregulated
in several human neuropsychiatric diseases. The contribution of the
hippocampus to many of these systems is grossly organized across
its longitudinal axis. Characterizing the molecular properties of this
axis may be vital to understanding how gene expression networks
regulate macroscopic brain networks. We show that the
anterior—-posterior position of a tissue sample extracted from the
adult human hippocampus can be predicted with remarkable
accuracy using the expression pattern of a small set of genes, and
that this pattern generalizes to the developing hippocampus of
prenatal humans. Further, we find genomic representation of the
anterior—posterior gradient projected across the entire brain, and
that this representation partially explains relationships between the
hippocampus and dissociated hippocampo-cortical systems. The
anterior hippocampus shares genomic patterning with a system
encompassing the medial prefrontal cortex, anterior temporal lobe
and the brainstem. In general, these regions showed greater func-
tional connectivity and structural covariance with the anterior than
the posterior hippocampus, greater vulnerability to FTD than to
AD, and more frequent participation in cognitive tasks involving
motivation/conditioning, social and emotional cognition and
semantic knowledge. The posterior hippocampus, in contrast,
shared a genomic pattern with the cerebellum, and occipital, tem-
poroparietal and motor and pre-motor cortex. These regions gen-
erally showed greater connectivity and structural covariance with
the posterior than anterior hippocampus, more vulnerability to AD
than FTD, and were more likely to participate in cognitive tasks
involving spatial representation, visual processing, working memory
and simulation. These results confirm and extend findings across
species and sub-disciplines of neuroscience to suggest shared gene
expression patterns underlying a well-described dissociation of
anterior vs. posterior hippocampal involvement in cognitive brain
networks. Further, the findings support the existence of a specific
axis of organization in the human brain, where an
anterior-ventral-posterior-dorsal gradient explains regional invol-
vement in diverse behaviors, underscored by a specific pattern of
gene expression (Supplementary Fig. 11). These findings together
form a template for studying how specific genes may regulate the
development of dissociated hippocampal connectivity networks in
humans and their involvement in specific behaviors and, potentially,
specific diseases.

Our results support an existing concept of molecular gradients in
the cerebral cortex?3233, The anterior-ventral-posterior—dorsal
pattern observed in our data is reminiscent of a general
anterior—posterior molecular gradient previously observed in the
Allen Human Brain Atlas dataset’>*% Fornito et al.33 reviews
qualities of this gradient, including a pattern of neuronal organi-
zation where, as one moves caudally to rostrally, neuron and arbor

size increase while neuronal number and density decrease. Perhaps
related, a dual origin hypothesis of diverging cortical systems has
been proposed suggesting the cerebral cortex has developed radially
from certain phylogenetically conserved limbic structures over the
course of evolution. This hypothesis describes a ventral system
emanating from the perirhinal and amygdalar cortex that is
involved in semantic identification of a stimulus and motivated
behavior, while a dorsal system has evolved from the hippocampus
and parahippocampal cortex to coordinate spatial representation
and coordinated action?. The hypothesis is supported by evidence
from comparative cytoarchitectonics and connectivity patterns
across species. The anterior temporal/posterior medial (AT/PM)
hypothesis of memory systems!? provides yet another example of
opposing cortical systems loosely following an anterior-posterior
organization and determining patterns of brain organization. Each
of these three models originated from a different field of inquiry—
gene expression, cortical evolution, memory network organization
—but the models converge in many respects, and a microcosm of
this shared framework seems to be represented along the long-
itudinal axis of the hippocampus—explicitly so in the AT/PM and
dual origin models. Our results generally support the premise that
the hippocampus participates in two distinct macroscopic networks
characterized by distinct structural covariance, functional con-
nectivity, behavioral domain specificity and disease vulnerability,
and that participation in these networks can be predicted by posi-
tion along the longitudinal axis. We take this framework one step
further to suggest these two distinct networks are composed of one
single gradient of gene expression that could play an upstream role
in their systemic distinctions.

The genomic gradient we have identified may be pertinent to
the origins of some of the cortical specificity described above,
however there are also a number of discrepancies worth note.
For example, functional connectivity and structural covariance
patterns between the hippocampus and salience network and
posterior default mode network regions were inconsistent with
what would be expected given genomic similarity to the hip-
pocampus (Supplementary Fig. 6). Related, while the posterior
DMN showed greater genomic similarity to the posterior hip-
pocampus—as would be predicted by the AT/PM system!0—the
medial prefrontal cortex was much more associated with the
anterior hippocampus. In addition, regions meta-analytically
active during episodic and autobiographical memory and
encoding/retrieval tasks showed a genomic profile more similar
to the anterior hippocampus. However, in our own resting-state
fMRI analysis utilizing information from 1000 individuals,
DMN structures were more connected to the anterior than the
posterior hippocampus. These findings coincide with results
from a previous large-scale meta-analytic coactivation study of
differentiated hippocampal function along its longitudinal
axis®, and are consistent with a recent study observing changes
in functional connectivity across the longitudinal axis of the
human hippocampus®.

Regarding other discrepancies, we should note that neither the
Dual Origin hypothesis nor the AT/PM model include the cere-
bellum or brainstem, structures showing prominent divergence
along the hippocampal gradient in question. This divergence may
suggest that the molecular gradients defining anterior-posterior
divergence in the cortex define similar divergence in subcortical
structures, and point perhaps to dorsal and ventral plate pat-
terning during neural development3®. While we have observed
much agreement between HAGGIS and a number of other
gradient-like neural organization patterns, the disagreements
(summarized in Supplementary Figs. 6 and 11) leave much to be
elucidated about how developmental and environmental mole-
cular signals contribute to the convergence and divergence of
these various systems.
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While our initial model utilized the expression patterns of
nearly 60,000 probes corresponding to over 20,000 genes, the
model favored a much smaller profile of probes to describe the
longitudinal axis of the human hippocampus. When isolating a
small set of only 100 probes, we were able to successfully predict
the location of samples along the longitudinal atlas with <2 mm
error, as well as interactions between the hippocampus and the
specific brain systems. The set was enriched with genes associated
with, in particular, anatomical structure morphogenesis and cel-
lular growth, suggesting genes within this set may be involved in
coordinating and/or maintaining the anatomical variation of the
hippocampus along its longitudinal axis. Whether these genes are
also partially responsible for the functional variation along the axis
remains unclear, though it is notable that similar expression pat-
terns of these 100 genes can be observed in other brain regions
that interact with the hippocampus. In particular, we identified
several specific genes that appear to be involved in coordinating
both the longitudinal axis of the hippocampus and one or more
aspects of the hippocampus-associated distributed brain networks.
A number of these genes (PVALB, GAL, ONECUT2, PIRT,
TNNT2, RSPH9, COL5A2, CTXN3) have been reported in pre-
vious studies examining genes associated with functional network
organization3”38. Our work also converges with other studies
showing gene expression across disparate regions may be related
to shared anatomical characteristics (e.g. refs. 3%°41). Closer
examination of the contribution of genes across these different
network properties (structure, function, disease vulnerability) is
warranted, and may lead to a clearer picture of the role various
microscale features play in macroscale network organization.

Many of the genes identified in our study have also been
described in previous studies characterizing the dorsal and ventral
subdivisions and longitudinal gradients of the rodent hippocampus
(e.g. refs. 1314161819 see Table 1). This suggests a fair degree of
homology between rodents and human in the distribution of pro-
teins along the longitudinal axis of the hippocampus, and perhaps
in the development and maintenance of the axis itself. However,
many previously undocumented proteins were also identified, and
replication and comparative studies will be required to disentangle
whether these candidate genes are truly unique to humans or a
result of small sample sizes and differing methodologies.

The most important genes identified in our model can be
interpreted as the those genes that were central to the specific
hippocampal gene expression network(s) that were most strongly
associated with position along the longitudinal axis of the hip-
pocampus. We cannot infer which genes are causally related to
axis formation and maintenance and, as weights from backward
regression model are notoriously hard to interpret?!, even iden-
tifying the most important among a set of genes is challenging.
Being aware of these limitations, we identified NR2F2 (also called
COUP-TFII) and RSPHY to be particularly important in local
prediction of sample location along the axis. This likely suggests
that these two genes demonstrated the cleanest and most con-
sistent linear gradient in expression across the longitudinal axis
among those assessed (which can be visually appreciated by the
surface plots of expression levels of these genes across the hip-
pocampus in Fig. 2). The pattern of expression we observed here
mirrors patterns from other studies describing NR2F2 expression
in the rodent hippocampus*2, as well as more macroscopically in
the human brain during development, particularly in the tem-
poral lobes*3. NR2F2 is also key in the determination of cell fate
in numerous circumstances*44>, including that of interneurons
expressing PVALB (parvalbumin) or SST (somatostatin), where
NR2F2 promotes SST and represses PVALB#>. These findings are
highly consistent with the expression of PVALB (expressed pos-
teriorly) and SSTR1 (expressed anteriorly with NR2F2) in our
data (Table 1), of particular interest given the role of these two

genes in marking distinct and anticorrelated structural and
behavioral brain systems*6-48. For its part, RSPHY is part of the
structure of primary cilia, which can be found within ependymal
cells lining the ventricles, as well as in the CA1 subfield of the
hippocampus and adjacent choroid plexus?3. There is evidence
that these cilia can promote neurogenesis in the hippocampus
through mediating expression of SHH (sonic hedgehog)®’, a
protein implicated in anterior—posterior pattern formation, and
identified as a possible protein of importance in our data by the
presence of HHIP (hedgehog-interacting protein) among the top
100 anterior—posterior associated genes (Table 1). The expression
patterns of RSPHY in our data may signal the presence of a
specific pattern of cilia, which may help regulate the longitudinal
axis of the hippocampus through hedgehog signaling. Both
NR2F2 and RSPH9 have been identified as role-players in human
functional network organization37-38,

Several other genes of interest appeared among are top 100
features, some of which are associated with specific cell types and
cell classes (e.g. PVALB, GABRQ, TMEM215, SST for inter-
neurons)?2-24, However, we did not find strong evidence for cell
type variation across the longitudinal axis of the hippocampus,
with the exception of a trend of increase of tufted astrocytes??
toward more anterior sites of the hippocampus. This latter
finding supports histological data specifically in the murine
dentate gyrus®. Generally, our results instead suggest variation of
gene expression within cells along the long axis, rather than
variation in the types of cells themselves, though these findings
remain preliminary due to methodological limitations.

Data from multiple studies suggest a specific role for the
longitudinal axis of the hippocampus in AD and FTD!L12. Our
data support this notion, suggesting that regions more vulnerable
to FTD than AD share a more similar molecular profile to the
anterior than posterior hippocampus, and that the opposite pat-
tern was observed for regions more vulnerable to AD than FTD.
This relationship is far from perfect—for example, the cerebellum
is not thought of as a vulnerable region in AD, nor is the medial
occipital cortex (though our results showed the occipital cortex is
empirically more impaired in AD than in FID). Similarly, while
neurodegeneration in anterior and middle temporal lobes are
more severe in FID, these regions are also vulnerable in AD.
However, our results contrasting these two neurodegenerative
diseases directly highlights a general divergence in vulnerability
across the anterior-posterior axis of the brain, mirroring the
extreme of the HAGGIS gradient. While it is tempting to wonder
whether the same genes that coordinate the development of dif-
ferent systems also incidentally contribute to the degeneration of
these systems over time, post hoc analyses suggest that factors
associating with disease vulnerability may be downstream from
those factors associated with anatomical brain development
(Supplementary Fig. 10). Although little can be extrapolated from
our data about the potentially dissociated role of specific proteins
in AD and FTD, we provide evidence for distinct molecular
properties that characterize the dissociated hippocampo-cortical
systems vulnerable to each of these two diseases. The implicated
genes and proteins may provide promising candidates for more
targeted studies of disease-specific neurodegeneration.

Our study comes with a number of important limitations that
must be addressed. The single greatest limitation of our study is
that our gene expression data comes from a limited number of
samples taken from only six donors who differed in age, sex, and
ethnicity. We partially addressed this issue by regressing out
donor effects from our gene expression data and performing
leave-one-donor-out analyses, but in doing so, assume certain
aspects of gene expression should be fairly consistent across
individuals. Some confidence is inspired by the fact that, in spite
of these limitations, we were able to replicate findings from
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rodent studies. We also tried to circumvent this issue by showing
that relationships linked to our primary findings hold in several
other independent datasets. Another major limitation is a reliance
on specific coordinates of samples reported at time of autopsy,
translated to single-subject MRI space, and then normalized to a
common subject space. While we took measures to improve the
quality of the normalization to common space, we cannot rule out
noise introduced during any of these steps. Our analysis of gene
expression gradients along the hippocampal longitudinal axis is
particularly sensitive to these issues because it relies on the exact
coordinates of the samples extracted. Once again, we were able to
replicate findings from other studies, but it is possible that the
importance of some gene signatures to our model could have
been affected. As discussed previously, another limitation is
related to our attempts to extrapolate biological importance from
machine learning models. While we took many steps to try to test
the stability of weights in our models, our interpretations remain
somewhat speculative and must be replicated in more focused
studies. However, we are encouraged by the presence of several
genes identified in previous studies of the rodent hippocampal
long axis, and by generalization of our model to an external
dataset. The fact that we are using microarray expression data is
also an important point worth mentioning—we are measuring
transcripts from genes but we do not know to what extent these
transcripts result in protein expression. With regard to inter-
pretations, an important point to note is that, while only 100
genes were sufficient for statistical characterization of the hip-
pocampal long axis, nature likely requires coordination among
many more genes. Finally, a major limitation comes with the
complexity of drawing conclusions across many datasets, each of
which are subject to variation based on methodological proces-
sing. We tried to overcome this by primarily using open-access
data preprocessed beforehand by experts, and by making all of
our data and code freely available at https://github.com/
illdopejake/Hippocampus_AP_Axis>! so that other researchers
can scrutinize, reproduce, and hopefully re-use our analyses.

Methods

Human gene expression data. Human gene expression data were downloaded
from the Allen Human Brain Atlas (http://human.brain-map.org, RRID:
SCR_007416). A detailed description of this dataset can be found elsewhere20-52>3,
Briefly, tissue samples were extracted across both hemispheres of two human brain
donors, as well as the left hemisphere of four additional donors, totaling

3702 samples. Metadata for the six donors can be found in Supplementary Data 7.
Stereotaxic coordinates and MNI space coordinates are provided for each sample.
Each sample underwent microarray analysis and preprocessing to quantify gene
expression across 58,692 probes. This analysis provides an estimate of the relative
expression of different transcripts (encoded by different genes) within the tissue
sample. While previous publications have used different strategies to reduce the
number of probes (see ref. >3 for review), due to assumptions associated with these
strategies and the high-dimensionality approach of our models, we opted to retain
all 58,692 probes for analysis.

Importantly, the MNI coordinates originally supplied with the dataset did not
account for nonlinear deformations in transforming the donor MRIs in native
space to MNI space, and thus included a noticeable degree of error (i.e. many
samples mapped outside of the brain or their labeled brain regions)33. However,
these coordinates have been meticulously reconstructed and transformed
accounting for nonlinear deformations®*. Moving forward, all mentions of MNI
coordinates will refer to these Devenyi coordinates.

Given the different ages, sexes and other characteristics, substantial differences in
gene expression are expected between donors. However, similar to previous studies
using this dataset, we were only interested in common patterns of human gene
expression for the present analyses, rather than inter-individual differences. As such,
all samples across the six donors were aggregated and we regressed donor-specific
effects from each probe using linear models. Specifically, we used dummy coded
donor ID variables to model donor-specific patterns for each probe, and by taking
the standarized residuals of this model, removed variance specifically associated to
each donor from each probe. Therefore, probe values represent gene expression
normalized across all samples, adjusted for inter-individual statistical differences.

Along with coordinates, each sample contains ground-truth information about
the specific brain sub-structure from which the sample originated, as defined by the
anatomist extracting the sample. To identify samples falling within the

hippocampus, we selected all samples with structure labels of CA1 field, CA2 field,
CA3 field, CA4 field, Subiculum and Dentate Gyrus, from both the left and right
hemispheres—188 samples in total. In all, 18 samples had MNI coordinates more
than 3 mm outside of the hippocampal volume defined below, leaving 170
hippocampal samples in total.

Identifying the longitudinal axis of the hippocampus. Many previous studies
have explored differences between the dorsal and ventral (or posterior and ante-
rior) hippocampus, but such a system requires an often arbitrary delineation
between these two structures®>. To overcome this limitation, we instead sought to
quantify the longitudinal axis of the hippocampus and observe changes in gene
expression across this axis. Such an approach would still capture gross differences
in expression between anterior and posterior sites, but would also allow for
detection of more complex gradients. Notably, the hippocampus curves dorsally
and medially, so a straight line may not be appropriate for defining its longitudinal
structure.

The objective is to identify a curved path that follows the center of mass of the
hippocampus along its curvilinear shape (Supplementary Fig. 1b). The initial
hippocampus volume was defined as labels 9 and 19 from the Harvard-Oxford-
sub-maxprob-thr25-1 mm atlas derived from the MNI ICBM152 average brain
template, supplied with FSL 5.0 (RRID:SCR_002823). A “skeleton” of the
hippocampal volume was created from morphological operations (dilations/
erosions) using the MINC Toolkit (version 1.0.08) (RRID:SCR_014138; http://bic-
mni.github.io/#MINC-Tool-Kit). The hippocampus mask was resampled to 0.5
mm isotropic voxel size and a chamfer map was created, measuring the distance
from the border of the resampled hippocampus volume up to 10 mm away. This
chamfer map was binarized to create a large smooth blob around the hippocampal
surface. An opposite chamfer map was created inside the blob, and the local
minimum of the derivatives of this map were computed in order to isolate the
points at the greatest distance from the blob surface. This creates a “skeleton”
following the curvilinear shape of the hippocampal volume, which was then
masked with the original hippocampal volume. Finally, the skeleton was resampled
back to 1 mm space.

Next, this hippocampal skeleton, in MNI space coordinates, was used to
calculate the position of each hippocampus tissue sample along the longitudinal
axis. For each sample, we identified the skeleton MNI coordinate with the
minimum projected distance to the sample’s MNI coordinate. The position of the
sample was then coded as the y-coordinate (anterior-posterior axis) of the closest
skeleton voxel. This process effectively transforms all sample coordinates along a
single anterior—posterior dimension. (Supplementary Fig. 1b). Note that,
depending on location of the sample, the MNI y-coordinate of the sample may not
share the same y-coordinate of the closest skeleton point.

Genes associated with the long axis of the human hippocampus. We sought to
identify which specific genes were associated with positioning of samples along the
longitudinal hippocampal axis. Sparse regression algorithms built for high
dimensional datasets have been proposed, such as least-angle regression (LARS)
and LASSO-LARS. However, during regularization, these algorithms will often
select only one of a set of several collinear variables and reduce the coefficient of the
other variables in the set to zero. In the case of gene expression data, gene co-
expression networks are of interest to us, and we do not necessarily want to select
one of a set of co-expressed genes. Therefore, we opted instead to use a LASSO-
PCR approach®>%, Such an approach will reduce the dimensions of the data while
preserving gene co-expression networks, yet still allow for a sparse selection of
features.

In summary, we reduced our input data, a 170 (sample) x 58,692 (probe)
matrix, using principle components analysis (PCA) with singular value
decomposition. The resulting 170 (sample) x 170 (component score) matrix was
used in a principal component regression (PCR) model (Supplementary Fig. 1).
Approaches to PCR models typically reduce the number of independent variables
by removing the components whose eigenvalues fall below some threshold related
to the percentage of variance explained. This does not account for potentially
strong relationships between the dependent variable and minor components. Thus,
we elected to use a Least Absolute Shrinkage and Selection Operator (LASSO)
regression model with sample position along the longitudinal hippocampus axis
(defined in the previous section) as the dependent variable.

In our regression model we have our standardized matrix of gene expression
data X, our measurements along the longitudinal axis Y, and the model Y =XB +
€. We wish to estimate the values of the matrix B = [3,;, ... 7/3},]T, where f3; is
the estimated impact of probe i on longitudinal position. Probes with larger
impacts will have higher estimated values; negative values suggest greater
expression in posterior compared to anterior hippocampus, and vice versa.

Since there are a large number of regression parameters, we use dimension
reduction through PCA. We transform the data such that XTX = PAPT = ZTZ,
where A is the diagonal matrix of eigenvalues of XTX, Z is the matrix of principal
components, and PTP = 1. We are now interested in solving the principal
component regression Y = ZA, where the regression coefficients are stored in the
matrix A and are the contribution of principal components to position. We derive
estimates of A using LASSO. The coefficients of the two regression equations are
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related by the expressions A = PTB and B = PA, so we estimate B = PA, giving us
the beta values of the individual probes, which are in terms of the original probes.

There are limitations to this approach. Beginning with the full set of
components can incidentally retain small components and make estimates of beta
coefficients unstable®. Interpretation of the components is challenging, and here
they were generated without the dependent variable (the measurements along the
anterior—posterior axes). At the theoretical level PCA can break down when there
are many more variables than observations since the sample covariance
eigenvectors may not be close to population eigenvectors®’ though empirical
results here are positive and in concordance with previous results. Partial least
squares (PLS) is a method related to PCR that accounts for the dependent variable
and returned similar results (Fig. S4).

As a comparison to a more simple approach, we ranked all probes by the
correlation between probe expression and position along the longitudinal axis of
the hippocampus. We then selected the top 50 positive and top 50 negative
correlations, and selected these features as the top 100 correlation-ranked probes.
We assessed overlap between this set and the set of top 100 features identified by
our LASSO-PCR model. We also fit a LASSO model and a linear regression model
using the following probes as features: (1) top 100 LASSO-PCR features, (2) top
100 PLSR features, (3) top 100 correlation-ranked features. We assessed model
accuracy through 10-fold cross validation, and repeated this process with 10
bootstrapped samples to derive confidence intervals. The purpose of this analysis
was to see if we gain any predictive accuracy be employing our LASSO-PCR
approach vs. a more simple approach for either model fitting or feature selection.

To test the generalizability of the model, we employed several cross-validation
methods. First, we performed 10-fold cross-validation of the full data set, which was
repeated 10 times. Second, we performed a leave-one-subfield-out cross-validation,
to see if a model defined on five hippocampal subfields (CA1-4, subiculum, dentate
gyrus) could predict the axis position of samples from the sixth subfield. Finally, we
performed leave-one-donor-out cross-validation to see if a model trained on
samples from five donors could predict the axis positions of samples from the sixth
donor. Note that the range of sample position was constrained by anatomy during
the leave-one-subfield-out cross-validation, and the number of samples varied quite
dramatically across donors for the leave-one-donor-out validation. The final model
used for all subsequent analyses utilized all samples.

Model feature deconstruction to identify specific genes. An advantage of the
LASSO-PCR model is that it is more likely to identify several genes participating in a
co-expression network rather than arbitrarily identifying a single gene to represent
that network. However, this also leads to a possible disadvantage related to reduced
precision in singling out which genes, if any, are singularly important to the model.
Additionally, the global feature importances of a LASSO model cannot be reliably
interpreted, as adding or removing features can cause feature importances to shuftle
dramatically?!. We attempted to de-construct our model with these limitations in
mind. Fifty probes with, respectively, highest (anterior) and lowest (posterior) back-
transformed weight (feature importance) were iteratively removed from our model.
After each removal of these 100 probes, the model was refit, 10-fold cross-validation
(CV) accuracy was recorded, and the 100 top probes from the new model were
removed. This process was repeated until all probes were removed. As a control, we
repeated this same process iteratively removing 100 random probes instead of the 100
most important probes. Change in CV accuracy across rounds of probe removal was
visually assessed and inflection points were identified at rounds where CV accuracy
dropped and did not recover. Rounds in between inflection points were considered
stable, and probes removed between inflection points were grouped together in gene
sets, and analyzed separately in subsequent analysis.

To establish whether these gene sets alone could predict sample position along
the longitudinal axis of the hippocampus, we reran the LASSO-PCR model with
only the probes involved in these gene sets. Prediction accuracy was recorded using
10-fold cross-validation. The models were run ten times with bootstrap samples to
attain confidence intervals. As a control analysis, models were run using sets of
random probes the same size as each gene set, and this process was repeated 10
times for each set, each time using cross-validation to measure prediction accuracy.
Finally, in order to compare larger gene sets to Set 1—which contained only 100
probes—we extracted 10 random sets of 100 genes from within each gene set and
input these into the model, once again using 10-fold cross-validation to measure
prediction accuracy.

To further highlight candidate genes associated with the hippocampal
longitudinal axis, we employed the Local Interpretable Model-Agnostic
Explanations (LIME) python package (https://github.com/marcotcr/lime/). LIME
makes local perturbations to model inputs and measures the impact of those
perturbations on model performance. LIME can only assess local feature
importance, but by aggregating information across multiple local features, some
limited information can be ascertained about contribution of features (probes) to
predicting an outcome (sample position along the longitudinal axis). For each gene
set identified, we performed 10-fold cross-validation with a Random Forest
Regressor. A Random Forest Regressor was chosen because its metric of feature
importances is itself assessed using out-of-sample prediction. For each fold, LIME
was used to identify absolute feature importances for samples in the left-out fold,
and this information was aggregated across all predictions from all folds. Elevated
feature importance could indicate importance of a probe across prediction of

multiple samples, or could indicate great importance across a limited set of
predictions, meaning interpretation is still limited.

Gene ontology enrichment analysis. GO enrichment analysis was used to char-
acterize functions shared by several genes within gene sets. These analyses were per-
formed using the online tool GOrilla (RRID:SCR_006848; http://cbl-gorilla.cs.technion.
ac.l/), which identifies terms from the GO libraries that are associated with genes in the
inputted gene set and are significantly (FDR < 0.1) enriched compared to a baseline
gene set. We used the entire set of genes available in the Allen Human Brain Atlas
dataset as the baseline gene set. Altogether, the background set we entered included
29,381 distinct genes, 19,895 of which were recognized by GOrilla. Of these, only
17,836 were associated with a GO term. We left all other parameters to their defaults.
Some of the gene sets produced long lists of enriched terms. We summarized this
information using hierarchical agglomerative clustering on the significantly enriched
terms. A binary gene x term matrix was created where a 1 indicated a gene was
associated with a term. This matrix was fed to an Agglomerative clustering algorithm
using Jaccard index with average linkage and pre-calculated connectivity constraints
(10 neighbors), and the process was repeated varying the number of clusters from 2 to
20. Local peaks in silhouette index were used to define the final cluster number,
favoring a higher number of clusters for better precision. The resulting clusters
represented sets of genes sharing several associated terms. For gene Set 2 (top 101-600
most important probes to the model, see the section (Genes associated with the long
axis of the human hippocampus (in Results)), peaks in Silhouette score were seen at
k=2 (0.225), k=7 (0.132) and k=10 (0.128). We chose a 10-cluster solution. For
gene Set 3 (top 601-2700 probes, the section (Genes associated with the long axis of the
human hippocampus (in Results)), peaks in Silhouette score were seen at k = 2 (0.349),
k=5 (0.173) and k=12 (0.093). We chose a 12-cluster solution. The purpose of this
analysis was to cluster genes with enriched GO terms for purely descriptive purposes.

Partitioning patterns of anterior-posterior gene expression. We would expect
that the distribution of expression patterns across the longitudinal axis of the hip-
pocampus would be a mix of linear and non-linear patterns, given that both graded
and segregated moelcular gradients are at play during the course of development. In
order to address this possibility, we assembled all 5000 probes from Gene Sets 1-4 (the
features found to be relevant to the longitudinal axis) and performed Spectral Clus-
tering with 10 initial seeds and an radial basis function kernel with a default gamma
value of 1. To better prepare the data for clustering, values for each probe were
normalized to 0-1 scale, ordered by position from posterior to anterior, and were
smoothed with a 3 mm gaussian kernel across this dimension. This process reduces
some of the idiosyncrasies of probe-specific variance in expression along the axis. We
repeated the clustering analysis varying the number of clusters between 2 and 50. Local
peaks in silhouette index were identified at k=3 (0.078), k=10 (0.045), and k = 14
(0.041), and a 14-cluster solution was chosen to maximize the number of expression
patterns. Mean expression patterns for each cluster were calculated across all features
and individually within gene sets, and the cluster membership proportions were cal-
culated for each Gene Set.

Cell-type analyses. Many of the genes among our top features are markers for
specific cell-types, leading us to question whether the variation in gene expression
we observe along the longitudinal axis may be explained by variation in cell type.
Cell type characterization is an active area of research, and establishing cell type
proportions from bulk microarray data is a complicated task with many limita-
tions. Despite these challenges, we utilize two different protocols to attempt this
task, each using a different reference sample.

First, we use the online tool CiberSortX?> to create a signature matrix from an
external sample of single-cell RNAseq data, and use this information to estimate cell
fractions from our bulk microarray hippocampal data. Our reference dataset consisted
of 15,928 cells extracted from the human middle temporal gyrus, made available by
the Allen Brain Atlas https:/celltypes.brain-map.org/rnaseq. Each of these cells has
been catalogued into one of 169 distinct neuronal and non-neuronal cell types using
methods previously described?2. To ensure the reliability of this approach, we divided
the dataset into four subsamples of 4000 cells each and used CiberSortX to create a
separate signature matrix for each of these subsamples. For each signature matrix, we
used CiberSortX to calculate the estimated cell fractions within the bulk microarray
hippocampus samples from our previous analyses. This process lead to, for each
subsample, a (hippocampus) sample x cell type matrix indicating the proportion of
each sample composed by a given cell type. We then only retained cell types for which
the average cross-subsample correlation exceeded 0.7, indicating a consistent relative
cell fractionation across runs of CiberSortX. Only 15 cell-types fit this criterion, and
only these cell types were used for subsequent analysis. For each cell type, we
calculated the correlation between sample position along the longitudinal axis and cell
type fraction within that sample. We performed these correlation across each
subsample, as well as across the mean of the four cell fraction matrices. These
associations were FDR corrected with a Q value of 0.1. In the same manner, we also
used ANOVASs to calculate the difference in cell type proportions across hippocampal
subfields. For creating signature matrices, CiberSortX was run with quartile
normalization disabled and all other parameters with their default settings. For cell
fractions, batch correction and quartile normalization were enabled, and all other
parameters left to their default settings.
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As a way of validating results from the previous analysis, we used a completely
different pipeline for determining cell type expression inspired by ref. 26, using a
different reference sample. We accessed supplementary data from ref. 24 indicating
top genes specifically associated with 35 different cell types. For each cell type, we
created a sample x gene expression matrix using the top genes associated with that
cell, across all hippocampus samples. We then used this as input to a principal
components analysis and stored loadings of each gene on the first component.
Finally, we arrived at a cell type expression value for a given sample by finding the
weighted mean of the expression of all cell-associated genes, using weights from the
PCA. As with the previous analysis, we calculated relationships between cell-type
expression and axis position, as well as difference across subfields.

Model generalization to an external prenatal dataset. While we used repeat 10-
fold cross-validation to validate our model, this approach may be biased to our
specific sample of six human brains. Therefore, we sought to generalize the model
to an external dataset. We downloaded data from 1203 tissue samples laser
microdissected from the brains of four deceased neonatal humans, aged 15-21
post-conception weeks, as part of the Prenatal LMD Microarray portion of the
Brainspan dataset?’. Download links and further information including consent
information can be found at http://www.brainspan.org. Metadata for the four
donors can be found in Supplementary Data 7. Each tissue sample underwent
microarray analysis producing gene expression data for the same 58,692 probes as
the Allen Human Brain Atlas. The same procedure as described in the section
(Human gene expression data) was used to regress out donor-specific expression
patterns from each probe. While no stereotaxic coordinates are available for the
current version of the Brainspan atlas, we were able to identify 53 samples falling
within the hippocampus using the precise anatomical labels associated with each
tissue sample. Specifically, all samples labeled as being within the CA1-4, hippo-
campus, dentate gyrus, subiculum, presubiculum or postsubiculum were included
as hippocampus samples. These labels additionally indicated whether the sample
was extracted from the rostral or caudal hippocampus, and so all samples were
divided into a rostral or caudal group.

The feature sets (i.e. probes) are identical between the Brainspan and Allen
Human Brain Datasets, which allowed us to easily generalize our model to the
Brainspan data. For each sample, we calculated the dot product between the vector
of probe expression values and the vector of probe weights from the model trained
on the hippocampus longitudinal axis, described in the section (Genes associated
with the long axis of the human hippocampus (in Methods)). This produced a
single value for each sample, representing the pattern expression of the model
trained in the Allen Human Brain Atlas dataset. To improve interpretability, the
intercept was not added, which effectively normalized the pattern expression. Note
that this process is identical to the process to calculate HAGGIS (see below, the
section (HAGGIS formulation). Higher values should therefore be mapped onto
more anterior samples, while lower values should indicate samples were extracted
from a more posterior portion of the hippocampus. To test this, we compared the
pattern expression between rostral and caudal hippocampus samples using t-tests.
We furthermore used logistic regression to see how well the pattern expression of
the model trained in adults could predict samples extracted from the rostral vs.
caudal hippocampus of the prenatal dataset, and we used this information to create
ROC curves. We also repeated this process for each of the smaller individual gene
sets identified in the section (Model feature deconstruction to identify specific
genes), by substituting the betas from the model using all features with the betas
from the model using only genes in each smaller set.

HAGGIS formulation. We sought to ascertain to what degree the specific pattern
of genes signatures varying along the hippocampal longitudinal axis was expressed
throughout the rest of the brain. The probe weight (beta) vector from the LASSO-
PCR analysis can be thought of as a hippocampal longitudinal axis genomic sig-
nature. In order to test for the presence of this signature in other brain regions, we
found the dot product between the beta vector (genomic axis signature) and the
gene expression (probe) vector for each sample (Fig. 5¢). Note that when esti-
mating regression coefficients we have:

B=x"x)"'xTy (1)

This is equivalent to using the estimates of coefficients from the LASSO-PCR

model to predict the location of the (non-hippocampal) sample along the hippo-
campal axis. In practice, this amounts to using the hippocampus model to predict
where a non-hippocampus sample might fall along the hippocampal longitudinal
axis based on that sample’s gene expression. However, conceptually, this value can
also offer an index of covariance between a given sample’s gene expression and the
gene expression profile of the anterior or posterior hippocampus. Higher (positive)
values represent greater genomic covariance with the anterior hippocampus, while
lower (negative) values represent greater similarity to the posterior hippocampus.
For the purposes of parity, this index will be referred to in the text as the HAGGIS.

Comparisons with resting-state functional connectivity. For each of the 170
hippocampal samples, a resting-state functional connectivity map was downloaded
from Neurosynth (RRID:SCR_006798; http://neurosynth.org/) using the closest
available MNI coordinate to the MNI coordinate of the sample. The Euclidian

distance between Neurosynth coordinate and sample coordinate never exceeded
2 mm. Each map is based on the resting-state functional connectivity patterns of
1000 young, healthy individuals from the Brain Genomics Superstruct projects.

We sought to test whether the genes associated with the longitudinal axis of the
hippocampus contribute to the differential brain connectivity observable along this
axis. The measurement resolution of resting-state functional magnetic resonance
imaging (rsfMRI) limits detail at which differences in connectivity can be observed
along a structure as small as the hippocampus. To ameliorate this issue, we divided
the hippocampus into genomically determined posterior and anterior subsections,
created mean connectivity maps for each, and used these mean connectivity maps
to create a subtraction image representing differential functional connectivity
between the two poles of the hippocampus!!. To determine a reasonable division
between anterior and posterior hippocampus, we created a split at every point
along the hippocampus skeleton. For each split, we classified samples as anterior or
posterior based on the position of the coordinate along the longitudinal axis
relative to the split. For each split, we next ran Logistic Regression, entering sample
class (i.e. anterior or posterior) as the dependent variable and sample HAGGIS as
the only independent variable. We then plotted the classification accuracy at each
split under the hypothesis that higher anterior-posterior classification accuracy
would suggest a more empirically sound anterior—posterior division
(Supplementary Fig. 7a). We defined the optimal anterior and posterior cut points
as (i) local maxima in accuracy that (ii) were at least 3 mm from both hippocampal
poles and (iii) captured at least 20 samples for each side of the split. This lead to an
anterior split point of y =108 (MNI: —19) and a posterior point of y =94 (MNI:
—35). All samples in between were removed. Results in the main text are reported
using this split but, due to the somewhat arbitrary nature of this analysis, results are
also reported for several other splits.

Once the anterior and posterior samples had been defined, a mean image was
made of the functional connectivity maps corresponding to each anterior and
posterior sample, respectively. The posterior map was then subtracted from the
anterior map. The resulting image represented relative functional connectivity to the
anterior hippocampus over the posterior hippocampus. For each non-brainstem, non-
cerebellum sample, a 5 x 5 x 5 mm cube was drawn around the MNI coordinate of the
sample. The mean of rsfmri subtraction image values within the cube was calculated,
and this value was used as a measure of relative functional connectivity of the sample
to the anterior over posterior hippocampus. Finally, we ran a Pearson’s correlation
between this functional connectivity measure and the HAGGIS. A positive correlation
would indicate that brain regions with more genomic similarity to the anterior or
posterior hippocampus would be more likely to be functionally connected to those
regions, respectively. The residuals of this relationship were stored in order to
visualize disagreements between these two cortical patterns. This analysis was
performed using weights from the model performed on the entire gene set, as well as
weights from models defined on individual gene sets.

We repeated this analysis using three other brain masks: (i) All brain regions;
(ii) all regions except cerebellum, brainstem and hippocampus; (iii) cerebral cortex
only. In addition, we varied the radius of the cube drawn around the sample
coordinate between 1 mm and 6 mm. For completeness, we performed the above
analysis using each cube radius, with each mask, and using many different splits—a
total of 336 analyses. To ensure the relationships between HAGGIS and rsfMRI
connectivity were not born out of chance, we performed a permutation test for
each of the 336 conditions. Specifically, the gene expression values for each sample
were randomly shuffled, and a correlation was run between the extracted rsfMRI
connectivity values and the shuffled gene expression values. This process was
repeated 1000 times to create a null distribution, to which the observed value was
compared to establish an exact p-value.

We performed one final validation by applying diffusion map embedding®2%-30
—a non-linear dimension reduction approach—to the hippocampal-brain
functional connectivity matrix. This approach summarizes variation in
hippocamus-brain connectivity into components or gradients®, allowing threshold-
free representations of variation in hippocampus-brain functional connectivity for
each tissue sample. The whole-brain connectivity maps for each sample (see above)
were masked with a cortex-only mask (see above), vectorized and concatenated
into a Sample x Voxel matrix. A correlation matrix was created from the transpose,
generating a Sample x Sample similarity matrix, which was reduced using diffusion
map embedding with default settings. We report the total variance in
hippocampus-brain functional connectivity explained by each gradient, as well as
the r? summarizing each gradient’s relationship to sample location along the
longitudinal axis, and predicted sample location based on gene expression
(proportionate to HAGGIS). We also report p-values, which are Bonferroni
corrected for multiple comparisons. We then selected the gradient with the greatest
relationship to predicted sample location (i.e. HAGGIS), provided this relationship
was significantly stronger than that of other gradients, as measured using Steiger’s
tests®. For these select gradients, we also report this information with sample
location predicted using each of the gene Sets described above (section (Genes
associated with the long axis of the human hippocampus (in Results)) and section
(Model feature deconstruction to identify specific genes)).

Other studies have been published examining genomic associations with functional
connectivity?>”?8, and so we sought to understand what proportion of the variance
explained from the main analysis (shown in Fig. 5a) was unique to the HAGGIS rather
than general network connectivity. We trained a cross-validated PLS model to learn
the genomic features predicting relative anterior vs. posterior connectivity to the
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Table 2 Demographic information for FTD and AD individuals included in FDG-PET analysis.

AD FTD Test
Age at FDG: mean (sd) 62.0 (8.8) 61.4 (8.7) Cohen's d=0.07, p(t-test) = 0.79, p(Mann-Whitney) = 0.82
Females: n (%) 12 (34%) 19 (54%) Fisher exact p=0.15
Years of education:mean (sd) 16.1(2.9) 16.3 (4.7) Cohen's d = 0.04, p(t-test) = 0.88, p(Mann-Whitney) = 0.81
Dementia stage (CDR > 1): n (%) 22 (63%) 17 (49%) Fisher exact p=0.34
CDR-SoB: mean (sd) 4.8 (1.9) 42 (@(3.2) Cohen's d = 0.25, p(t-test) = 0.30, p(Mann-Whitney) = 0.31

FDG fluorodeoxyglucose, sd standard deviation, CDR clinical dementia rating, CDR-SoB clinical dementia rating, sum of boxes.

hippocampus (i.e. the map in Fig. 5a; see the subsection (Identifying candidate genes
for brain-hippocampus interactions) below for details). We considered the 10-fold
cross-validated variance explained of this model to represent an estimate of the
maximum variance explainable given the present genomic data. We then represented
the variance explained of HAGGIS as a proportion of the overall variance explainable
given the genomic data (visualized in Fig. 5¢).

Comparisons with structural covariance. Structural covariance is thought to
reflect shared cytoarchitecture and/or developmental and degenerative trajectories
between regions. The anterior and posterior hippocampus have shown different
patterns of structural covariance with the rest of the brain28, and structural cov-
ariance appears to be genetically determined to some extent®. Accordingly, we
assessed whether the differential structural covariance between different brain
regions and the hippocampus along its longitudinal axis is reflected by patterns of
genomic covariance.

Structural covariance was calculated using the OASIS: Cross-Sectional
structural (T1) MRI dataset®, accessed with Nilearn (RRID:SCR_001362; https://
nilearn.github.io/). The OASIS images came preprocessed using the SPM DARTEL
pipeline®l. 153 preprocessed gray matter volume images were identified as healthy,
cognitively normal young (age < 40) controls. For each voxel corresponding to the
MNI coordinates of an Allen Human Brain Atlas hippocampus sample, a structural
covariance vector was calculated between that voxel and all other brain voxels.
Elements in the vector represented Pearson correlation coefficients between voxel
values across the dataset of 153 individuals between the two regions. Anterior and
posterior hippocampus divisions identified in the previous analysis were used to
divide the covariance vectors, and the average covariance within anterior vectors
and posterior vectors were calculated, respectively. The difference between these
vectors was calculated to create a map where each voxel contained a value
representing the relative structural covariance to the anterior over the posterior
hippocampus. The values strongly favored the anterior hippocampus, so the map
was z-scored, such that lower values represented less structural covariance to the
anterior hippocampus. Relationships between HAGGIS and relative structural
covariance were carried out in a manner identical to the functional connectivity
analysis described above, and were repeated using different gene sets and brain
masks. The residuals of this relationship were stored in order to visualize
disagreements between these two cortical patterns. Similar to the functional
connectivity analysis, we calculated the variance explained by HAGGIS as a
proportion of the maximum variance explainable given the data (see the section
(Comparisons with resting-state functional connectivity)).

As with the functional connectivity analysis, we used diffusion map embedding
to generate threshold-free measures (gradients) summarizing structural covariance
between the hippocampus and other parts of the brain. For each sample, we
calculated structural covariance between the voxel at the sample location and all
other voxels falling within a cortical mask, creating covariance vectors. These
vectors were concatenated into a Sample x Voxel matrix, and reduced using
diffusion map embedding as described above (section (Comparisons with resting-
state functional connectivity)).

Comparisons with neurodegenerative disease vulnerability. Previous studies
have noted the differential relationship of the hippocampus to AD and FTD. We
tested whether regions more genomically similar to the anterior than posterior
hippocampus might be more vulnerable to neurodegeneration in FTD than in AD
(and vice versa). In April 2018, we queried our database looking for patients who
fulfilled the following criteria: (i) Had available both a ['1C] Pittsburgh Compound
B (PiB)-PET scan for f-amyloid and a [18F] Fluorodeoxyglucose (FDG)-PET scan
of brain glucose metabolism acquired on the Biograph scanner; (ii) Had either a
clinical diagnosis of AD%2 and a “positive” PIB-PET read, or a clinical diagnosis of
FTD (either behavioral variant FTD or semantic variant primary progressive
aphasia, as described in ref. ©3) and a “negative” PIB-PET read. This query resulted
in 36 AD and 39 FTD patients. Five patients were later excluded because of
incomplete FDG-PET SUVR (missing at least one of the six frames between 30 and
60 min post injection), resulting in a final count of 35 AD and 35 FTD patients.
Demographic information can be found in Table 2. Note there is no overlap
between this sample and the sample described in ref. 11.

All patients were seen at the at University of California, San Francisco Memory
& Aging Center and imaged at the Lawrence Berkeley National Labs. Informed

consent was obtained from all subjects or their assigned surrogate decision-makers,
and UCSF and the Lawrence Berkeley National Laboratory (LBNL) institutional
review boards for human research approved the study. PET acquisition details can
be found elsewhere®. FDG-PET images were processed using SPM12 using a
previously described pipeline®. Briefly, six five-minute frames were realigned and
averaged, and the average image was coregistered onto patient specific anatomical
T1-MRI scans. Standard uptake value ratios (SUVR) were calculated using the pons
(Freesurfer segmentation of the brainstem with manual cleaning) as a reference
region, and SUVR images were warped to the MNI template using MRI-derived
parameters. All 70 patients were entered into a voxelwise t-test controlling for age
and disease severity (Clinical Dementia Rating Sum of Boxes score) using SPM12,
highlighting differences in glucose hypometabolism (a proxy for
neurodegeneration) between AD and FTD patients. The t-map from this analysis
was used for subsequent analyses, and is made available with this publication
(https://neurovault.org/collections/4756/).

For each non-brainstem, non-cerebellar sample, a 5 mm diameter cube was
drawn around the sample’s MNI coordinates, and the mean ¢-value from the t-map
described above was extracted. This value represents the relative neurodegeneration
in FTD over AD in or around the region the sample was extracted from. Across
samples, a correlation was calculated between this value and the sample’s HAGGIS.
A positive correlation would suggest regions more genomically similar to the
anterior than the posterior hippocampus are more vulnerable to neurodegeneration
in FTD than in AD. The residuals of this relationship were stored in order to
visualize disagreements between these two cortical patterns. To ensure our findings
were not specific to the brainmask used or the size of the extraction cube, we reran
the analysis using each of the three additional masks described in the section
(Comparisons with resting-state functional connectivity), as well as varying the
diameter of the extraction cube. Finally, permutation tests were run for each
condition to compare our observations to chance (see the section (Comparisons
with resting-state functional connectivity)).

As with the previous analyses, we ran the above analyses across different gene
sets. Finding divergence across sets, we performed post hoc analyses to determine
whether gene ontology analysis could explain this discrepancy. Using gene
ontology clusters defined in the section (Gene ontology enrichment analysis), we
created cluster scores for Gene Sets 2 and 3. Specifically, we calculated the weighted
mean expression of genes associated with each gene ontology cluster where weights
were determined by cluster centrality. We next found the correlation between each
cluster score and relative disease vulnerability across all brain samples. For each
cluster score, we also shuffled the weights of the weighted mean and reran the
correlations with disease vulnerability 100 times, creating a null distribution.
Associations greater than the 95% of null distribution values were considered to be
greater than chance.

Identifying candidate genes for brain-hippocampus interactions. In the sec-
tions (Comparisons with resting-state functional connectivity), (Comparisons with
structural covariance), and (Comparisons with neurodegenerative disease vulner-
ability), we describe methods to uncover relationships between HAGGIS and
hippocampus-brain interactions. We wished to identify which specific genes were
principally involved both in the organization of the longitudinal axis of the hip-
pocampus, as well as in the hippocampus-brain interactions, further elucidating the
role of the various genes identified in the section (Model feature deconstruction to
identify specific genes) along the axis. For each hippocampus-brain interaction map
(visualized in Fig. 5a), we fit a partial least squares (PLS) regression model with gene
expression information as X and hippocampus-brain interaction value as Y, across
all brain samples. As with the model described in the section (Genes associated with
the long axis of the human hippocampus (in Methods)), the X input was first
transformed using principal components analysis and represented as a set of
genomic components. The model was fit varying the number of PLS components
(i.e. modes) between 1 and 10, and using 10-fold cross-validation to assess model
accuracy. The model with the highest cross-validated explained variance was
selected as the best model, and was considered the maximum explainable variance
given the genomic data available, which was therefore useful to compare to the
HAGGIS models (see the section (Comparisons with resting-state functional con-
nectivity) above). Note that the hippocampus itself was not included in any of the
models. For each of the three PLS models, feature weights were backtransformed
back into probe space (see the section (Genes associated with the long axis of the
human hippocampus) (in Methods)), and the top 50 anterior and posterior
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associated features (i.e. with the highest and lowest weights) were identified.
Overlapping features between each model and the hippocampus longitudinal axis
model are reported. These features represent genes that appear to be very important
in predicting the location of tissue samples in the hippocampus, but also in pre-
dicting interactions between the hippocampus and other brain regions. To ensure
this overlap did not occur by chance, 1000 sets of 100 random probes were gen-
erated, and used to calculate the probability of overlap between 100 random features
and the 100 features from the the hippocampus longitudinal axis model.

Comparisons with large-scale cognitive systems. Neurosynth contains 3D
meta-analytic functional co-activation maps from task-fMRI studies that are paired
with sets of related topics (words) extracted from the text of these studies. These
topic-list/co-activation map pairs are the result of a Latent-Dirichlet Allocation
across 11,406 articles, the details of which can be found elsewhere®®. In short, topic
lists represent words that are mentioned greater than chance (FDR <0.01) in
papers reporting functional co-activation in given coordinates, summarized by
paired co-activation maps. All 100 (association/reverse inference) maps from the
set of 100 topic-list/co-activation map pairs on the Neurosynth website were
downloaded and binarized such that all values above 0 were set to 1, and all other
values were set to 0. We manually labeled the topics according to their hypothe-
sized association with the AT/PM system!? based on the content of the word list
(AT/PM/Not associated) but without reference to the spatial pattern of the co-
activation. For each of the 100 binarized functional meta-analytic co-activation
maps, all samples with MNI coordinates falling within the map were identified, and
the mean HAGGIS of those samples was calculated. Therefore, each topic/map pair
had an associated value indicating the degree to which the brain regions involved
expressed genes similar to the anterior or posterior hippocampus. Higher values
represented similarity to the anterior hippocampus, lower values to the posterior
hippocampus, and higher absolute values represented greater genomic covariance.
To increase confidence in this approach, the main analyses were restricted only to
maps overlapping with at least 500 samples (29/100).

To help visualize these results, we created a word cloud summarizing both the
spatial (functional coactiviation) and topic (cognitive) information associated
with the anterior and posterior hippocampus respectively. For the topic
information, each topic-set contained 40 words arranged by importance to the
topic-set. Each word was given a value proportionate to its importance rank in
its topic set (i.e. most important word valued at 40, least important at 1). Next,
the value of each word was multiplied by the average HAGGIS within the
binarized map paired to the word’s topic-set (i.e. the bars in Fig. 6), multiplied
by 1000 to increase the weighting of this multiplier proportionate to the within-
set ranking. Therefore, each word had an associated value, such that the highest
values represented words most important to topic/map pairs with the greatest
HAGGIS, where multiple mentions increased the value of the word. To
summarize the spatial information, we binarized each map and multiplied it by
the average HAGGIS within the binarized map (i.e. the bars in Fig. 6), and
summed all maps, and smoothed the image with a 4 mm isotropic kernel. All
voxels with positive values were binarized into a mask, and this mask was used as
constraint for the anterior-hippocampus word cloud, inside which the top 100
words were visualized. All voxels with negative values were binarized into a
posterior mask used as a constraint for the posterior-hippocampus word cloud.
The word values were repeated inverting the HAGGIS multipliers, and the top
100 words were visualized. The final image represents brain regions coactivated
more with the anterior vs. posterior hippocampus, and the cognitive topics most
associated with those regions.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

All data used in this paper are publicly available. A summary of datasets used including
access links can be found in Supplementary Data 8. Information about ethical compliance
and consent for each dataset can be found by following the respective links. The FDG
difference map between AD and FTD patients has been deposited in Neurovault (https://
neurovault.org/collections/4756/). All other figures can be generated de novo using scripts
and data provided at https://github.com/illdopejake/Hippocampus_AP_Axis°!.

Code availability

All data and analyses described in this paper are available online and can be fully
reproduced using exclusively open-access software, with python scripts and data
provided at https://github.com/illdopejake/Hippocampus_AP_Axis>!. All code and
analyses are presented in a series of Jupyter notebooks at the link provided.
Supplementary Data 9 outlines which notebook contains the analyses described in each
subsection of the Methods.
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